Contact | Publications | Research | Software | Teaching
Publications
Algorithm theory in the conferences FOCS, STOC, SODA, COLT, ICALP, ESA, STACS, I(W)PEC, ISIT, SAT, WG, COCOON. Machine learning, artificial intelligence, and bioinformatics in the conferences ICML, N(eur)IPS, UAI, AAAI, IJCAI, AISTATS, ECML, ALT, WABI, PSB. In addition, direct journal publications in all these areas, plus journalizations of conference publications. For citations, see my profile at Google Scholar. For open access copies and links to many of the articles (especially the most recent ones), see the archive. The DBLP listing includes most of my publications. Below are some yearly highlights, and after that a complete list of early works (before 2020).Recent Yearly Highlights
-
Estimating the permanent by nesting importance sampling
Juha Harviainen and Mikko Koivisto
ICML 2024
-
On inference and learning with probabilistic generating circuits
Juha Harviainen, Vaidyanathan Peruvemba Ramaswamy, and Mikko Koivisto
UAI 2023
-
Trustworthy Monte Carlo
Juha Harviainen, Petteri Kaski, and Mikko Koivisto
NeurIPS 2022
-
Approximating the permanent with deep rejection sampling
Juha Harviainen, Antti Roysko, and Mikko Koivisto
NeurIPS 2021
-
Towards scalable Bayesian learning of causal DAGs
Jussi Viinikka, Antti Hyttinen, Johan Pensar, and Mikko Koivisto
NeurIPS 2020
Yearly Highlights before 2020
-
Exact sampling of directed acyclic graphs from modular distributions
Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto
UAI 2019 (Best Student Paper Award)
-
A scalable scheme for counting linear extensions
Topi Talvitie, Kustaa Kangas, Teppo Niinimäki, and Mikko Koivisto
IJCAI 2018
-
The mixing of Markov chains on linear extensions in practice
Topi Talvitie, Teppo Niinimäki, and Mikko Koivisto
IJCAI 2017
-
Counting linear extensions of sparse posets
Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, and Mikko Koivisto
IJCAI 2016
-
Dealing with small data: On the generalization of context trees
Ralf Eggeling, Mikko Koivisto, and Ivo Grosse
ICML 2015
-
Predicting the hardness of learning Bayesian networks
Brandon Malone, Kustaa Kangas, Matti Järvisalo, Mikko Koivisto, and Petri Myllymäki
AAAI 2014
-
Annealed importance sampling for structure learning in Bayesian networks
Teppo Niinimäki and Mikko Koivisto
IJCAI 2013
-
Fast zeta transforms for lattices with few irreducibles
Andreas Björklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Jesper Nederlof, and Pekka Parviainen
SODA 2012 -
Partial order MCMC for structure discovery in Bayesian networks
Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto
UAI 2011 -
A space-time tradeoff for permutation problems
Mikko Koivisto and Pekka Parviainen
SODA 2010 -
Exact structure discovery in Bayesian networks with less space
Pekka Parviainen and Mikko Koivisto
UAI 2009 (The runner up for the Best Student Paper Award. Journal version in JMLR 14 (2013) 1387-1415.) -
Computing the Tutte polynomial in vertex-exponential time
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
FOCS 2008 -
Fourier meets Möbius: fast subset convolution
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
STOC 2007 -
An O*(2n) algorithm for graph coloring and other partitioning problems
via inclusion-exclusion
Mikko Koivisto
FOCS 2006 (Journal version in SIAM J. Comput. 39 (2009) 546-563.) -
A hidden Markov technique for haplotype reconstruction
Pasi Rastas, Mikko Koivisto, Heikki Mannila, and Esko Ukkonen
WABI 2005 -
Exact Bayesian structure discovery in Bayesian networks
Mikko Koivisto and Kismat Sood
Journal of Machine Learning Research 5 (2004) 549-573. -
An MDL method for finding haplotype blocks and for
estimating the strength of haplotype block boundaries
Mikko Koivisto, Markus Perola, Teppo Varilo, William Hennah, Jesper Ekelund, Margus Lukk, Leena Peltonen, Esko Ukkonen, and Heikki Mannila
PSB 2003
Peer-reviewed publications before 2020
-
Exact sampling of directed acyclic\
graphs from modular distributions
Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto
UAI 2019 (Best Student Paper Award)
-
On structure priors for learning Bayesian networks
Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, and Mikko Koivisto
AISTATS 2019
-
Counting and sampling Markov equivalent directed acyclic graphs
Topi Talvitie and Mikko Koivisto
AAAI 2019
-
On the number of connected sets in bounded-degree graphs
Kustaa Kangas, Petteri Kaski, Mikko Koivisto, and Janne Korhonen
Electr. J. Comb.
-
Counting connected subgraphs with maximum-degree-aware sieving
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
ISAAC 2018
-
Algorithms for learning parsimonious context trees
Ralf Eggeling, Mikko Koivisto, and Ivo Grosse
Machine Learning
-
Finding optimal Bayesian networks with local structure
Topi Talvitie, Ralf Eggeling, and Mikko Koivisto
PGM 2018
-
NP-completeness results for partitioning a graph into total dominating sets
Mikko Koivisto, Petteri Laakkonen, and Juho Lauri
Theoretical Computer Science
-
A faster tree-decomposition based algorithm for counting linear extensions
Sami Salonen, Kustaa Kangas, and Mikko Koivisto
IPEC 2018
-
A scalable scheme for counting linear extensions
Topi Talvitie, Kustaa Kangas, Teppo Niinimäki, and Mikko Koivisto
IJCAI 2018
-
Intersection-validation: A method for evaluating structure learning without ground truth
Jussi Viinikka, Ralf Eggeling, and Mikko Koivisto
AISTATS 2018
-
Counting linear extensions in practice: MCMC versus exponential Monte Carlo
Topi Talvitie, Kustaa Kangas, Teppo Niinimäki, and Mikko Koivisto
AAAI 2018
-
NP-completeness results for partitioning a graph into total dominating sets
Mikko Koivisto, Petteri Laakkonen, and Juho Lauri
COCOON 2017
-
The mixing of Markov chains on linear extensions in practice
Topi Talvitie, Teppo Niinimäki, and Mikko Koivisto
IJCAI 2017
-
Sharper upper bounds for unbalanced uniquely decodable code pairs
Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof
IEEE Transactions on Information Theory (Preliminary version at ISIT 2016)
-
Narrow sieves for parameterized paths and packings
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
Journal of Computer and System Sciences (Preliminary version: arXiv 1007.1161)
-
Pruning rules for learning parsimonious context trees
Ralf Eggeling and Mikko Koivisto
UAI 2016
-
Counting linear extensions of sparse posets
Kustaa Kangas, Teemu Hankala, Teppo Niinimäki, and Mikko Koivisto
IJCAI 2016
-
Sharper upper bounds for unbalanced uniquely decodable code pairs
P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof
The 2016 IEEE International Symposium on Information Theory (ISIT 2016) pp. 335-339, IEEE, 2016
-
Structure discovery in Bayesian neworks by sampling partial orders
T. Niinimäki, P. Parviainen, and M. Koivisto
Journal of Machine Learning Research 17 (2016) 1-47 (Preliminary versions at AISTATS 2010, UAI 2011, IJCAI 2013)
-
Separating OR, SUM, and XOR circuits
M. Find, M. Göös, M. Järvisalo, P. Kaski, M. Koivisto, and J. H. Korhonen
Journal of Computer and System Sciences 82 (2016) 793-801 (Preliminary version at SAT 2012)
-
Dense Subset Sum may be the hardest
P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof
33rd International Symposium on Theoretical Aspects of Computer Science (STACS 2016), LIPIcs 47, pp. 13:1-13:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016
-
Averaging of decomposable graphs by dynamic programming and sampling
K. Kangas, T. Niinimäki, and M. Koivisto
31st Conf. on Uncertainty in Artificial Intelligence (UAI 2015)
-
On finding optimal polytrees
S. Gaspers, M. Koivisto, M. Liedloff, S. Ordyniak, and S. Szeider
Theoretical Computer Science 592 (2015) 49-58 (Preliminary version at AAAI 2012)
-
Dealing with small data: On the generalization of context trees
Ralf Eggeling, Mikko Koivisto, and Ivo Grosse
Internat. Conf. on Machine Learning 2015 (ICML 2015)
-
Subset Sum in the absence of concentration
P. Austrin, P. Kaski, M. Koivisto, and J. Nederlof
32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), LIPIcs 30, pp. 48-61, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015
-
Learning chordal Markov networks by dynamic programming
K. Kangas, T. Niinimäki, and M. Koivisto
Advances in Neural Information Processing Systems 27 (NIPS 2014), pp. 2357-2365, 2014
-
On the number of connected sets in bounded degree graphs
K. Kangas, P. Kaski, M. Koivisto, and J. H. Korhonen
40th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2014), LNCS 8747, pp. 336-347, Springer, 2014
-
Predicting the hardness of learning Bayesian networks
B. Malone, K. Kangas, M. Järvisalo, M. Koivisto, and P. Myllymäki
28th AAAI Conference on Artificial Intelligence (AAAI 2014), pp. 2460-2466, AAAI, 2014
-
Fast monotone summation over disjoint sets
P. Kaski, M. Koivisto, J. H. Korhonen, and I. S. Sergeev
Information Processing Letters 114 (2014) 264-267
-
Treedy: a heuristic for counting and sampling subsets
T. Niinimäki and M. Koivisto
UAI 2013
-
Fast zeta transforms for lattices with few irreducibles
A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, J. Nederlof, and P. Parviainen
ACM Transactions on Algorithms 12 (2015) 4:1-17
-
Finding optimal Bayesian networks using precedence constraints
P. Parviainen and M. Koivisto
Journal of Machine Learning Research 14 (2013) 1387-1415
-
Annealed importance sampling for structure learning in Bayesian networks
T. Niinimäki and M. Koivisto
IJCAI 2013
-
Space-time tradeoffs for Subset Sum: an improved worst case algorithm
P. Austrin, P. Kaski, M. Koivisto, and J. Määttä
ICALP 2013
-
Fast monotone summation over disjoint sets
P. Kaski, M. Koivisto, and J. Korhonen
7th International Symposium on Parameterized and Exact Computation (IPEC 2012), LNCS 7535, pp. 159-170, Springer, 2012
-
Homomorphic hashing for sparse coefficient extraction
P. Kaski, M. Koivisto, and J. Nederlof
7th International Symposium on Parameterized and Exact Computation (IPEC 2012), LNCS 7535, pp. 147-158, Springer, 2012 arXiv 1203.4063
-
Finding efficient circuits for ensemble computation
M. Järvisalo, P. Kaski, M. Koivisto, and J. Korhonen
15th International Conference on Theory and Applications of Satisfiability Testing (SAT 2012), LNCS 7317, pp. 369-382, Springer, 2012
-
On finding optimal polytrees
S. Gaspers, M. Koivisto, M. Liedloff, S. Ordyniak, and S. Szeider
26th AAAI Conference on Artificial Intelligence (AAAI 2012), pp. 750-756, AAAI, 2012
-
The traveling salesman problem in bounded degree graphs
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
ACM Transactions on Algorithms 8 (2012, Article 18) 1-13
-
Fast zeta transforms for lattices with few irreducibles
Andreas Björklund, Thore Husfeldt, Petteri Kaski, Mikko Koivisto, Jesper Nederlof, and Pekka Parviainen
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 1436-1444, SIAM, 2012
-
Covering and packing in linear space
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
Information Processing Letters 111 (2011) 1033-1036
-
Ancestor relations in the presence of unobserved variables
Pekka Parviainen and Mikko Koivisto
The European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2011), LNCS 6912, pp. 581-596, Springer, 2010
-
Partial order MCMC for structure discovery in Bayesian networks
Teppo Niinimäki, Pekka Parviainen, and Mikko Koivisto
27th Conf. on Uncertainty in Artificial Intelligence (UAI 2011), AUAI Press, pp. 447-564, 2011
-
Evaluation of permanents in rings and semirings
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
Information Processing Letters, 110: 867-870, 2010. A preliminary version: arXiv 0904.3251
-
Covering and packing in linear space
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
37th Internat. Colloq. on Automata, Languages and Programming (ICALP 2010), LNCS 6198, pp. 727-737, Springer, 2010
-
Trimmed Moebius inversion and graphs of bounded degree
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
Theory of Computing Systems 47 (2010) 637-654
-
Bayesian structure discovery in Bayesian networks with less space
Pekka Parviainen and Mikko Koivisto
13th Internat. Conf. on Artificial Intelligence and Statistics (AISTATS 2010), Volume 9 of JMLR: W&CP 9, pp. 589-596, 2010
-
A space-time tradeoff for permutation problems
Mikko Koivisto and Pekka Parviainen
21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 484-492, SIAM, 2010
-
Partitioning into sets of bounded cardinality
Mikko Koivisto
4th Internat. Workshop on Parameterized and Exact Computation (IWPEC 2009), LNCS 5917, pp. 258-263, Springer, 2009
-
Mixture model clustering of phenotype features reveals
evidence for association of DTNBP1 to a specific subtype of schizophrenia
Jaana Wessman, Tiina Paunio, Annamari Tuulio-Henriksson, Mikko Koivisto, Timo Partonen, Jaana Suvisaari, Joni A. Turunen, Juho Wedenoja, William Hennah, Olli Pietil\E4inen, Jouko L\F6nnqvist, Heikki Mannila, Leena Peltonen
Biological psychiatry 66 (2009) 990-996
-
Set partitioning via inclusion-exclusion
Andreas Björklund, Thore Husfeldt, and Mikko Koivisto
SIAM Journal on Computing, special issue dedicated to selected papers from FOCS 2006, 39 (2009) 546-563 Online version.
-
Counting paths and packings in halves
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
17th Annual European Symposium on Algorithms (ESA 2009), LNCS 5757, pp. 578-586, Springer, 2009 arXiv 0904.3093.
-
Exact structure discovery in Bayesian networks with less space
Pekka Parviainen and Mikko Koivisto
25th Conf. on Uncertainty in Artificial Intelligence (UAI 2009). pp 436-443, AUAI, 2009 (the runner up for the Best Student Paper Award)
-
Computing the Tutte polynomial in vertex-exponential time
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 677-686, IEEE Computer Society, 2008, arXiv 0711.2585
-
Fast Bayesian haplotype inference via context tree weighting
Pasi Rastas, Jussi Kollin, and Mikko Koivisto
Algorithms in Bioinformatics: 8th Internat. Workshop (WABI 2008), LNCS 5251, pp. 259-270, Springer, 2008
-
The Travelling Salesman Problem in bounded degree graphs
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
35th Internat. Colloq. on Automata, Languages and Programming (ICALP 2008), LNCS 5125, pp. 198-209, Springer, 2008
-
Trimmed Moebius inversion and graphs of bounded degree
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
Proceedings of the 25th Internat. Symposium on Theoretical Aspects of Computer Science (STACS 2008), pp. 85-96, 2008
-
Phasing genotypes using a hidden Markov model
Pasi Rastas, Mikko Koivisto, Heikki Mannila, and Esko Ukkonen
In: I. Mandoiu and A. Zelikovsky (eds.), Bioinformatics Algorithms: Techniques and Applications, pp. 373-391, Wiley, 2008
-
Fourier meets Möbius: fast subset convolution
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto
39th ACM Symposium on Theory of Computing (STOC 2007), pp. 67-74, ACM Press, 2007
-
An O*(2^n) algorithm for graph coloring and other partitioning problems
via inclusion-exclusion
Mikko Koivisto
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 583-590, IEEE Computer Society, 2006
-
Bayesian learning with mixtures of trees
Jussi Kollin and Mikko Koivisto
17th European Conf. on Machine Learning (ECML 2006), LNCS 4212, pp. 294-305, Springer, 2006
-
Advances in exact Bayesian structure discovery in Bayesian networks.
Mikko Koivisto
22nd Conf. on Uncertainty in Artificial Intelligence (UAI 2006), pp. 241-248, AUAI Press, 2006 (computer program REBEL available)
-
Parent assignment is hard for the MDL, AIC, and NML costs
Mikko Koivisto
19th Annual Conf. on Learning Theory (COLT 2006), LNAI 4005, pp. 289-303, Springer, 2006
-
Optimal 2-constraint satisfaction via sum-product algorithms
Mikko Koivisto
Information Processing Letters 98 (2006) 22-24 [ScienceDirect]
-
A hidden Markov technique for haplotype reconstruction
Pasi Rastas, Mikko Koivisto, Heikki Mannila, and Esko Ukkonen
In: R. Casadio and G. Myers (eds.), Algorithms in Bioinformatics: 5th Internat. Workshop (WABI 2005), LNCS 3692, pp. 140-151, Springer, 2005 (computer program HIT available)
-
Computational aspects of Bayesian partition models
Mikko Koivisto and Kismat Sood
Internat. Conf. on Machine Learning 2005 (ICML 2005), pp. 433-440, ACM Press, 2005
-
Hidden Markov modelling techniques for haplotype
analysis
Mikko Koivisto, Teemu Kivioja, Pasi Rastas, Heikki Mannila, and Esko Ukkonen
In: S. Ben-David, J. Case, and A. Maruoka (eds.), Algorithmic Learning Theory: 15th International Conference (ALT 2004), LNCS 3244, pp. 37-52, Springer, 2004
-
Recombination systems
Mikko Koivisto, Pasi Rastas, and Esko Ukkonen
In: J. Karhumaki, H. Maurer, G. Paun, G. Rozenberg (eds.), Theory is Forever (Salomaa Festschrift), LNCS 3113, pp. 159-169, Springer-Verlag, Berlin, Heidelberg, 2004
-
Exact Bayesian structure discovery in Bayesian networks
Mikko Koivisto and Kismat Sood
Journal of Machine Learning Research, 5(May):549-573, 2004
-
An MDL method for finding haplotype blocks and for
estimating the strength of haplotype block boundaries
Mikko Koivisto, Markus Perola, Teppo Varilo, William Hennah, Jesper Ekelund, Margus Lukk, Leena Peltonen, Esko Ukkonen, and Heikki Mannila
Pacific Symposium on Biocomputing 2003 (PSB 2003), pp. 502-513, World Scientific, 2002 (computer program MDLBlockFinder available)
-
Offspring risk and sibling risk for multilocus traits
Mikko Koivisto and Heikki Mannila
Human Heredity, 51(4):209-216, 2001
Theses
- Ph.D. thesis:
Sum-Product Algorithms for the Analysis of Genetic Risks.
Department of Computer Science, University of Helsinki,
Report A 2004-1, January 2004.
Supervisor: Heikki Mannila.
- M.Sc. thesis (in Finnish): Sukulaisriskien laskenta ja k\E4ytt\F6 geneettisten mallien arvioinnissa (Computation of recurrence risks and the analysis of genetic models). Department of Computer Science, University of Helsinki, Report C 2000-52, August 2000. (Awarded a Pro Gradu prize by the Faculty of Science.) Supervisor: Heikki Mannila.
Contact | Publications | Research | Software | Teaching
Last modified Dec 18, 2024.