Publications by topic |
The FastICA algorithm[This is probably the most widely used algorithm for performing independent component analysis, a variant of factor analysis that is completely identifiable unlike classical methods, and able to perform blind source separation.]
A. Hyvärinen.
Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3):626-634, 1999.
A. Hyvärinen and E. Oja.
Independent Component Analysis: Algorithms and Applications.
Neural Networks, 13(4-5):411-430, 2000.
A. Hyvärinen and E. Oja. A Fast Fixed-Point Algorithm for Independent
Component Analysis.
Neural Computation, 9(7):1483-1492, 1997.
Postscript
gzipped PostScript
pdf.
A. Hyvärinen. New Approximations of Differential Entropy
for Independent Component Analysis and Projection Pursuit. In
Advances in Neural Information Processing Systems 10 (NIPS*97), pp. 273-279, MIT Press, 1998.
Postscript
gzipped PostScript
pdf.
Related TechRep: Postscript
gzipped PostScript.
pdf.
E. Bingham and A. Hyvärinen
A fast fixed-point algorithm for independent component analysis of complex-valued signals.
Int. J. of Neural Systems, 10(1):1-8, 2000.
A. Hyvärinen. One-Unit Contrast Functions for Independent
Component Analysis: A Statistical Analysis. In Neural Networks
for Signal Processing VII (Proc. IEEE NNSP Workshop '97, Amelia Island,
Florida), pp. 388--397, 1997.
Postscript
gzipped PostScript
pdf.
A. Hyvärinen. The Fixed-Point Algorithm and Maximum Likelihood Estimation for Independent Component Analysis. Neural Processing Letters, 10(1):1-5, 1999.
A. Hyvärinen. Gaussian Moments for Noisy Independent Component Analysis.
IEEE Signal Processing Letters, 6(6):145--147, 1999.
A. Hyvärinen and U. Köster. FastISA: A fast fixed-point algorithm for independent subspace analysis.
Proc. European Symposium on Artificial Neural Networks, Bruges, Belgium, 2006.
|