Publications by topic |
Brain imaging data analysis[The papers here are concentrated on MEG/EEG, and unsupervised learning like ICA. However, a couple of papers consider decoding in MEG/EEG/EMG, and unsupervised learning in fMRI as well.]Unsupervised deep learning methods for feature extraction
Yongjie Zhu, Tiina Parviainen, Erkka Heinilä, Lauri Parkkonen, Aapo Hyvärinen. Unsupervised representation learning of spontaneous MEG data with nonlinear ICA. NeuroImage, 274:120142, 2023
Hubert Banville, Omar Chehab, Aapo Hyäinen, Denis-Alexander Engemann, Alexandre Gramfort. Uncovering the Structure of Clinical EEG Signals with Self-supervised Learning. J. Neural Engineering.18:046020, 2021
Hiroshi Morioka, Vince Calhoun, Aapo Hyvärinen. Nonlinear ICA of fMRI reveals primitive temporal structures linked to rest, task, and behavioral traits. NeuroImage, 218:116989, 2020. Neurofeedback / Mindfulness
A. Zhigalov, E. Heinilä, T. Parviainen, L. Parkkonen, and A.Hyvärinen. Decoding attentional states for neurofeedback: Mindfulness vs. wandering thoughts. NeuroImage, 185:565-574, 2019. Resting-state connectivity analysis (fMRI and EEG/MEG)
Hugo Richard, Pierre Ablin, Bertrand Thirion, Alexandre Gramfort, Aapo Hyvärinen.
Shared Independent Component Analysis for Multi-Subject Neuroimaging.
NeurIPS 2021.
Hugo Richard, Luigi Gresele, Aapo Hyvärinen, Bertrand Thirion, Alexandre Gramfort, Pierre Ablin.
Modeling Shared Responses in Neuroimaging Studies through MultiView ICA.
NeurIPS 2020.
Ricardo Pio Monti,
Alex Gibberd,
Sandipan Roy,
Matthew Nunes,
Romy Lorenz,
Robert Leech,
Takeshi Ogawa,
Motoaki Kawanabe,
Aapo Hyvärinen.
Interpretable brain age prediction using linear latent variable models of functional connectivity.
PLoS ONE, 2020.
J. Hirayama and T. Ogawa and A. Hyvärinen.
Unifying Blind Separation and Clustering for Resting-State EEG/MEG Functional Connectivity Analysis.
Neural Computation, 27:1373-1404, 2015.
P. Ramkumar, L. Parkkonen, and A. Hyvärinen.
Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data.
NeuroImage, 86:480-491, 2014.
P. Ramkumar, L. Parkkonen, R. Hari, and A. Hyvärinen.
Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis.
A. Hyvärinen, P. Ramkumar, L. Parkkonen, and R. Hari.
Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis.
NeuroImage, 49(1):257-271, 2010.
V. Kiviniemi, J. H. Kantola, J. Jauhiainen, A. Hyvärinen and O. Tervonen. Independent component analysis of nondeterministic fMRI signal sources. NeuroImage, 19(2):253-260, 2003.
Analysing changing (dynamic) connectivityA. Hyvärinen, J. Hirayama , V. Kiviniemi and M. Kawanabe.
Orthogonal Connectivity Factorization: Interpretable decomposition of Variability in Correlation Matrices.
Neural Computation, 28:445-484, 2016.
J. Hirayama, A. Hyvärinen, V. Kiviniemi, M. Kawanabe and O. Yamashita.
Characterizing Variability of Modular Brain Connectivity with Constrained Principal Component Analysis.
PLoS ONE, 2016.
Decoding EEG, MEG, EMG (using linear ICA representation)
J.-P. Kauppi, L. Parkkonen, R. Hari, and A. Hyvärinen.
Decoding MEG rhythmic activity using spectrospatial information.
NeuroImage, 83:921-936, 2013.
J.-P. Kauppi, J. Hahne, K.-R. Müller, and A. Hyvärinen.
Three-Way Analysis of Spectrospatial Electromyography Data: Classification and Interpretation.
PLoS ONE, 83:921-936, 2015.
H. Celikkanat, H. Moriya, T. Ogawa, J.-P. Kauppi, M. Kawanabe and A. Hyvärinen.
Decoding Emotional Valence from
Electroencephalographic Rhythmic Activity.
39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBC'17), Jeju, Korea, 2017.
Testing and validating ICA
A. Hyvärinen.
Testing the ICA mixing matrix based on inter-subject or inter-session consistency. NeuroImage, 58:122-136, 2011.
A. Hyvärinen and P. Ramkumar.
Testing independent component patterns by inter-subject or inter-session consistency. Frontiers in Human Neuroscience, 7:94, 2013.
F. Esposito, T. Scarabino, A. Hyvärinen, J. Himberg, E. Formisano, S. Comani, G. Tedeschi, R. Goebel, E. Seifritz and F. Di Salle. Independent component analysis of fMRI group studies by self-organizing clustering.
NeuroImage, 25(1):193-205, 2005.
J. Himberg, A. Hyvärinen and F. Esposito. Validating the independent components of neuroimaging time-series via clustering and visualization.
NeuroImage 22(3):1214-1222, 2004.
Hyperscanning in EEG/MEG
C. Campi and L. Parkkonen and R. Hari and A. Hyvärinen. Non-linear canonical correlation for joint analysis of MEG signals from two subjects.
Frontiers in Brain Imaging Methods 7:107, 2013.
|