
582670 Algorithms for Bioinformatics

Lecture 4: Dynamic Programming and Sequence Alignment

24.9.2015

Adapted from slides by Alexandru Tomescu, Leena Salmela and Veli Mäkinen

Sequence Similarity

Many applications of comparing and finding sequences that are similar but
not identical

I Motif finding
I DNA sequencing

I Comparing reads against other reads or reference genome(s)

I Finding similar genes/proteins (homologs)
I Hints about function or structure
I Estimating evolutionary distance

2 / 43

Measuring Sequence Similarity

I To determine how similar two sequences are, we need either a
similarity measure or a distance measure

I We have seen the Hamming distance that counts mismatches

A G G T A C
A C G T C C

1 +1 =2

I A possible similarity measure could count matches

A G G T A C
A C G T C C

1 +1 +1 +1 =4

3 / 43

What is wrong with Hamming distance?

I Only for sequences of the same length

I Does not allow insertions or deletions

I Example: Hamming distance is high

G G A T A C
A G G A T C

1 +1 +1 +1 +1 =5

but the sequences are clearly similar

- G G A T A C
A G G A T - C

4 / 43

Alignments with Indels

I Indel = insertion or deletion

I Example

- G G A T A C
A G G - T C C

I M M D M S M

I M = match
S = Substitution
I = Insertion
D = Deletion

5 / 43

Scoring alignments

I Many possible alignments

I Which one is better?
C G G A G T
G G G C - T

S M M S D M

C G G A G - T
- G G - G C T

D M M D M I M

I We need a score for alignments

I The best score over all possible alignments can be used as a similarity
or distance between the strings

6 / 43

Longest Common Subsequence

I Subsequence of a string is a subset of the letters in the same order

I Example: GGTC is a subsequence of GGATAC and AGGTCC

I The matching letters in an alignment form a common subsequence

- G G A T A C -
A G G - T - C C

G G T C
1 +1 +1 +1 =4

I The number of matches, i.e. the length of the common subsequence,
can be used as a score for an alignment

I The maximum score over all alignments, i.e, the length of the
longest common subsequence (LCS), is a string similarity

I The LCS itself can be of interest

7 / 43

What is wrong with LCS?

I Which one is the better alignment?

G C C A G G G
G G G A T T G

1 +1 +1 = 3

G C C A G G - - - G
G - - - G G A T T G

1 +1 +1 +1 = 4

I Indels are often rare in biological sequences

8 / 43

Edit distance

I We can use the number of substitutions and indels as a score
G C C A G G G
G G G A T T G

1 +1 +1 +1 = 4

G C C A G G - - - G
G - - - G G A T T G

1 +1 +1 +1 +1 +1 = 6

I The minimum score over all alignments is the edit distance of the
strings

I Alternatively defined as the minimum number of edit operations
(substitutions and indels) to convert one string into the other

I Also known as the Levenshtein distance

9 / 43

Alignment Graph

I Each alignment corresponds to a path in a rectangular graph

- A G G T
G A T - T

A G G T -
- G A T T

G A T T

A

G

G

T

10 / 43

Edit distance as a shortest path problem

I Assign weights to the edges
according to the scoring scheme

I For edit distance
I Match edges have weight 0
I Other edges have weight 1
I (Only 0s shown here)

I The length/weight of a path is
the sum of edge weights

I The same as the score of the
alignment

I Example: both marked paths
have length 3

G A T T

A

G

G

T

0

0

0

0 0

I Edit distance is the length of the shortest path

11 / 43

Finding shortest path

I We want to compute the
shortest path from the source
node s to the sink node t

I Every path from s to t must go
through one of the neighboring
nodes a, b and c

I Basic idea: find the shortest
path from s to each of the nodes
a, b and c , add the weights of
the edges from a, b and c to t
and take the minimum.

s

a

c

b

t

12 / 43

Finding shortest path

I Define
I w(u, v) = weight of the edge from node u to node v
I d(u, v) = length of shortest path from u to v

I We compute d(s, t) using the formula

d(s, t) = min

d(s, a) + w(a, t)
d(s, b) + w(b, t)
d(s, c) + w(c , t)

I The values d(s, a), d(s, b) d(s, c) are computed similarly from their
neighbors

13 / 43

Naming nodes by coordinates

I Take advantage of the grid
structure by naming the nodes
by a pair of coordinates

I s = (0, 0)

I t = (m, n) (here m = n = 4)

I a = (m − 1, n − 1)

I b = (m − 1, n)

I c = (m, n − 1)

s

a

c

b

t

0

1

2

3

4

0 1 2 3 4

14 / 43

Shortest path length

I Let D(i , j) = d(s, (i , j)) be the shortest path length from s to (i , j)

I We compute D(i , j) using the formula

D(i , j) = min

D(i − 1, j − 1) + w((i − 1, j − 1), (i , j))
D(i − 1, j) + w((i − 1, j), (i , j))
D(i , j − 1) + w((i , j − 1), (i , j))

when i > 0 and j > 0

I Separate formulas for zero coordinates

D(i , 0) = D(i − 1, 0) + w((i − 1, 0), (i , 0))

D(0, j) = D(0, j) + w((0, j − 1), (0, j))

D(0, 0) = 0

15 / 43

Subpath is prefix alignment

I A (sub)path from s to (i , j)
corresponds to an alignment of
string prefixes of lengths i and j

I Example: alignment for path to
(2, 3)

- A G
G A T

G A T T

A

G

G

T

0

1

2

3

4

0 1 2 3 4

16 / 43

Edit distance computation

I Consider strings A = a1a2 . . . am and B = b1b2 . . . bn

I We want to compute the edit distance dL(A,B)

I D(i , j) is the length optimal path to node (i , j)

I This is the same as the score of the optimal alignment between
a1 . . . ai and b1 . . . bj , i.e.,

D(i , j) = dL(a1 . . . ai , b1 . . . bj)

and
D(m, n) = dL(A,B)

I We can compute the edit distance using the equations we saw earlier
I Edge weights w(·, ·) are either 0 (match) or 1

17 / 43

Edit distance equations

I We want to compute D(m, n)

I When both i > 0 and j > 0, use

D(i , j) = min

D(i − 1, j − 1) + (if ai = bj then 0 else 1)
D(i − 1, j) + 1
D(i , j − 1) + 1

I Otherwise use

D(i , 0) = D(i − 1, 0) + 1 = i

D(0, j) = D(0, j − 1) + 1 = j

D(0, 0) = 0

18 / 43

Recursive computation

I The main formula:

D(i , j) = min

D(i − 1, j − 1) + (if ai = bj then 0 else 1)
D(i − 1, j) + 1
D(i , j − 1) + 1

I A natural way to implement this is using recursion to solve the
subproblems D(i − 1, j − 1), D(i − 1, j) and D(i , j − 1)

I This is very inefficient because each recursive call generates three new
calls

I Some values D(i , j) are computed many times during the recursive
computation

I A possible solution is to store each D(i , j) value when it is computed
for the first time and later use the stored value instead of using
recursion

I This is known as memoization

19 / 43

Dynamic Programming

I The idea of dynamic programming is similar to memoization:
store solutions to subproblems

I The difference is how the computation is organized:
subproblems are computed and stored before they are needed for the
first time

I Requires finding an appropriate order for computing the subproblems

I Often leads to simple and efficient code

20 / 43

Example: Computing Fibonacci numbers

I Fibonacci numbers are defined by the equation:

F (n) =

{
1 if n = 1 or n = 2
F (n − 1) + F (n − 2) otherwise

I Computing F (6) by recursion

F (6) = F (5) + F (4)

= (F (4) + F (3)) + (F (3) + F (2))

= (F (3) + F (2)) + (F (2) + F (1)) + (F (2) + F (1)) + 1

= (F (2) + F (1)) + 1 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= 8

I Each recursive call generates two new calls until the calls reach the
bottom

I The call F (3) is made three separate times, the call F (2) five times

21 / 43

Example: Computing Fibonacci numbers

I Fibonacci numbers are defined by the equation:

F (n) =

{
1 if n = 1 or n = 2
F (n − 1) + F (n − 2) otherwise

I Computing F (6) by dynamic programming

F [1] = F [2] = 1

F [3] = F [2] + F [1] = 1 + 1 = 2

F [4] = F [3] + F [2] = 2 + 1 = 3

F [5] = F [4] + F [3] = 3 + 2 = 5

F [6] = F [5] + F [4] = 5 + 3 = 8

I The square brackets indicate that the values are stored in an array
I In fact, only the two previous values need to be kept

I Here the ordering of the subproblems is simple

22 / 43

Example: Shortest path in a DAG

1

2

3

4

5

6

7

1

2

5

2

2

0

1

4

2

DAG=directed acyclic graph Shortest path from s to t?

s

t

cost = min(1) = 1

cost = min(2) = 2

cost = min(1 + 2, 2 + 2) = 3

cost = min(2) = 2

cost = min(5, 3 + 1) = 4

cost = min(4 + 2, 3 + 4) = 6

1 2 3 4 5 6 7Topological sort to order subproblems:

23 / 43

Edit distance by dynamic programming

I Compute all the values D(i , j)
I Start from small values of i and j and proceed to bigger values

I For example, column-by-column or row-by-row

I Store computed values in a two-dimensional array D[0..m, 0..n]
I D is often called the edit distance matrix

I No recursive calls; All subproblem values are obtained from the matrix

24 / 43

Edit distance matrix: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

25 / 43

Edit distance matrix as a graph

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

cost=4

cost=?

cost=3

cost=4

cost = min(3 + 0, 4 + 1, 4 + 1) = 3

1

0
1 1

1

26 / 43

Finding optimal alignments

One alignment:

I Store pointer to each cell telling from which cell the minimum was
obtained.

I Follow the pointers from (m, n) to (0, 0).

I Reverse the list.

All alignments:

I Backtrack from (m, n) to (0, 0) by checking at each cell (i , j) on the
path whether the value D[i , j] could have been obtained from cell
(i , j − 1), (i − 1, j − 1), or (i − 1, j).

I Explore all directions.
I All three directions possible.
I Exponential number of optimal paths in the worst case.

27 / 43

Optimal alignments: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

- t - u k h o l m a
s t o c k h o l m -

- t u - k h o l m a
s t o c k h o l m -

28 / 43

Variations and generalizations

I The problem we have been looking at is known as the global
alignment problem

I There are other alignment problems:
I Approximate string matching or fitting alignment
I Overlap alignment
I Local alignment

29 / 43

Global alignment

I Input: Two strings A and B

I Output: Best alignment between A and B

I Example applications
I Compare two motifs
I Compare two genes/proteins

30 / 43

Fitting alignment or approximate string matching

I Input: Two strings P and T

I Output: The substring S of T with the best alignment between P
and S

I Example applications
I Compare a read against a reference genome
I Compare a gene against a genome to find similar genes

31 / 43

Overlap alignment

I Input: Two strings A and B

I Output: The suffix S of A and the prefix P of B with the best
alignment between S and P

I Example application
I Find overlaps between reads

32 / 43

Local alignment

I Input: Two strings S and T

I Output: The substring A of S and the substring B of T with the best
alignment between A and B

I Example application
I Find partial similarities between genes/proteins (e.g., conserved

regions)

33 / 43

Approximate string matching

I k-errors problem
I Input: Two strings P[1..m] and T [1..n] and an integer k
I Output: Substrings S of T such that dL(P,S) ≤ k

I Can be solved using a “zero first row trick”
I Compute D[0..m, 0..n] as when computing the edit distance except

D[0, j] = 0 for all j

I D[i , j] then equals the minimum number of edits to convert P[1, i] into
some suffix of T [1, j].

I If D[m, j] = k ′ ≤ k then dL(P,S) = k ′ for some substring S of T
ending at position j in T

34 / 43

Approximate string matching: example

A A C T T A C T T G

0 0 0 0 0 0 0 0 0 0 0

C 1 1 1 0 1 1 1 0 1 1 1

A 2 1 1 1 1 2 1 1 1 2 2

T 3 2 2 2 1 1 2 2 1 1 2

T 4 3 3 3 2 1 2 3 2 1 2

A 5 4 3 4 3 2 1 2 3 2 2

G 6 5 4 4 4 3 2 2 3 3 2

i

j

A A C - T T A - C T T G
C A T T A G

A A C - T T A C T T G
C A T T A G

A A C T T A C - T T - G
C A T T A G

35 / 43

Problem with edit distance

I Edit distance is good scoring system for global alignment and
approximate string matching but not for local alignment or overlap
alignment

I Edit distance favors short overlaps

C G G A G - T
T G A G C T A

1 +1 = 2

C G G A G T
T G A G C T A

= 0

36 / 43

General scoring scheme

I δ(a, b) is the score for changing symbol a into b
I If a = b this the score of a match

I δ(a,−) is the score of deleting a

I δ(−, b) is the score of inserting b

I Typically
I δ(a, b) = 1 if a = b
I δ(a, b) = −µ if a 6= b
I δ(a,−) = δ(−, b) = −σ

I Similarity measure
I Best alignment has maximal score
I Find longest path in alignment graph

37 / 43

Scoring scheme for local and overlap alignment

I Positive score for good things and negative score for bad things is
required in local and overlap alignment

I For example µ = σ = 1

C G G A G - T
T G A G C T A

-1 +1 +1 +1 -1 +1 = +2

C G G A G T
T G A G C T A

1 = +1

38 / 43

Global alignment

score=4

score=?

score=3

score=4

score = max(3 + 1, 4− 1, 4− 1) = 4

+1
-1

-1

S [i , j] = max

S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)

39 / 43

Global alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj

δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

C -1 -1 -2 -1 -2 -3 -4 -5 -6 -7 -8

A -2 0 0 -1 -2 -3 -2 -3 -4 -5 -6

T -3 -1 -1 -1 0 -1 -2 -3 -2 -3 -4

T -4 -2 -2 -2 0 +1 0 -1 -2 -1 -2

A -5 -3 -1 -2 -1 0 +2 +1 0 -1 -2

G -6 -4 -2 -2 -2 -1 +1 +1 0 -1 0

i

j

40 / 43

Local alignment

I Heaviest/longest path beginning anywhere and ending anywhere
I Beginning anywhere

I Add 0 weight edge from source node (0, 0) to every other node
I Consider all paths starting from (0, 0)
I No negative heaviest path scores because we can always choose the

zero weight path from the source as the maximum

I Ending anywhere
I Find maximum score over all nodes

41 / 43

Local alignment

score=4

score=?

score=3

score=4

score=0

score = max(0, 3 + 1, 4− 1, 4− 1) = 4

0

0

0

0

-1

+1
-1 -1

-1

S [i , j] = max

0
S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)

42 / 43

Local alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj

δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 1 0 0 0 1 0 0 0

A 0 1 1 0 0 0 1 0 0 0 0

T 0 0 0 0 1 1 0 0 1 1 0

T 0 0 0 0 1 2 1 0 1 2 1

A 0 1 1 0 0 1 3 2 1 1 1

G 0 0 0 0 0 0 2 2 1 0 2

i

j

43 / 43

	Sequence similarity
	Dynamic programming
	Edit distance with dynamic programming
	Sequence similarity problems

