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Sequence Similarity

Many applications of comparing and finding sequences that are similar but
not identical

I Motif finding
I DNA sequencing

I Comparing reads against other reads or reference genome(s)

I Finding similar genes/proteins (homologs)
I Hints about function or structure
I Estimating evolutionary distance
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Measuring Sequence Similarity

I To determine how similar two sequences are, we need either a
similarity measure or a distance measure

I We have seen the Hamming distance that counts mismatches

A G G T A C
A C G T C C

1 +1 =2

I A possible similarity measure could count matches

A G G T A C
A C G T C C

1 +1 +1 +1 =4
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What is wrong with Hamming distance?

I Only for sequences of the same length

I Does not allow insertions or deletions

I Example: Hamming distance is high

G G A T A C
A G G A T C

1 +1 +1 +1 +1 =5

but the sequences are clearly similar

- G G A T A C
A G G A T - C
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Alignments with Indels

I Indel = insertion or deletion

I Example

- G G A T A C
A G G - T C C

I M M D M S M

I M = match
S = Substitution
I = Insertion
D = Deletion
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Scoring alignments

I Many possible alignments

I Which one is better?
C G G A G T
G G G C - T

S M M S D M

C G G A G - T
- G G - G C T

D M M D M I M

I We need a score for alignments

I The best score over all possible alignments can be used as a similarity
or distance between the strings
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Longest Common Subsequence

I Subsequence of a string is a subset of the letters in the same order

I Example: GGTC is a subsequence of GGATAC and AGGTCC

I The matching letters in an alignment form a common subsequence

- G G A T A C -
A G G - T - C C

G G T C
1 +1 +1 +1 =4

I The number of matches, i.e. the length of the common subsequence,
can be used as a score for an alignment

I The maximum score over all alignments, i.e, the length of the
longest common subsequence (LCS), is a string similarity

I The LCS itself can be of interest
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What is wrong with LCS?

I Which one is the better alignment?

G C C A G G G
G G G A T T G

1 +1 +1 = 3

G C C A G G - - - G
G - - - G G A T T G

1 +1 +1 +1 = 4

I Indels are often rare in biological sequences
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Edit distance

I We can use the number of substitutions and indels as a score
G C C A G G G
G G G A T T G

1 +1 +1 +1 = 4

G C C A G G - - - G
G - - - G G A T T G

1 +1 +1 +1 +1 +1 = 6

I The minimum score over all alignments is the edit distance of the
strings

I Alternatively defined as the minimum number of edit operations
(substitutions and indels) to convert one string into the other

I Also known as the Levenshtein distance
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Alignment Graph

I Each alignment corresponds to a path in a rectangular graph

- A G G T
G A T - T

A G G T -
- G A T T

G A T T

A

G

G

T
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Edit distance as a shortest path problem

I Assign weights to the edges
according to the scoring scheme

I For edit distance
I Match edges have weight 0
I Other edges have weight 1
I (Only 0s shown here)

I The length/weight of a path is
the sum of edge weights

I The same as the score of the
alignment

I Example: both marked paths
have length 3

G A T T

A

G

G

T

0

0

0

0 0

I Edit distance is the length of the shortest path
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Finding shortest path

I We want to compute the
shortest path from the source
node s to the sink node t

I Every path from s to t must go
through one of the neighboring
nodes a, b and c

I Basic idea: find the shortest
path from s to each of the nodes
a, b and c , add the weights of
the edges from a, b and c to t
and take the minimum.

s

a

c

b

t
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Finding shortest path

I Define
I w(u, v) = weight of the edge from node u to node v
I d(u, v) = length of shortest path from u to v

I We compute d(s, t) using the formula

d(s, t) = min


d(s, a) + w(a, t)
d(s, b) + w(b, t)
d(s, c) + w(c , t)

I The values d(s, a), d(s, b) d(s, c) are computed similarly from their
neighbors
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Naming nodes by coordinates

I Take advantage of the grid
structure by naming the nodes
by a pair of coordinates

I s = (0, 0)

I t = (m, n) (here m = n = 4)

I a = (m − 1, n − 1)

I b = (m − 1, n)

I c = (m, n − 1)

s

a

c

b

t

0

1

2

3

4

0 1 2 3 4
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Shortest path length

I Let D(i , j) = d(s, (i , j)) be the shortest path length from s to (i , j)

I We compute D(i , j) using the formula

D(i , j) = min


D(i − 1, j − 1) + w((i − 1, j − 1), (i , j))
D(i − 1, j) + w((i − 1, j), (i , j))
D(i , j − 1) + w((i , j − 1), (i , j))

when i > 0 and j > 0

I Separate formulas for zero coordinates

D(i , 0) = D(i − 1, 0) + w((i − 1, 0), (i , 0))

D(0, j) = D(0, j) + w((0, j − 1), (0, j))

D(0, 0) = 0
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Subpath is prefix alignment

I A (sub)path from s to (i , j)
corresponds to an alignment of
string prefixes of lengths i and j

I Example: alignment for path to
(2, 3)

- A G
G A T

G A T T

A

G

G

T

0

1

2

3

4

0 1 2 3 4
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Edit distance computation

I Consider strings A = a1a2 . . . am and B = b1b2 . . . bn

I We want to compute the edit distance dL(A,B)

I D(i , j) is the length optimal path to node (i , j)

I This is the same as the score of the optimal alignment between
a1 . . . ai and b1 . . . bj , i.e.,

D(i , j) = dL(a1 . . . ai , b1 . . . bj)

and
D(m, n) = dL(A,B)

I We can compute the edit distance using the equations we saw earlier
I Edge weights w(·, ·) are either 0 (match) or 1
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Edit distance equations

I We want to compute D(m, n)

I When both i > 0 and j > 0, use

D(i , j) = min


D(i − 1, j − 1) + ( if ai = bj then 0 else 1)
D(i − 1, j) + 1
D(i , j − 1) + 1

I Otherwise use

D(i , 0) = D(i − 1, 0) + 1 = i

D(0, j) = D(0, j − 1) + 1 = j

D(0, 0) = 0
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Recursive computation

I The main formula:

D(i , j) = min


D(i − 1, j − 1) + ( if ai = bj then 0 else 1)
D(i − 1, j) + 1
D(i , j − 1) + 1

I A natural way to implement this is using recursion to solve the
subproblems D(i − 1, j − 1), D(i − 1, j) and D(i , j − 1)

I This is very inefficient because each recursive call generates three new
calls

I Some values D(i , j) are computed many times during the recursive
computation

I A possible solution is to store each D(i , j) value when it is computed
for the first time and later use the stored value instead of using
recursion

I This is known as memoization
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Dynamic Programming

I The idea of dynamic programming is similar to memoization:
store solutions to subproblems

I The difference is how the computation is organized:
subproblems are computed and stored before they are needed for the
first time

I Requires finding an appropriate order for computing the subproblems

I Often leads to simple and efficient code
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Example: Computing Fibonacci numbers

I Fibonacci numbers are defined by the equation:

F (n) =

{
1 if n = 1 or n = 2
F (n − 1) + F (n − 2) otherwise

I Computing F (6) by recursion

F (6) = F (5) + F (4)

= (F (4) + F (3)) + (F (3) + F (2))

= (F (3) + F (2)) + (F (2) + F (1)) + (F (2) + F (1)) + 1

= (F (2) + F (1)) + 1 + 1 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= 8

I Each recursive call generates two new calls until the calls reach the
bottom

I The call F (3) is made three separate times, the call F (2) five times
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Example: Computing Fibonacci numbers

I Fibonacci numbers are defined by the equation:

F (n) =

{
1 if n = 1 or n = 2
F (n − 1) + F (n − 2) otherwise

I Computing F (6) by dynamic programming

F [1] = F [2] = 1

F [3] = F [2] + F [1] = 1 + 1 = 2

F [4] = F [3] + F [2] = 2 + 1 = 3

F [5] = F [4] + F [3] = 3 + 2 = 5

F [6] = F [5] + F [4] = 5 + 3 = 8

I The square brackets indicate that the values are stored in an array
I In fact, only the two previous values need to be kept

I Here the ordering of the subproblems is simple
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Example: Shortest path in a DAG

1

2

3

4

5

6

7

1

2

5

2

2

0

1

4

2

DAG=directed acyclic graph Shortest path from s to t?

s

t

cost = min(1) = 1

cost = min(2) = 2

cost = min(1 + 2, 2 + 2) = 3

cost = min(2) = 2

cost = min(5, 3 + 1) = 4

cost = min(4 + 2, 3 + 4) = 6

1 2 3 4 5 6 7Topological sort to order subproblems:
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Edit distance by dynamic programming

I Compute all the values D(i , j)
I Start from small values of i and j and proceed to bigger values

I For example, column-by-column or row-by-row

I Store computed values in a two-dimensional array D[0..m, 0..n]
I D is often called the edit distance matrix

I No recursive calls; All subproblem values are obtained from the matrix
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Edit distance matrix: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j
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Edit distance matrix as a graph

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

cost=4

cost=?

cost=3

cost=4

cost = min(3 + 0, 4 + 1, 4 + 1) = 3

1

0
1 1

1
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Finding optimal alignments

One alignment:

I Store pointer to each cell telling from which cell the minimum was
obtained.

I Follow the pointers from (m, n) to (0, 0).

I Reverse the list.

All alignments:

I Backtrack from (m, n) to (0, 0) by checking at each cell (i , j) on the
path whether the value D[i , j ] could have been obtained from cell
(i , j − 1), (i − 1, j − 1), or (i − 1, j).

I Explore all directions.
I All three directions possible.
I Exponential number of optimal paths in the worst case.
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Optimal alignments: example

s t o c k h o l m

0 1 2 3 4 5 6 7 8 9

t 1 1 1 2 3 4 5 6 7 8

u 2 2 2 2 3 4 5 6 7 8

k 3 3 3 3 3 3 4 5 6 7

h 4 4 4 4 4 4 3 4 5 6

o 5 5 5 4 5 5 4 3 4 5

l 6 6 6 5 5 6 5 4 3 4

m 7 7 7 6 6 6 6 5 4 3

a 8 8 8 7 7 7 7 6 5 4

i

j

- t - u k h o l m a
s t o c k h o l m -

- t u - k h o l m a
s t o c k h o l m -
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Variations and generalizations

I The problem we have been looking at is known as the global
alignment problem

I There are other alignment problems:
I Approximate string matching or fitting alignment
I Overlap alignment
I Local alignment
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Global alignment

I Input: Two strings A and B

I Output: Best alignment between A and B

I Example applications
I Compare two motifs
I Compare two genes/proteins
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Fitting alignment or approximate string matching

I Input: Two strings P and T

I Output: The substring S of T with the best alignment between P
and S

I Example applications
I Compare a read against a reference genome
I Compare a gene against a genome to find similar genes
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Overlap alignment

I Input: Two strings A and B

I Output: The suffix S of A and the prefix P of B with the best
alignment between S and P

I Example application
I Find overlaps between reads
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Local alignment

I Input: Two strings S and T

I Output: The substring A of S and the substring B of T with the best
alignment between A and B

I Example application
I Find partial similarities between genes/proteins (e.g., conserved

regions)
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Approximate string matching

I k-errors problem
I Input: Two strings P[1..m] and T [1..n] and an integer k
I Output: Substrings S of T such that dL(P,S) ≤ k

I Can be solved using a “zero first row trick”
I Compute D[0..m, 0..n] as when computing the edit distance except

D[0, j ] = 0 for all j

I D[i , j ] then equals the minimum number of edits to convert P[1, i ] into
some suffix of T [1, j ].

I If D[m, j ] = k ′ ≤ k then dL(P,S) = k ′ for some substring S of T
ending at position j in T
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Approximate string matching: example

A A C T T A C T T G

0 0 0 0 0 0 0 0 0 0 0

C 1 1 1 0 1 1 1 0 1 1 1

A 2 1 1 1 1 2 1 1 1 2 2

T 3 2 2 2 1 1 2 2 1 1 2

T 4 3 3 3 2 1 2 3 2 1 2

A 5 4 3 4 3 2 1 2 3 2 2

G 6 5 4 4 4 3 2 2 3 3 2

i

j

A A C - T T A - C T T G
C A T T A G

A A C - T T A C T T G
C A T T A G

A A C T T A C - T T - G
C A T T A G
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Problem with edit distance

I Edit distance is good scoring system for global alignment and
approximate string matching but not for local alignment or overlap
alignment

I Edit distance favors short overlaps

C G G A G - T
T G A G C T A

1 +1 = 2

C G G A G T
T G A G C T A

= 0
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General scoring scheme

I δ(a, b) is the score for changing symbol a into b
I If a = b this the score of a match

I δ(a,−) is the score of deleting a

I δ(−, b) is the score of inserting b

I Typically
I δ(a, b) = 1 if a = b
I δ(a, b) = −µ if a 6= b
I δ(a,−) = δ(−, b) = −σ

I Similarity measure
I Best alignment has maximal score
I Find longest path in alignment graph
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Scoring scheme for local and overlap alignment

I Positive score for good things and negative score for bad things is
required in local and overlap alignment

I For example µ = σ = 1

C G G A G - T
T G A G C T A

-1 +1 +1 +1 -1 +1 = +2

C G G A G T
T G A G C T A

1 = +1
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Global alignment

score=4

score=?

score=3

score=4

score = max(3 + 1, 4− 1, 4− 1) = 4

+1
-1

-1

S [i , j ] = max


S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j ] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)
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Global alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj

δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

C -1 -1 -2 -1 -2 -3 -4 -5 -6 -7 -8

A -2 0 0 -1 -2 -3 -2 -3 -4 -5 -6

T -3 -1 -1 -1 0 -1 -2 -3 -2 -3 -4

T -4 -2 -2 -2 0 +1 0 -1 -2 -1 -2

A -5 -3 -1 -2 -1 0 +2 +1 0 -1 -2

G -6 -4 -2 -2 -2 -1 +1 +1 0 -1 0

i

j
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Local alignment

I Heaviest/longest path beginning anywhere and ending anywhere
I Beginning anywhere

I Add 0 weight edge from source node (0, 0) to every other node
I Consider all paths starting from (0, 0)
I No negative heaviest path scores because we can always choose the

zero weight path from the source as the maximum

I Ending anywhere
I Find maximum score over all nodes
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Local alignment

score=4

score=?

score=3

score=4

score=0

score = max(0, 3 + 1, 4− 1, 4− 1) = 4

0

0

0

0

-1

+1
-1 -1

-1

S [i , j ] = max


0
S [i − 1, j − 1] + δ(ai , bj)
S [i − 1, j ] + δ(ai ,−)
S [i , j − 1] + δ(−, bj)
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Local alignment: Example

A A C T T A C T T G

δ(ai , bj) = 1, if ai = bj

δ(ai , bj) = −1, otherwise δ(ai ,−) = δ(−, bj) = −1

0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 1 0 0 0 1 0 0 0

A 0 1 1 0 0 0 1 0 0 0 0

T 0 0 0 0 1 1 0 0 1 1 0

T 0 0 0 0 1 2 1 0 1 2 1

A 0 1 1 0 0 1 3 2 1 1 1

G 0 0 0 0 0 0 2 2 1 0 2

i

j
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