
582670 Algorithms for Bioinformatics

Lecture 3: Graph Algorithms for Genome Assembly

17.09.2015

Adapted from slides by Alexandru Tomescu, Leena Salmela and Veli Mäkinen,
which are partly from http://bix.ucsd.edu/bioalgorithms/slides.php

http://bix.ucsd.edu/bioalgorithms/slides.php


DNA Sequencing: History

Sanger method (1977):

I Labeled ddNTPs terminate
DNA copying at random
points.

Gilbert method (1977):

I Chemical method to cleave
DNA at specific points (G,
G+A, T+C, C).

I Both methods generate labeled
fragments of varying lengths
that are further measured by
electrophoresis.

2 / 37



Sanger Method: Generating a Read

1. Divide DNA sample into four.

2. Each sample will have available all normal nucleotides and modified
nucleotides of one type (A, C, G or T) that will terminate DNA
strand elongation.

3. Start at primer (restriction site).

4. Grow DNA chain.

5. In each sample the reaction will stop at all points ending with the
modified nucleotide.

6. Separate products by length using gel electrophoresis.

3 / 37



Sanger Method: Generating a Read

4 / 37



DNA Sequencing

I Shear DNA into
millions of small
fragments.

I Read 500-700
nucleotides at a time
from the fragments
(Sanger method)

5 / 37



Fragment Assembly

I Computational Challenge: assemble individual reads into the full
genomic sequence

I Until late 1990s the fragment assembly of human genome was viewed
as computationally too difficult

I For small and “easy” genomes, such as bacterial genomes, fragment
assembly is easy with many software tools

I Remains to be difficult problem for more complex genomes

6 / 37



Shortest Superstring Problem

I Problem: Given a set of strings, find a shortest string that contains all
of them

I Input: Strings S = {s1, s2, . . . , sn}
I Output: A string s that contains all string s1, s2, . . . sn as substrings,

such that the lenght of s is minimized

I Models the fragment assembly problem
I Input strings are the reads, output is the genome

I One of study group topics

7 / 37



Sequencing by Hybridization (SBH): History

I 1988: SBH suggested as an
alternative sequencing method.
Nobody believed it will ever
work.

I 1991: Light directed polymer
synthesis developed by Steve
Fodor and colleagues.

I 1994: Affymetrix develops first
64-kb DNA microarray.

First commercial
DNA microarray pro-
totype with 16,000
features (1994)

First microarray pro-
totype (1989)

500,000 features per
chip (2002)

8 / 37



How SBH works

I Attach all possible DNA probes of length k to a flat surface, each
probe at a distinct and known location. This set of probes is called
the DNA microarray.

I Apply a solution containing fluorescently labeled DNA fragment to
the array.

I The DNA fragment hybridizes with those probes that are
complementary to substrings of length k of the fragment.

I Using a spectroscopic detector, determine which probes hybridize to
the DNA fragment to obtain the k-mer composition of the DNA
fragment.

I Reconstruct the sequence of the DNA fragment from the k-mer
composition.

9 / 37



Hybridization on DNA Array

10 / 37



k-mer composition

I Compositionk(Text) is a multiset of all (n− k + 1) k-mers in a string
Text of length n.

I For example

Composition3(TATGGTGC) =

{ATG,GGT,GTG,TAT,TGC,TGG}

I Different sequences may have the same composition:

Composition2(GTATCT) =

Composition2(GTCTAT) =

{AT,CT,GT,TA,TC}

11 / 37



String Composition Problem

I Goal: Generate the k-mer composition of a string.

I Input: A string Text and an integer k

I Output: Compositionk(Text)

12 / 37



String Reconstruction Problem

I Goal: Reconstruct a string from its k-mer composition.

I Input: An integer k and a collection Patterns of k-mers

I Output: A string Text with k-mer composition Patterns (if such a
string exists)

13 / 37



Overlap Graph

I The overlap graph Overlap(Patterns) is a directed graph that
contains

I One node for each k-mer in Patterns
I An edge from Patterni to Patternj whenever the same (k − 1)-mer is a

suffix of Patterni and a prefix of Patternj .
(E.g., TG is a suffix of ATG and a prefix of TGG)

I Example:
Patterns = {ATG,TGC,GTG,TGG,GGC,GCA,GCG,CGT}

ATG TGC GTG TGG GGC GCA GCG CGT

14 / 37



Adjacency Lists
I A common representation of a graph is to list for each node its

adjacent nodes

ATG TGC GTG TGG GGC GCA GCG CGT

ATG → TGC, TGG
TGC → GCA, GCG
GTG → TGC, TGG
TGG → GGC
GGC → GCA, GCG
GCA →
GCG → CGT
CGT → GTG

15 / 37



Hamiltonian Path

I A Hamiltonian path in a graph is a path that visits every node exactly
once

ATG TGC GTG TGG GGC GCA GCG CGT

I A Hamiltonian path in an
overlap graph lists the k-mers in
an order they appear in some
string

A T G
T G C

G C G
C G T

G T G
T G G

G G C
G C A

A T G C G T G G C A

16 / 37



Hamiltonian Path

I A Hamiltonian path in a graph is a path that visits every node exactly
once

ATG TGC GTG TGG GGC GCA GCG CGT

I A Hamiltonian path in an
overlap graph lists the k-mers in
an order they appear in some
string

A T G
T G C

G C G
C G T

G T G
T G G

G G C
G C A

A T G C G T G G C A
16 / 37



Another Hamiltonian Path

ATG TGC GTG TGG GGC GCA GCG CGT

A T G
T G G

G G C
G C G

C G T
G T G

T G C
G C A

A T G G C G T G C A

17 / 37



Hamiltonian Path Problem

I Goal: Construct a Hamiltonian path in a graph

I Input: A directed graph

I Output: A path visiting every node in the graph (if such a path exists)

I Hamiltonian Cycle Problem:
Find a cycle that visits every
node exactly once

I A much studied problem
invented as a game by Sir
William Hamilton in 1857

18 / 37



Hamiltonian Path Problem

I Goal: Construct a Hamiltonian path in a graph

I Input: A directed graph

I Output: A path visiting every node in the graph (if such a path exists)

I Hamiltonian Cycle Problem:
Find a cycle that visits every
node exactly once

I A much studied problem
invented as a game by Sir
William Hamilton in 1857

18 / 37



Solving String Reconstruction Problem

I Goal: Reconstruct a string from its k-mer composition.

I Input: An integer k and a collection Patterns of k-mers

I Output: A string Text with k-mer composition Patterns (if such a
string exists)

Algorithm

I Construct Overlap(Patterns)

I Find a Hamiltonian path in Overlap(Patterns)

I Output the string formed by the k-mers on the path

I If there is no Hamiltonian path, there is no solution to the String
Reconstruction Problem

19 / 37



Hamiltonian Path Problem Is NP Complete

I NP complete problems
I Thousands of important computational problems
I No efficient (polynomial time) algorithm known
I An efficient algorithms for one problem would immediately give an

efficient algorithm to all the problems
I Finding an efficient algorithm or proving that such an algorithm does

not exist is the greatest open problem in computer science (P vs. NP
problem)

I Hamiltonian Path problem can be solved only for small or easy graphs
I What would be an easy graph?

20 / 37



De Bruijn Graph
I The de Bruijn graph DeBruijn(Patterns) is a directed graph that

contains
I A node for each (k − 1)-mer that is a suffix or a prefix of a k-mer in

Patterns
I An edge for each k-mer Pattern in Patterns connecting the prefix of

Pattern to the suffix of Pattern

I Example:
Patterns = {ATG,TGC,GTG,TGG,GGC,GCA,GCG,CGT}

AT TG GC CA

GT CG

GG

21 / 37



Eulerian Path

I An Eulerian Path in a graph is a path that uses every edge exactly
once

I An Eulerian path in a
de Bruijn graph lists the
k-mers (corresponding to
edges) and the
(k − 1)-mers
(corresponding to nodes)
in an order they appear in
some string

AT TG GC CA

GT CG

GG

1 2

6 7

8

3

4

5

ATGCGTGGCA

22 / 37



Eulerian Path Problem

I Goal: Construct an Eulerian path in a graph

I Input: A directed graph

I Output: A path visiting every edge in the graph (if such a path exists)

23 / 37



Solving String Reconstruction Problem

I Goal: Reconstruct a string from its k-mer composition.

I Input: An integer k and a collection Patterns of k-mers

I Output: A string Text with k-mer composition Patterns (if such a
string exists)

Algorithm

I Construct DeBruijn(Patterns)

I Find an Eulerian path in DeBruijn(Patterns)

I Output the string formed by the k-mers on the path

I If there is no Eulerian path, there is no solution to the String
Reconstruction Problem

24 / 37



Bridges of Königsberg

Find a tour crossing every bridge just once
Leonhard Euler, 1735

Bridges of Königsberg

25 / 37



Eulerian Cycle Problem

I Find a cycle that visits every
edge exactly once

I Linear time algorithm

More complicated Königsberg

26 / 37



Euler’s Theorem

I A node is balanced if the number of incoming edges equals the
number of outgoing edges:

in(v) = out(v)

A graph is balanced if every node is balanced.

I Theorem: A connected graph has an Eulerian cycle if and only if it is
balanced.

I Such a graph is called an Eulerian graph.

I Proof of “only if”
I Any cycle enters each node the same number of times that it leaves the

node, i.e., it uses the same number of incoming and outgoing edges.
I There is no cycle that uses all edges of an unbalanced node.

27 / 37



Euler’s Theorem

I A node is balanced if the number of incoming edges equals the
number of outgoing edges:

in(v) = out(v)

A graph is balanced if every node is balanced.

I Theorem: A connected graph has an Eulerian cycle if and only if it is
balanced.

I Such a graph is called an Eulerian graph.

I Proof of “only if”
I Any cycle enters each node the same number of times that it leaves the

node, i.e., it uses the same number of incoming and outgoing edges.
I There is no cycle that uses all edges of an unbalanced node.

27 / 37



Proof of “if”

I We want to show that every graph that is
I balanced and
I connected (i.e., there is a path from every node to every other node)

has an Eulerian cycle.

I We do this by describing an algorithm that constructs an Eulerian
cycle and is guaranteed to succeed for every balanced connected
graph.

28 / 37



Eulerian Cycle Algorithm: Finding Cycles

Procedure FindCycle:

I Start following an arbitrary path from an arbitrary node

I Mark each travelled edge as used. Marked edges cannot be travelled
again.

I Continue as long as possible, i.e., until you end up in a node with no
unmarked outgoing edges.

I If the path ends in the starting node, a cycle has been formed.

I If the path ends in a different node, that node must be unbalanced
(more incoming than outgoing edges) and the algorithm reports that
the graph is not Eulerian.

29 / 37



Eulerian Cycle Algorithm: Combining Cycles

Procedure CombineCycles:
I Input: Two edge-disjoint cycles and a node that belongs to both

cycles
I Edge-disjoint means that no edge belongs to both cycles

I Output: A single cycle that containing all edges of the input cycles

I Algorithm: Starting from the shared node, travel first one cycle and
then the other cycle

30 / 37



Eulerian Cycle Algorithm: Full Algorithm

Algorithm EulerianCycle

1. Repeatedly find cycles using procedure FindCycle as long as there are
unused edges.

I In a balanced graph, all edges end up used.

2. Repeatedly combine two cycles into one using procedure
CombineCycles until only one long cycle remains.

I If the algorithm ends with two or more cycles that cannot be combined,
the graph must be unconnected.

3. Output the one cycle (containing all edges).

I Since the algorithm never fails for a balanced connected graph, this
proves the “if” part.

I Can be implemented to run in linear time.

31 / 37



Eulerian Cycle Algorithm: Example

3

2

4 5 1

3

4

1

2

Find two cycles

9

1

5 6 7

2

3

4

8

Combine the cycles

32 / 37



Eulerian Path vs. Cycle

I A node is semi-balanced if in(v) = out(v) + 1 or in(v) = out(v)− 1

I Theorem: A connected graph has a Eulerian path if and only if it
contains at most two semi-balanced nodes and all other nodes are
balanced.

Finding Eulerian path

I Find the two semi-balanced nodes, and add an edge between them to
make the graph balanced

I Find an Eulerian cycle

I Remove the added edge to obtain an Eulerian path

33 / 37



Eulerian Path vs. Cycle: Example

AT TG GC CA

GT CG

GG

1 2

6 7

8

3

4

5

(9)

34 / 37



k-Mers from Reads

I Sequencing by hybridization is not usable for large genomes
I Too inaccurate data
I Too small k (needs a microarray for all possible k-mers)

I Other sequencing techniques produce longer, possibly varying length
reads (fragments) covering the genome (multiple times)

I Similar algorithmic techniques are used though
I Form a combined k-mer compositions of all reads and build the

DeBruijn graph for it
I Fairly large k , e.g., k = 20 or even larger

35 / 37



k-Mers from Reads: Example

String A T G G C G T G C A
Reads A T G G C

G C G T G
G T G C A

k-Mers A T G
T G G

G G C

G C G
C G T

G T G

G T G
T G C

G C A

36 / 37



Some Problems and Solutions

I Errors in reads
I Multiple coverage, multiple sequencing methods
I Error detection and correction
I For example, find “bubbles” in de Bruijn graph

I Long repeats in genome (longer than reads)
I Paired reads (obtained from the two ends of a long fragment)
I Reconstruct first non-repetitive parts forming contigs
I For example, find non-branching paths in de Bruijn graph

37 / 37


	Shortest Common Superstring
	Sequencing by Hybridization

