58093 String Processing Algorithms (Autumn 2014)

Exercises 5 (November 25)

- 1. A don't care character # is a special character that matches any single character. For example, the pattern #oke#i matches sokeri, pokeri and tokeni.
 - (a) Modify the Shift-And algorithm to handle don't care characters.
 - (b) It may appear that the Morris–Pratt algorithm can handle don't care characters almost without change: Just make sure that the character comparisons are performed correctly when don't care characters are involved. However, such an algorithm would be incorrect. Give an example demonstrating this.
- 2. Let $\mathcal{P}_k = \{P_1, \dots, P_{2k}\}$ be a set of patterns such that
 - for $i \in [1..k]$, $P_i = a^i$ and
 - for $i \in [k + 1..2k]$, $P_i = P'_i a^k$ such that $|P'_i| = k$ and each P'_i is different.
 - (a) Show that the total size of the sets $patterns(\cdot)$ in the Aho–Corasick automaton for \mathcal{P}_k is asymptotically larger than $||\mathcal{P}_k||$.
 - (b) Describe how to represent the sets $patterns(\cdot)$ so that
 - the total space complexity is never more than $\mathcal{O}(||\mathcal{P}||)$ for any \mathcal{P}
 - each set $patterns(\cdot)$ can be listed in linear time in its size.
- 3. Show that edit distance is a *metric*, i.e., that it satisfies the metric axioms:
 - $ed(A,B) \ge 0$
 - ed(A, B) = 0 if and only if A = B
 - ed(A, B) = ed(B, A) (symmetry)
 - $ed(A, C) \le ed(A, B) + ed(B, C)$ (triangle inequality)
- 4. Let $\Sigma = \{a, b, c\}$. Define the function $\gamma : \Sigma \times \Sigma \to \mathbb{R}_{>0}$ as follows

$$\begin{split} \gamma(\mathbf{a},\mathbf{a}) &= \gamma(\mathbf{b},\mathbf{b}) = \gamma(\mathbf{c},\mathbf{c}) = 0\\ \gamma(\mathbf{a},\mathbf{b}) &= \gamma(\mathbf{b},\mathbf{c}) = \gamma(\mathbf{c},\mathbf{a}) = 0.5\\ \gamma(\mathbf{b},\mathbf{a}) &= \gamma(\mathbf{c},\mathbf{b}) = \gamma(\mathbf{a},\mathbf{c}) = 1.5 \end{split}$$

Let ed_{γ} be a *weighted edit distance*, where the cost of substituting a character x with a character y is $\gamma(x, y)$. The cost of insertions and deletions is 1.

- (a) It might seem that we can compute $ed_{\gamma}(A, B)$ using the recurrence for the standard edit distance (page 113 on the lecture notes) except δ is replaced by γ . Show that this is not the case by providing an example for which the recurrence produces an incorrect distance.
- (b) Is ed_{γ} a metric?
- 5. Let P = evete and T = neeteneeveteen. Use Ukkonen's cut-off algorithm to find the occurrences of P in T for k = 1.