
58093 String Processing Algorithms (Autumn 2014)
Exercises 3 (November 11)

1. Prove

(a) Lemma 1.14: For i ∈ [2..n], LCPR[i] = lcp(Si, {S1, . . . , Si−1}).

(b) Lemma 1.15: ΣLCP (R) ≤ Σlcp(R) ≤ 2 · ΣLCP (R).

2. Use the lcp comparison technique to modify the standard insertion sort algorithm so that it sorts
strings in O(ΣLCP (R) + n2) time.

3. Give an example showing that the worst case time complexity of string binary search without
precomputed lcp information is Ω(m log n).

4. Let S[0..n) be a string over an integer alphabet. Show how to build a data structure in O(n) time
and space so that afterwards the Karp–Rabin hash function H(S[i..j)) for the factor S[i..j) can
be computed in constant time for any 0 ≤ i ≤ j ≤ n.

5. Ω(ΣLCP (R)) is a lower bound for string sorting for any algorithm if characters can be accessed
only one at a time. However, for a small alphabet, it is possible to pack several characters into one
machine word. Then multiple characters can be accessed simultaneously and treated as if they
were a single super-character. For example, the string abbaba over the alphabet Σ = {a,b}
can be thought of as the string (ab,ba,ab) over the alphabet Σ2. Algorithms taking advantage
of this are called super-alphabet algorithms.

Develop a super-alphabet version of MSD radix sort. What is the time complexity?


