Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We
assume that the alphabet of the text T[0..n) is [1..n] and that T'[n] =0 (=$
in the examples).

The outline of the algorithms is:

0. Choose a subset C C [0..n].
1. Sort the set Tx. This is done as follows:

(a) Construct a reduced string R of length |C|, whose characters are
order preserving names of text factors starting at the positions in C.

(b) Construct the suffix array of R recursively.

2. Sort the set Tjy ,,) using the order of T¢.

195

Assume that

e |C| < an for a constant a < 1, and

e excluding the recursive call, all steps in the algorithm take linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(an), whose solution is t(n) = O(n).

To make the scheme work, the set C must satisfy two nontrivial conditions:

1. There exists an appropriate reduced string R.

2. Given sorted Ty the suffix array of T is easy to construct.

Finding sets C' that satisfy both conditions is difficult, but there are two
different methods leading to two different algorithms:

e DC3 uses difference cover sampling

e SAIS uses induced sorting

196

Difference Cover Sampling

A difference cover D, modulo ¢ is a subset of [0..q) such that all values in
[0..q) can be expressed as a difference of two elements in D, modulo q. In

other words:
[0..q) ={i—jmodq|i,je Dy} .
Example 4.15: D7 ={1,2,4}

1-1=0 1-4=-3=4 (mod q)
2—-1=1 2—-4=-2=5 (mod q)
4-2=2 1-2=-1=6 (mod q)
4—-1=3

In general, we want the smallest possible difference cover for a given q.

e For any q, there exist a difference cover D, of size O(,/q).

e The DC3 algorithm uses the simplest non-trivial difference cover
D3 = {1,2}.

197

A difference cover sample is a set T of suffixes, where
C={ie[0..n]| (imodgq) € D;} .

Example 4.16: If T = banana$ and D3 = {1,2},

then C = {1,2,4,5} and T¢ = {anana$,nana$, na$, a$}.

Once we have sorted the difference cover sample T, we can compare any
two suffixes in O(q) time. To compare suffixes T; and Tj:

e If2€ C and 5 € C, then we already know their order from T¢.

e Otherwise, find ¢ such that :4+ ¢ € C and 5+ ¢ € C. There always exists
such ¢ € [0..q). Then compare:

Ty = Tli.i + €)Tipe
T; = T[j..j +) Tj1e

That is, compare first T'[i..i +¢) to T[j..7 + £), and if they are the same,
then T4, to T4, using the sorted T¢.

Example 4.17: D3z ={1,2} and C ={1,2,4,5,...}
To = T[0]Th To = T[0]T[1]T% To = T[0]Th
Ty = T[1]T T> = T[2]T[3]T% T3 = T[3]T4

198

Algorithm 4.18: DC3
Step 0: Choose C.

e Use difference cover D3 = {1, 2}.
e For k€ {0,1,2}, define C, = {i € [0..n] | i mod 3 = k}.
e Let C =C7UC5 and CZCO.

Example 4.19: ¢ O 1 2 3 4 5 6 7 8 9 10 11 12

T) vy a b b a d a b b ad o $

— {O 3 6 9 12} C1 = {1,4,7,10}, Cr = {2’5,8711} and

C
C { 12,4,5,7,8,10, 11}.

199

Step 1: Sort T¢.

e For k€ {1,2}, Construct the strings Ry, = (T2, T3, 5, T 6, - > Troaxc,)
whose characters are 3-factors of the text, and let R = R1R».

Replace each factor TZ.3 in R with an order preserving name NZ-3 e [1..|R]].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R’ be the result appended with 0.

Construct the inverse suffix array SA]‘%,l of R'. This is done recursively
using DC3 unless all symbols in R’ are unique, in which case SAg,l = R/

From SA];,l, we get order preserving names for suffixes in T¢.

Foric C, let N; = SA;%,l[j], where j is the position of T¢3 in R.
For:e C, let N, = L. Also let Nn_|_1 = Nn+2 = 0.

Example 4.20: R abb ada bba do$ bba dab bad o$
R’ 1 2 4 7 4 §) 3 8 O
SAxY 1 2 5 7 4 6 3 8 O
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T[] y a b b a d a b b a d o $
N, L 1 4 1 2 6 1L 5 3 L 7 8 L 0 O

200

Step 2(a): Sort T;.

e For each i € C, we represent T; with the pair (T[i], N;+-1). Then
T; <T; <= (T[i], Nig1) < (T'[5], Nj41) -
Note that N;;1 # L for all i € C.

e The pairs (T[i], N;+1) are sorted by LSD radix sort in O(n) time.

Example 4.21:

) 0] 1 2 3 4 5 §) 7 8 9 10 11 12
T[i] y a b b a 4 a b b a d4d o $
N, L 1 4 1 2 6 1 5 3 L 7 8 L

T12 < T6 < T9 < T3 < TO because ($70) < (a75> < (aa 7) < (b7 2) < (Y7 1)

201

Step 2(b): Merge Ty and Tp.
e Use comparison based merging algorithm needing O(n) comparisons.

e To compare T; € T and T; € Ty, we have two cases:

i € C1: T, <Tj < (T[i], Nit+1) < (T[5], Nj+1)
i€ Cr: T; <Tj <= (T[], Tt + 1], Nig2) < (T'[5], T[j + 1], Nj32)
Note that none of the N-values is L.

Example 4.22:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
T[] y a b b a d a b b a d o $
N, L 1 4 1 2 6 L 5 3 L 7 8 L

Ty < T because (a,4) < (a,5).
T5 < Tg because (b,a,6) < (b,a, 7).

202

Theorem 4.23: Algorithm DC3 constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

There are many variants:

e DC3 is an optimal algorithm under several parallel and external memory
computation models, too. There exists both parallel and external
memory implementations of DC3.

e Using a larger value of g, we obtain more space efficient algorithms. For

example, using ¢ = logn, the time complexity is O(nlogn) and the
space needed in addition to the text and the suffix array is O(n/+/logn).

203

Induced Sorting

Define three type of suffixes —, + and x as follows:
C™={i€[0.n) | Ty > Tit1}
Ct={ie[0.n)| T < Tiy1}
C*={ieCt|i—-1eC™}

Example 4.24:

¢ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T[] m m i s s i s s i i p p i i $
typeof 7, — — * — — *x — — %x 4+ - - - —

For every a € and z € {—, +.x} define
C,={i€[0..n] | T[i] = a}
Ci=C,NC"

Then C,={i€Cy| T, <a™}

Ctr={icC,| T >a"}
and thus, if i € C; and j € C;, then T; < T;. Hence the suffix array is
nC1Cs...Co_1 =nCyCTC;CH...C7_,CF |.

204

The basic idea of induced sorting is to use information about the order of T;
to induce the order of the suffix T;_1 = T'[i — 1]T;. The main steps are:

1. Sort the sets C*, a € [1..0).

2. Use C%, a € [l..0), to induce the order of the sets C_, a € [1..0).
3. Use C;, ac[l..0), to induce the order of the sets C., a € [1..0).

a !

T he suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 4.25: For all a € [1..0)

(@) i—1e€C, iff i >0 and T[¢ — 1] = a and one of the following holds
1. 1=n
2. i€ C*
3. i€ C~ and T[i— 1] > T[4].

(b) i—1€Ct iff i >0 and T[i — 1] = a and one of the following holds

1. i€ C~ and T[i — 1] < T[]
2. i€ CT and T[i — 1] < T[i].

205

To induce C~ suffixes:

1. Set C; empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € C~ in lexicographical order,

append 7 — 1 into C:F[i—l]'
By Lemma 4.25(a), Step 2 can be done by checking the relevant conditions
for all i € nC; C7C,C5

Algorithm 4.26: InduceMinusSuffixes
Input: Lexicographically sorted lists C}, a € 2
Output: Lexicographically sorted lists C,, a €
(1) forae>X do C, + 0
(2) pushback(n — 1, C;[n_l])
(3) fora«+1too—1do

(4) fori e C; do // include elements added during the loop
(5) if ¢ >0 and T[: — 1] > a then pushback(i — 1,0;[2._1])
(6) for i € C* do pushback(i — 1, C;[Z._l])

Note that since T;_1 > T; by definition of C—, we always have ¢ inserted
before : — 1.

206

Inducing +-type suffixes goes similarly but in reverse order so that again 7 is
always inserted before 7 — 1:

1. Set Cf empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € Ct in descending lexicographical

order, append i — 1 into C;f[l._l].

Algorithm 4.27: InducePlusSuffixes
Input: Lexicographically sorted lists C;, a € &
Output: Lexicographically sorted lists CF, a € =

(1) foraec < do C;f <+ 0
(2) for a < o —1 downto 1 do

(3) for i € CF in reverse order do // include elements added during loop
(4) if i >0 and T[i — 1] < a then pushfront(i — 1,0;5[2._1])

(5) for i € C7 in reverse order do

(6) if i >0 and T[i — 1] < a then pushfront(i — 1,C},)

207

We still need to explain how to sort the x-type suffixes. Define
Fli]=min{fk e [i+1.n] | ke C* or k=n}
S; = T'[i..F[i]]
S; = Sio
where o is a special symbol larger than any other symbol.

Lemma 4.28: For any 4,5 € [0..n), T; < T} iff S; < S} or S; =S’ and
Trp) < Trp)-

Proof. The claim is trivially true except in the case that S; is a proper
prefix of S; (or vice versa). In that case, S; > S; but S} < S; and thus T; < T;
by the claim. We will show that this is correct.

Let /¥ = F[j] and k=174 /¢ — 3. Then
e /c(C*and thus ¢/ —1 € C~. By Lemma 4.25(b), T[¢ — 1] > T[4].

o Tlk—1..k] =T[¢ —1.4] and thus T[k — 1] > T[k]. If we had k € CT, we
would have k € C*. Since this is not the case, we must have k € C~.

o Let a=TI[¢]. Since £ € C;} and k € C,, we must have Ty < a>® < Ty.

e Since Ti..k) =T[j..¢) and Ty < Ty, we have T; < T}.
[
208

Algorithm 4.29: SAIS

Step 0: Choose C.

e Compute the types of suffixes. This can be done in O(n) time based on
Lemma 4.25.

o Set C = U,en.»)Ci U {n}. Note that |C| < n/2, since for all < € C,
i—1leC-CC.

Example 4.30:
7 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T[(] m m i s s i s s

typeof T, — — x — — % — —
Cr = {2,5,8}, q;;zcg =C:=10), C=1{2,5,8,14}.

* F
+ ~
e
| o
| +
| +

&

209

Step 1: Sort T¢.

Sort the strings S}, i € C*. Since the total length of the strings S/ is
O(n), the sorting can be done in O(n) time using LSD radix sort.

Assign order preserving names N; € [1..|C| — 1] to the string S; so that
N; < N;j iff Si < 8!

Construct the sequence R = N; N,,...N;0, where 11 <13 < --- < 4 are
the *-type positions.

Construct the suffix array SAr of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

The order of the suffixes of R corresponds to the order of x-type
suffixes of T'. Thus we can construct the lexicographically ordered lists
C* a€[l.o).

Example 4.31:

¢ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tli] m m i s s i s s i i p p i i $

N; 2 2 1 0
R = [issioc][issic][iippii$o]$ = 2210, SAr = (3,2,1,0), C¥ = (8,5,2)

210

Step 2: Sort Tjg. -

e Run InduceMinusSuffixes to construct the sorted lists C, a € [1..0).

e Run InducePlusSuffixes to construct the sorted lists C, a € [1..0).

e The suffix array is SA =nC{C{C;C5 ...C._,CI .

Example 4.32:
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T(] m m i s s i s s i i p p i i $
typeof T, — — x — — *x — — %x 4+ - - - —

n=14 = O =(13,12)

C;Cr=(13,12,8,5,2) = C; =(1,0), C; =(11,10), C5 = (7,4,6,3)
= Cf =(8,9,5,2)
= SA=CyC;CfCrCyCs = (14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)

211

Theorem 4.33: Algorithm SAIS constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

e In Step 1, to sort the strings S/, i € C*, SAIS does not actually use LSD
radix sort but the following procedure:

1.
2.
3.

4.

Construct the sets C¥, a € [1..0) in arbitrary order.
Run InduceMinusSuffixes to construct the lists C_, a € [1..0).
Run InducePlusSuffixes to construct the lists C., a € [1..0).

a

Remove non-*-type positions from C{CY...CT .

With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists C? are accessed
sequentially during the procedures.

e The currently fastest suffix sorting implementation in practice is
probably divsufsort by Yuta Mori. It sorts the *-type suffixes
non-recursively in O(nlogn) time and then continues as SAIS.

212

Summary: Suffix Trees and Arrays

The most important data structures for string processing:

e Designed for indexed exact string matching.

e Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string
processing:

e Linear time for constant and integer alphabet.
Often augmented with additional data structures:

e suffix links, LCA preprocessing

e LCP array, RMQ preprocessing, BWT, ...

213

