Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We assume that the alphabet of the text T[0..n) is [1..n] and that T[n] = 0 (=\$ in the examples).

The outline of the algorithms is:

- **0.** Choose a subset $C \subset [0..n]$.
- **1.** Sort the set T_C . This is done as follows:
 - (a) Construct a reduced string R of length |C|, whose characters are order preserving names of text factors starting at the positions in C.
 - (b) Construct the suffix array of R recursively.
- **2.** Sort the set $T_{[0..n]}$ using the order of T_C .

Assume that

- $|C| \le \alpha n$ for a constant $\alpha < 1$, and
- excluding the recursive call, all steps in the algorithm take linear time.

Then the total time complexity can be expressed as the recurrence $t(n) = \mathcal{O}(n) + t(\alpha n)$, whose solution is $t(n) = \mathcal{O}(n)$.

To make the scheme work, the set C must satisfy two nontrivial conditions:

- **1.** There exists an appropriate reduced string R.
- **2.** Given sorted T_C the suffix array of T is easy to construct.

Finding sets C that satisfy both conditions is difficult, but there are two different methods leading to two different algorithms:

- DC3 uses difference cover sampling
- SAIS uses induced sorting

Difference Cover Sampling

A difference cover D_q modulo q is a subset of [0..q) such that all values in [0..q) can be expressed as a difference of two elements in D_q modulo q. In other words:

$$[0..q) = \{i - j \mod q \mid i, j \in D_q\}$$
.

Example 4.15: $D_7 = \{1, 2, 4\}$

$$1-1=0$$
 $1-4=-3 \equiv 4 \pmod{q}$
 $2-1=1$ $2-4=-2 \equiv 5 \pmod{q}$
 $4-2=2$ $1-2=-1 \equiv 6 \pmod{q}$
 $4-1=3$

In general, we want the smallest possible difference cover for a given q.

- For any q, there exist a difference cover D_q of size $\mathcal{O}(\sqrt{q})$.
- The DC3 algorithm uses the simplest non-trivial difference cover $D_3 = \{1, 2\}.$

A difference cover sample is a set T_C of suffixes, where

$$C = \{i \in [0..n] \mid (i \mod q) \in D_q\}$$
.

Example 4.16: If T = banana and $D_3 = \{1, 2\}$, then $C = \{1, 2, 4, 5\}$ and $T_C = \{\text{anana}, \text{nana}, \text{na}, \text{as}\}$.

Once we have sorted the difference cover sample T_C , we can compare any two suffixes in $\mathcal{O}(q)$ time. To compare suffixes T_i and T_i :

- If $i \in C$ and $j \in C$, then we already know their order from T_C .
- Otherwise, find ℓ such that $i + \ell \in C$ and $j + \ell \in C$. There always exists such $\ell \in [0..q)$. Then compare:

$$T_i = T[i..i + \ell)T_{i+\ell}$$

$$T_j = T[j..j + \ell)T_{j+\ell}$$

That is, compare first $T[i..i + \ell)$ to $T[j..j + \ell)$, and if they are the same, then $T_{i+\ell}$ to $T_{i+\ell}$ using the sorted T_C .

Example 4.17:
$$D_3 = \{1, 2\}$$
 and $C = \{1, 2, 4, 5, ...\}$
 $T_0 = T[0]T_1$ $T_0 = T[0]T[1]T_2$ $T_0 = T[0]T_1$
 $T_1 = T[1]T_2$ $T_2 = T[2]T[3]T_4$ $T_3 = T[3]T_4$

Algorithm 4.18: DC3

Step 0: Choose C.

- Use difference cover $D_3 = \{1, 2\}$.
- For $k \in \{0, 1, 2\}$, define $C_k = \{i \in [0..n] \mid i \mod 3 = k\}$.
- Let $C = C_1 \cup C_2$ and $\bar{C} = C_0$.

Example 4.19:
$$i$$
 0 1 2 3 4 5 6 7 8 9 10 11 12 $T[i]$ y a b b a d a b b a d o \$

$$\bar{C} = C_0 = \{0, 3, 6, 9, 12\}, C_1 = \{1, 4, 7, 10\}, C_2 = \{2, 5, 8, 11\}$$
 and $C = \{1, 2, 4, 5, 7, 8, 10, 11\}.$

Step 1: Sort T_C .

- For $k \in \{1,2\}$, Construct the strings $R_k = (T_k^3, T_{k+3}^3, T_{k+6}^3, \dots, T_{\max C_k}^3)$ whose characters are 3-factors of the text, and let $R = R_1 R_2$.
- Replace each factor T_i^3 in R with an order preserving name $N_i^3 \in [1..|R|]$. The names can be computed by sorting the factors with LSD radix sort in $\mathcal{O}(n)$ time. Let R' be the result appended with 0.
- Construct the inverse suffix array $SA_{R'}^{-1}$ of R'. This is done recursively using DC3 unless all symbols in R' are unique, in which case $SA_{R'}^{-1} = R'$.
- From $SA_{R'}^{-1}$, we get order preserving names for suffixes in T_C . For $i \in C$, let $N_i = SA_{R'}^{-1}[j]$, where j is the position of T_i^3 in R. For $i \in \bar{C}$, let $N_i = \bot$. Also let $N_{n+1} = N_{n+2} = 0$.

Step 2(a): Sort $T_{\overline{C}}$.

• For each $i \in \bar{C}$, we represent T_i with the pair $(T[i], N_{i+1})$. Then $T_i \leq T_j \Longleftrightarrow (T[i], N_{i+1}) \leq (T[j], N_{j+1}) \ .$ Note that $N_{i+1} \neq \bot$ for all $i \in \bar{C}$.

• The pairs $(T[i], N_{i+1})$ are sorted by LSD radix sort in $\mathcal{O}(n)$ time.

Example 4.21:

 $T_{12} < T_6 < T_9 < T_3 < T_0$ because (\$, 0) < (a, 5) < (a, 7) < (b, 2) < (y, 1).

Step 2(b): Merge T_C and $T_{\bar{C}}$.

- Use comparison based merging algorithm needing $\mathcal{O}(n)$ comparisons.
- To compare $T_i \in T_C$ and $T_j \in T_{\overline{C}}$, we have two cases:

$$i \in C_1 : T_i \le T_j \iff (T[i], N_{i+1}) \le (T[j], N_{j+1})$$

 $i \in C_2 : T_i \le T_j \iff (T[i], T[i+1], N_{i+2}) \le (T[j], T[j+1], N_{j+2})$

Note that none of the N-values is \bot .

Example 4.22:

 $T_1 < T_6$ because (a, 4) < (a, 5). $T_3 < T_8$ because (b, a, 6) < (b, a, 7).

Theorem 4.23: Algorithm DC3 constructs the suffix array of a string T[0..n) in $\mathcal{O}(n)$ time plus the time needed to sort the characters of T.

There are many variants:

- DC3 is an optimal algorithm under several parallel and external memory computation models, too. There exists both parallel and external memory implementations of DC3.
- Using a larger value of q, we obtain more space efficient algorithms. For example, using $q = \log n$, the time complexity is $\mathcal{O}(n \log n)$ and the space needed in addition to the text and the suffix array is $\mathcal{O}(n/\sqrt{\log n})$.

Induced Sorting

Define three type of suffixes -, + and * as follows:

$$C^{-} = \{i \in [0..n) \mid T_i > T_{i+1}\}$$

$$C^{+} = \{i \in [0..n) \mid T_i < T_{i+1}\}$$

$$C^{*} = \{i \in C^{+} \mid i - 1 \in C^{-}\}$$

Example 4.24:

For every $a \in \Sigma$ and $x \in \{-, +.*\}$ define

$$C_a = \{i \in [0..n] \mid T[i] = a\}$$

$$C_a^x = C_a \cap C^x$$

Then

$$C_a^- = \{ i \in C_a \mid T_i < a^{\infty} \}$$

 $C_a^+ = \{ i \in C_a \mid T_i > a^{\infty} \}$

and thus, if $i \in C_a^-$ and $j \in C_a^+$, then $T_i < T_j$. Hence the suffix array is $nC_1C_2...C_{\sigma-1} = nC_1^-C_1^+C_2^-C_2^+...C_{\sigma-1}^-C_{\sigma-1}^+$.

The basic idea of induced sorting is to use information about the order of T_i to **induce** the order of the suffix $T_{i-1} = T[i-1]T_i$. The main steps are:

- **1.** Sort the sets C_a^* , $a \in [1..\sigma)$.
- **2.** Use C_a^* , $a \in [1..\sigma)$, to induce the order of the sets C_a^- , $a \in [1..\sigma)$.
- **3.** Use C_a^- , $a \in [1..\sigma)$, to induce the order of the sets C_a^+ , $a \in [1..\sigma)$.

The suffixes involved in the induction steps can be indentified using the following rules (proof is left as an exercise).

Lemma 4.25: For all $a \in [1..\sigma)$

- (a) $i-1 \in C_a^-$ iff i>0 and T[i-1]=a and one of the following holds
 - **1.** i = n
 - **2.** $i \in C^*$
 - **3.** $i \in C^-$ and $T[i-1] \ge T[i]$.
- (b) $i-1 \in C_a^+$ iff i>0 and T[i-1]=a and one of the following holds
 - **1.** $i \in C^-$ and T[i-1] < T[i]
 - **2.** $i \in C^+$ and $T[i-1] \leq T[i]$.

To induce C^- suffixes:

- **1.** Set C_a^- empty for all $a \in [1..\sigma)$.
- **2.** For all suffixes T_i such that $i-1 \in C^-$ in lexicographical order, append i-1 into $C^-_{T[i-1]}$.

By Lemma 4.25(a), Step 2 can be done by checking the relevant conditions for all $i \in nC_1^-C_1^*C_2^-C_2^*...$

Algorithm 4.26: InduceMinusSuffixes

Input: Lexicographically sorted lists C_a^* , $a \in \Sigma$

Output: Lexicographically sorted lists C_a^- , $a \in \Sigma$

- (1) for $a \in \Sigma$ do $C_a^- \leftarrow \emptyset$
- (2) $pushback(n-1, C_{T[n-1]}^-)$
- (3) for $a \leftarrow 1$ to $\sigma 1$ do
- (4) for $i \in C_a^-$ do // include elements added during the loop
- (5) if i > 0 and $T[i-1] \ge a$ then $pushback(i-1, C_{T[i-1]}^-)$
- (6) for $i \in C_a^*$ do $pushback(i-1, C_{T[i-1]}^-)$

Note that since $T_{i-1} > T_i$ by definition of C^- , we always have i inserted before i-1.

Inducing +-type suffixes goes similarly but in reverse order so that again i is always inserted before i-1:

- **1.** Set C_a^+ empty for all $a \in [1..\sigma)$.
- **2.** For all suffixes T_i such that $i-1 \in C^+$ in **descending** lexicographical order, append i-1 into $C^+_{T[i-1]}$.

Algorithm 4.27: InducePlusSuffixes

Input: Lexicographically sorted lists C_a^- , $a \in \Sigma$

Output: Lexicographically sorted lists C_a^+ , $a \in \Sigma$

- (1) for $a \in \Sigma$ do $C_a^+ \leftarrow \emptyset$
- (2) for $a \leftarrow \sigma 1$ downto 1 do
- (3) for $i \in C_a^+$ in reverse order do // include elements added during loop
- (4) if i > 0 and $T[i-1] \le a$ then $pushfront(i-1, C_{T[i-1]}^+)$
- (5) for $i \in C_a^-$ in reverse order do
- (6) if i > 0 and T[i-1] < a then $pushfront(i-1, C_{T[i-1]}^+)$

We still need to explain how to sort the *-type suffixes. Define

$$F[i] = \min\{k \in [i+1..n] \mid k \in C^* \text{ or } k = n\}$$

$$S_i = T[i..F[i]]$$

$$S_i' = S_i \sigma$$

where σ is a special symbol larger than any other symbol.

Lemma 4.28: For any $i, j \in [0..n)$, $T_i < T_j$ iff $S'_i < S'_j$ or $S'_i = S'_j$ and $T_{F[i]} < T_{F[j]}$.

Proof. The claim is trivially true except in the case that S_j is a proper prefix of S_i (or vice versa). In that case, $S_i > S_j$ but $S_i' < S_j'$ and thus $T_i < T_j$ by the claim. We will show that this is correct.

Let $\ell = F[j]$ and $k = i + \ell - j$. Then

- $\ell \in C^*$ and thus $\ell 1 \in C^-$. By Lemma 4.25(b), $T[\ell 1] > T[\ell]$.
- $T[k-1..k] = T[\ell-1..\ell]$ and thus T[k-1] > T[k]. If we had $k \in C^+$, we would have $k \in C^*$. Since this is not the case, we must have $k \in C^-$.
- Let $a = T[\ell]$. Since $\ell \in C_a^+$ and $k \in C_a^-$, we must have $T_k < a^{\infty} < T_{\ell}$.
- Since $T[i..k) = T[j..\ell)$ and $T_k < T_\ell$, we have $T_i < T_j$.

Algorithm 4.29: SAIS

Step 0: Choose C.

- Compute the types of suffixes. This can be done in $\mathcal{O}(n)$ time based on Lemma 4.25.
- Set $C=\cup_{a\in[1..\sigma)}C_a^*\cup\{n\}$. Note that $|C|\leq n/2$, since for all $i\in C$, $i-1\in C^-\subseteq \overline{C}$.

Example 4.30:

$$C_{i}^{*} = \{2, 5, 8\}, C_{m}^{*} = C_{p}^{*} = C_{s}^{*} = \emptyset, C = \{2, 5, 8, 14\}.$$

Step 1: Sort T_C .

- Sort the strings S'_i , $i \in C^*$. Since the total length of the strings S'_i is $\mathcal{O}(n)$, the sorting can be done in $\mathcal{O}(n)$ time using LSD radix sort.
- Assign order preserving names $N_i \in [1..|C|-1]$ to the string S_i' so that $N_i \leq N_j$ iff $S_i' \leq S_j'$.
- Construct the sequence $R = N_{i_1}N_{i_2}\dots N_k$ 0, where $i_1 < i_3 < \dots < i_k$ are the *-type positions.
- Construct the suffix array SA_R of R. This is done recursively unless all symbols in R are unique, in which case a simple counting sort is sufficient.
- The order of the suffixes of R corresponds to the order of *-type suffixes of T. Thus we can construct the lexicographically ordered lists C_a^* , $a \in [1..\sigma)$.

Example 4.31:

$$R = [issi\sigma][issi\sigma][iippii$\sigma]$ = 2210, $SA_R = (3, 2, 1, 0), C_i^* = (8, 5, 2)$$$

Step 2: Sort $T_{[0..n]}$.

- Run InduceMinusSuffixes to construct the sorted lists C_a^- , $a \in [1..\sigma)$.
- Run InducePlusSuffixes to construct the sorted lists C_a^+ , $a \in [1..\sigma)$.
- The suffix array is $SA = nC_1^-C_1^+C_2^-C_2^+ \dots C_{\sigma-1}^-C_{\sigma-1}^+$.

Example 4.32:

$$n = 14 \quad \Rightarrow \quad C_{i}^{-} = (13, 12)$$

$$C_{i}^{-}C_{i}^{*} = (13, 12, 8, 5, 2) \quad \Rightarrow \quad C_{m}^{-} = (1, 0), \ C_{p}^{-} = (11, 10), \ C_{s}^{-} = (7, 4, 6, 3)$$

$$\Rightarrow \quad C_{i}^{+} = (8, 9, 5, 2)$$

$$\Rightarrow \quad SA = C_{\$}C_{i}^{-}C_{i}^{+}C_{m}^{-}C_{p}^{-}C_{s}^{-} = (14, 13, 12, 8, 9, 5, 2, 1, 0, 11, 10, 7, 4, 6, 3)$$

Theorem 4.33: Algorithm SAIS constructs the suffix array of a string T[0..n) in $\mathcal{O}(n)$ time plus the time needed to sort the characters of T.

- In Step 1, to sort the strings S_i' , $i \in C^*$, SAIS does not actually use LSD radix sort but the following procedure:
 - 1. Construct the sets C_a^* , $a \in [1..\sigma)$ in arbitrary order.
 - **2.** Run InduceMinusSuffixes to construct the lists C_a^- , $a \in [1..\sigma)$.
 - **3.** Run InducePlusSuffixes to construct the lists C_a^- , $a \in [1..\sigma)$.
 - **4.** Remove non-*-type positions from $C_1^+C_2^+ \dots C_{\sigma-1}^+$.

With this change, most of the work is done in the induction procedures. This is very fast in practice, because all the lists C_a^x are accessed **sequentially** during the procedures.

• The currently fastest suffix sorting implementation in practice is probably divsufsort by Yuta Mori. It sorts the *-type suffixes non-recursively in $\mathcal{O}(n \log n)$ time and then continues as SAIS.

Summary: Suffix Trees and Arrays

The most important data structures for string processing:

- Designed for indexed exact string matching.
- Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string processing:

Linear time for constant and integer alphabet.

Often augmented with additional data structures:

- suffix links, LCA preprocessing
- LCP array, RMQ preprocessing, BWT, ...