
Now, given N `, for the purpose of sorting, we can use

• N `
i to represent T `i

• the pair (N `
i , N

`
i+`) to represent T 2`

i = T `i T
`
i+`.

Thus we can sort T 2`
[0..n] by sorting pairs of integers, which can be done in

O(n) time using LSD radix sort.

Theorem 4.14: The suffix array of a string T [0..n] can be constructed in
O(n logn) time using prefix doubling.

• The technique of assigning order preserving names to factors whose
lengths are powers of two is called the Karp–Miller–Rosenberg naming
technique. It was developed for other purposes in the early seventies
when suffix arrays did not exist yet.

• The best practical variant is the Larsson–Sadakane algorithm, which
uses ternary quicksort instead of LSD radix sort for sorting the pairs,
but still achieves O(n logn) total time.

193

Let us return to the first phase of the prefix doubling algorithm: assigning
names N1

i to individual characters. This is done by sorting the characters,
which is easily within the time bound O(n logn), but sometimes we can do
it faster:

• On an ordered alphabet, we can use ternary quicksort for time
complexity O(n logσT) where σT is the number of distinct symbols in T .

• On an integer alphabet of size nc for any constant c, we can use LSD
radix sort with radix n for time complexity O(n).

After this, we can replace each character T [i] with N1
i to obtain a new

string T ′:

• The characters of T ′ are integers in the range [0..n].

• The character T ′[n] = 0 is the unique, smallest symbol, i.e., $.

• The suffix arrays of T and T ′ are exactly the same.

Thus we can construct the suffix array using T ′ as the text instead of T .

As we will see next, the suffix array of T ′ can be constructed in linear time.
Then sorting the characters of T to obtain T ′ is the asymptotically most
expensive operation in the suffix array construction of T for any alphabet.

194

Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We
assume that the alphabet of the text T [0..n) is [1..n] and that T [n] = 0 (=$
in the examples).

The outline of the algorithms is:

0. Choose a subset C ⊂ [0..n].

1. Sort the set TC. This is done as follows:

(a) Construct a reduced string R of length |C|, whose characters are
order preserving names of text factors starting at the positions in C.

(b) Construct the suffix array of R recursively.

2. Sort the set T[0..n] using the order of TC.

195

Assume that

• |C| ≤ αn for a constant α < 1, and

• excluding the recursive call, all steps in the algorithm take linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(αn), whose solution is t(n) = O(n).

To make the scheme work, the set C must satisfy two nontrivial conditions:

1. There exists an appropriate reduced string R.

2. Given sorted TC the suffix array of T is easy to construct.

Finding sets C that satisfy both conditions is difficult, but there are two
different methods leading to two different algorithms:

• DC3 uses difference cover sampling

• SAIS uses induced sorting

196

Difference Cover Sampling

A difference cover Dq modulo q is a subset of [0..q) such that all values in
[0..q) can be expressed as a difference of two elements in Dq modulo q. In
other words:

[0..q) = {i− j mod q | i, j ∈ Dq} .

Example 4.15: D7 = {1,2,4}
1− 1 = 0 1− 4 = −3 ≡ 4 (mod q)
2− 1 = 1 2− 4 = −2 ≡ 5 (mod q)
4− 2 = 2 1− 2 = −1 ≡ 6 (mod q)
4− 1 = 3

In general, we want the smallest possible difference cover for a given q.

• For any q, there exist a difference cover Dq of size O(
√
q).

• The DC3 algorithm uses the simplest non-trivial difference cover
D3 = {1,2}.

197

A difference cover sample is a set TC of suffixes, where

C = {i ∈ [0..n] | (i mod q) ∈ Dq} .

Example 4.16: If T = banana$ and D3 = {1,2},
then C = {1,2,4,5} and TC = {anana$, nana$, na$, a$}.
Once we have sorted the difference cover sample TC, we can compare any
two suffixes in O(q) time. To compare suffixes Ti and Tj:

• If i ∈ C and j ∈ C, then we already know their order from TC.

• Otherwise, find ` such that i+ ` ∈ C and j + ` ∈ C. There always exists
such ` ∈ [0..q). Then compare:

Ti = T [i..i+ `)Ti+`

Tj = T [j..j + `)Tj+`

That is, compare first T [i..i+ `) to T [j..j + `), and if they are the same,
then Ti+` to Tj+` using the sorted TC.

Example 4.17: D3 = {1,2} and C = {1,2,4,5, . . . }
T0 = T [0]T1

T1 = T [1]T2

T0 = T [0]T [1]T2

T2 = T [2]T [3]T4

T0 = T [0]T1

T3 = T [3]T4

198

Algorithm 4.18: DC3

Step 0: Choose C.

• Use difference cover D3 = {1,2}.
• For k ∈ {0,1,2}, define Ck = {i ∈ [0..n] | i mod 3 = k}.
• Let C = C1 ∪ C2 and C̄ = C0.

Example 4.19: i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $

C̄ = C0 = {0,3,6,9,12}, C1 = {1,4,7,10}, C2 = {2,5,8,11} and
C = {1,2,4,5,7,8,10,11}.

199

Step 1: Sort TC.

• For k ∈ {1,2}, Construct the strings Rk = (T 3
k , T

3
k+3, T

3
k+6, . . . , T

3
maxCk

)
whose characters are 3-factors of the text, and let R = R1R2.

• Replace each factor T 3
i in R with an order preserving name N3

i ∈ [1..|R|].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R′ be the result appended with 0.

• Construct the inverse suffix array SA−1
R′ of R′. This is done recursively

using DC3 unless all symbols in R′ are unique, in which case SA−1
R′ = R′.

• From SA−1
R′ , we get order preserving names for suffixes in TC.

For i ∈ C, let Ni = SA−1
R′ [j], where j is the position of T 3

i in R.
For i ∈ C̄, let Ni = ⊥. Also let Nn+1 = Nn+2 = 0.

Example 4.20: R abb ada bba do$ bba dab bad o$
R′ 1 2 4 7 4 6 3 8 0

SA−1
R′ 1 2 5 7 4 6 3 8 0

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0

200

Step 2(a): Sort TC̄.

• For each i ∈ C̄, we represent Ti with the pair (T [i], Ni+1). Then

Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1) .

Note that Ni+1 6= ⊥ for all i ∈ C̄.

• The pairs (T [i], Ni+1) are sorted by LSD radix sort in O(n) time.

Example 4.21:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T12 < T6 < T9 < T3 < T0 because ($,0) < (a,5) < (a,7) < (b,2) < (y,1).

201

Step 2(b): Merge TC and TC̄.

• Use comparison based merging algorithm needing O(n) comparisons.

• To compare Ti ∈ TC and Tj ∈ TC̄, we have two cases:

i ∈ C1 : Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1)

i ∈ C2 : Ti ≤ Tj ⇐⇒ (T [i], T [i+ 1], Ni+2) ≤ (T [j], T [j + 1], Nj+2)

Note that none of the N-values is ⊥.

Example 4.22:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T1 < T6 because (a,4) < (a,5).
T3 < T8 because (b, a,6) < (b, a,7).

202

Theorem 4.23: Algorithm DC3 constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

There are many variants:

• DC3 is an optimal algorithm under several parallel and external memory
computation models, too. There exists both parallel and external
memory implementations of DC3.

• Using a larger value of q, we obtain more space efficient algorithms. For
example, using q = logn, the time complexity is O(n logn) and the
space needed in addition to the text and the suffix array is O(n/

√
logn).

203

Induced Sorting

Define three type of suffixes −, + and ∗ as follows:

C− = {i ∈ [0..n) | Ti > Ti+1}
C+ = {i ∈ [0..n) | Ti < Ti+1}
C∗ = {i ∈ C+ | i− 1 ∈ C−}

Example 4.24:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

For every a ∈ Σ and x ∈ {−,+.∗} define

Ca = {i ∈ [0..n] | T [i] = a}
Cx
a = Ca ∩ Cx

Then
C−a = {i ∈ Ca | Ti < a∞}
C+
a = {i ∈ Ca | Ti > a∞}

and thus, if i ∈ C−a and j ∈ C+
a , then Ti < Tj. Hence the suffix array is

nC1C2 . . . Cσ−1 = nC−1 C
+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

204

The basic idea of induced sorting is to use information about the order of Ti
to induce the order of the suffix Ti−1 = T [i− 1]Ti. The main steps are:

1. Sort the sets C∗a, a ∈ [1..σ).

2. Use C∗a, a ∈ [1..σ), to induce the order of the sets C−a , a ∈ [1..σ).

3. Use C−a , a ∈ [1..σ), to induce the order of the sets C+
a , a ∈ [1..σ).

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 4.25: For all a ∈ [1..σ)

(a) i− 1 ∈ C−a iff i > 0 and T [i− 1] = a and one of the following holds

1. i = n

2. i ∈ C∗
3. i ∈ C− and T [i− 1] ≥ T [i].

(b) i− 1 ∈ C+
a iff i > 0 and T [i− 1] = a and one of the following holds

1. i ∈ C− and T [i− 1] < T [i]
2. i ∈ C+ and T [i− 1] ≤ T [i].

205

To induce C− suffixes:

1. Set C−a empty for all a ∈ [1..σ).

2. For all suffixes Ti such that i− 1 ∈ C− in lexicographical order,
append i− 1 into C−

T [i−1].

By Lemma 4.25(a), Step 2 can be done by checking the relevant conditions
for all i ∈ nC−1 C∗1C−2 C∗2
Algorithm 4.26: InduceMinusSuffixes
Input: Lexicographically sorted lists C∗a, a ∈ Σ
Output: Lexicographically sorted lists C−a , a ∈ Σ

(1) for a ∈ Σ do C−a ← ∅
(2) pushback(n− 1, C−

T [n−1])

(3) for a← 1 to σ − 1 do
(4) for i ∈ C−a do // include elements added during the loop
(5) if i > 0 and T [i− 1] ≥ a then pushback(i− 1, C−

T [i−1])

(6) for i ∈ C∗a do pushback(i− 1, C−
T [i−1])

Note that since Ti−1 > Ti by definition of C−, we always have i inserted
before i− 1.

206

Inducing +-type suffixes goes similarly but in reverse order so that again i is
always inserted before i− 1:

1. Set C+
a empty for all a ∈ [1..σ).

2. For all suffixes Ti such that i− 1 ∈ C+ in descending lexicographical
order, append i− 1 into C+

T [i−1].

Algorithm 4.27: InducePlusSuffixes
Input: Lexicographically sorted lists C−a , a ∈ Σ
Output: Lexicographically sorted lists C+

a , a ∈ Σ
(1) for a ∈ Σ do C+

a ← ∅
(2) for a← σ − 1 downto 1 do
(3) for i ∈ C+

a in reverse order do // include elements added during loop
(4) if i > 0 and T [i− 1] ≤ a then pushfront(i− 1, C+

T [i−1])

(5) for i ∈ C−a in reverse order do
(6) if i > 0 and T [i− 1] < a then pushfront(i− 1, C+

T [i−1])

207

We still need to explain how to sort the ∗-type suffixes. Define

F [i] = min{k ∈ [i+ 1..n] | k ∈ C∗ or k = n}
Si = T [i..F [i]]

S′i = Siσ

where σ is a special symbol larger than any other symbol.

Lemma 4.28: For any i, j ∈ [0..n), Ti < Tj iff S′i < S′j or S′i = S′j and
TF [i] < TF [j].

Proof. The claim is trivially true except in the case that Sj is a proper
prefix of Si (or vice versa). In that case, Si > Sj but S′i < S′j and thus Ti < Tj
by the claim. We will show that this is correct.

Let ` = F [j] and k = i+ `− j. Then

• ` ∈ C∗ and thus `− 1 ∈ C−. By Lemma 4.25(b), T [`− 1] > T [`].

• T [k − 1..k] = T [`− 1..`] and thus T [k − 1] > T [k]. If we had k ∈ C+, we
would have k ∈ C∗. Since this is not the case, we must have k ∈ C−.

• Let a = T [`]. Since ` ∈ C+
a and k ∈ C−a , we must have Tk < a∞ < T`.

• Since T [i..k) = T [j..`) and Tk < T`, we have Ti < Tj.

�
208

Algorithm 4.29: SAIS

Step 0: Choose C.

• Compute the types of suffixes. This can be done in O(n) time based on
Lemma 4.25.

• Set C = ∪a∈[1..σ)C
∗
a ∪ {n}. Note that |C| ≤ n/2, since for all i ∈ C,

i− 1 ∈ C− ⊆ C̄.

Example 4.30:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

C∗i = {2,5,8}, C∗m = C∗p = C∗s = ∅, C = {2,5,8,14}.

209

Step 1: Sort TC.

• Sort the strings S′i, i ∈ C∗. Since the total length of the strings S′i is
O(n), the sorting can be done in O(n) time using LSD radix sort.

• Assign order preserving names Ni ∈ [1..|C| − 1] to the string S′i so that
Ni ≤ Nj iff S′i ≤ S′j.

• Construct the sequence R = Ni1Ni2 . . . Nk0, where i1 < i3 < · · · < ik are
the *-type positions.

• Construct the suffix array SAR of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

• The order of the suffixes of R corresponds to the order of ∗-type
suffixes of T . Thus we can construct the lexicographically ordered lists
C∗a, a ∈ [1..σ).

Example 4.31:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
Ni 2 2 1 0

R = [issiσ][issiσ][iippii$σ]$ = 2210, SAR = (3,2,1,0), C∗i = (8,5,2)

210

Step 2: Sort T[0..n].

• Run InduceMinusSuffixes to construct the sorted lists C−a , a ∈ [1..σ).

• Run InducePlusSuffixes to construct the sorted lists C+
a , a ∈ [1..σ).

• The suffix array is SA = nC−1 C
+
1 C

−
2 C

+
2 . . . C−σ−1C

+
σ−1.

Example 4.32:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] m m i s s i s s i i p p i i $
type of Ti − − ∗ − − ∗ − − ∗ + − − − −

n = 14 ⇒ C−i = (13,12)
C−i C

∗
i = (13,12,8,5,2) ⇒ C−m = (1,0), C−p = (11,10), C−s = (7,4,6,3)

⇒ C+
i = (8,9,5,2)

⇒ SA = C$C
−
i C

+
i C

−
m C
−
p C
−
s = (14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)

211

Theorem 4.33: Algorithm SAIS constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

• In Step 1, to sort the strings S′i, i ∈ C∗, SAIS does not actually use LSD
radix sort but the following procedure:

1. Construct the sets C∗a, a ∈ [1..σ) in arbitrary order.

2. Run InduceMinusSuffixes to construct the lists C−a , a ∈ [1..σ).

3. Run InducePlusSuffixes to construct the lists C−a , a ∈ [1..σ).

4. Remove non-*-type positions from C+
1 C

+
2 . . . C+

σ−1.

With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists Cx

a are accessed
sequentially during the procedures.

• The currently fastest suffix sorting implementation in practice is
probably divsufsort by Yuta Mori. It sorts the *-type suffixes
non-recursively in O(n logn) time and then continues as SAIS.

212

Summary: Suffix Trees and Arrays

The most important data structures for string processing:

• Designed for indexed exact string matching.

• Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string
processing:

• Linear time for constant and integer alphabet.

Often augmented with additional data structures:

• suffix links, LCA preprocessing

• LCP array, RMQ preprocessing, BWT, ...

213

