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0. Introduction

Strings and sequences are one of the simplest, most natural and most used
forms of storing information.

e natural language, biosequences, programming source code, XML,
music, any data stored in a file

e Many algorithmic techniques are first developed for strings and later
generalized for more complex types of data such as graphs.

The area of algorithm research focusing on strings is sometimes known as
stringology. Characteristic features include

e Huge data sets (document databases, biosequence databases, web
crawls, etc.) require efficiency. Linear time and space complexity is the
norm.

e Strings come with no explicit structure, but many algorithms discover
implicit structures that they can utilize.



About this course

On this course we will cover a few cornerstone problems in stringology. We
will describe several algorithms for the same problems:

e the best algorithms in theory and/or in practice
e algorithms using a variety of different techniques

The goal is to learn a toolbox of basic algorithms and techniques.

On the lectures, we will focus on the clean, basic problem. Exercises may
include some variations and extensions. We will mostly ignore any
application specific issues.



Strings

An alphabet is the set of symbols or characters that may occur in a string.
We will usually denote an alphabet with the symbol > and its size with o.

We consider three types of alphabets:
e Ordered alphabet: >~ = {c1,c0,...,¢s}, Where c; < cop < --- < ¢
e Integer alphabet: ¥ ={0,1,2,...,0 — 1}.

e Constant alphabet: An ordered alphabet for a (small) constant o.



The alphabet types are really used for classifying and analysing algorithms
rather than alphabets:

e Algorithms for ordered alphabet use only character comparisons.

e Algorithms for integer alphabet can use more powerful operations such
as using a symbol as an address to a table or arithmetic operations to
compute a hash function.

e Algorithms for constant alphabet can perform almost any operation on
characters and even sets of characters in constant time.

The assumption of a constant alphabet in the analysis of an algorithm often
indicates one of two things:

e T he effect of the alphabet on the complexity is complicated and the
constant alphabet assumption is used to simplify the analysis.

e The time or space complexity of the algorithm is heavily (e.g., linearly)
dependent on the alphabet size and the algorithm is effectively unusable
for large alphabets.

An algorithm is called alphabet-independent if its complexity has no
dependence on the alphabet size.



A string is a sequence of symbols. The set of all strings over an alphabet >
1S
o
S = U sh=3s%uslusz?u...
k=0

where
k

ShF=SxYx.-xX
= {a1az...a; |a; € Z for 1 <i <k}
= {(a1,a2,...,a;) |a; € X for 1 <i <k}

is the set of strings of length k. In particular, X9 = {e}, where ¢ is the
empty string.

We will usually write a string using the notation ajas...ar, but sometimes
using (a1, az,...,a;) may avoid confusion.



There are many notations for strings.

When describing algorithms, we will typically use the array notation to
emphasize that the string is stored in an array:

S = S[1..n] = S[1]S[2]...S[n]
T =T[0.n) =T[0]T[1]...T[n — 1]
Note the half-open range notation [0..n) which is often convenient.

In an abstract context, we often use other notations, for example:

e a,B e’
e r —=aijasz...ar Where a; € > for all 2

e w=uv, u,v € _* (w is the concatenation of v and v)

We will use |w| to denote the length of a string w.



Individual characters or their positions usually do not matter. The
significant entities are the substrings or factors.

Definition 0.1: Let w = zyz for any z,y,z € >*. Then z is a prefix,
y is a factor (substring), and z is a suffix of w.
If x is both a prefix and a suffix of w, then x is a border of w.

Example 0.2: Let w = bonobo. Then

e £,b,bo,bon, bono, bonob, bonobo are the prefixes of w

e £,0,bo,0bo,nobo, onobo, bonobo are the suffixes of w

e =,bo,bonobo are the borders of w

e ¢£,b,0,n,bo,on,no, ob,bon, ono,nob, obo, bono, onob, nobo, bonob, onobo, bonobo

are the factors of w.

Note that € and w are always suffixes, prefixes, and borders of w.

A suffix/prefix/border of w is proper if it is not w, and nontrivial if it is not ¢
or w.



Some Interesting Strings

The Fibonacci strings are defined by
the recurrence:

F():E
Fi =0po
F> = a

F,=F,_ 1{F,_»> for:>2

The infinite Fibonacci string is the limit F.
For all : > 1, F; is a prefix of F.

Example 0.3:

F3 = ab

Fs = aba

Fs = abaab

Fg — abaababa

F7 — abaababaabaab

Fg — abaababaabaababaababa

Fibonacci strings have many interesting properties:

e |F;| = fi, where f; is the ith Fibonacci number.

e I has exactly kK + 1 distinct factors of length k.

e For all + > 1, we can obtain F; from F;_1 by applying the substitutions

a+— ab and b +— a to every character.
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A De Bruijn sequence Bj of order k for an alphabet 3> of size o is a cyclic
string of length o that contains every string of length k over the alphabet
> as a factor exactly once. The cycle can be opened into a string of length
of 4+ k — 1 with the same property.

Example 0.4: De Bruijn sequences for the alphabet {a,b}:

B> = aabb(a)
B3 = aaababbb(aa)
B4 = aaaabaabbababbbb(aaa)

De Bruijn sequences are not unique. They can be constructed by finding
Eulerian or Hamiltonian cycles in a De Bruijn graph.

Example 0.5: De Bruijn graph for the alphabet {a,b} that can be used for
constructing B> (Hamiltonian cycle) or B3 (Eulerian cycle).

AN

ba</a
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1. Sets of Strings

Basic operations on a set of objects include:

Insert: Add an object to the set
Delete: Remove an object from the set.

Lookup: Find if a given object is in the set, and if it is, possibly
return some data associated with the object.

There can also be more complex queries:
Range query: Find all objects in a given range of values.

There are many other operations too but we will concentrate on these here.
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An efficient execution of the operations requires that the set is stored as a
suitable data structure.

e A (balanced) binary search tree supports the basic operations in
O(logn) time and range searching in O(logn + r) time, where n is the
size of the set and r is the size of the result.

e An ordered array supports lookup and range searching in the same time
as binary search trees. It is simpler, faster and more space efficient in
practice, but does not support insertions and deletions.

e A hash table supports the basic operations in constant time (usually
randomized) but does not support range queries.

A data structure is called dynamic if it supports insertions and deletions
(tree, hash table) and static if not (array). Static data structures are
constructed once for the whole set of objects. In the case of an ordered
array, this involves another important operation, sorting. Sorting can be
done in O(nlogn) time using comparisons and even faster for integers.
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The above time complexities assume that basic operations on the objects

including comparisons can be performed in constant time. When the objects
are strings, this is no more true:

e The worst case time for a string comparison is the length of the shorter
string. Even the average case time for a random set of n strings is
O(log,n) in many cases, including for basic operations in a balanced
binary search tree. We will show an even stronger result for sorting
later. And sets of strings are rarely fully random.

e Computing a hash function is slower too. A good hash function
depends on all characters and cannot be computed faster than the
length of the string.

For a string set R, there are also new types of queries:

Prefix query: Find all strings in R that have the query string S as a
prefix. This is a special type of range query.

Lcp (longest common prefix) query: What is the length of the

longest prefix of the query string S that is also a prefix of some
string in R.

Thus we need special set data structures and algorithms for strings.

14



Trie

A simple but powerful data structure for a set of strings is the trie. It is a
rooted tree with the following properties:

e Edges are labelled with symbols from an alphabet 2.
e For every node v, the edges from v to its children have different labels.
Each node represents the string obtained by concatenating the symbols on

the path from the root to that node.

The trie for a string set R, denoted by trie(R),
is the smallest trie that has nodes representing
all the strings in R. The nodes representing
strings in 'R may be marked.

Example 1.1: ¢rie(R) for

R = {ali,alice,anna,elias,eliza}.
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The trie is conceptually simple but it is not simple to implement efficiently.
The time and space complexity of a trie depends on the implementation of
the child function:

For a node v and a symbol ¢ € X, child(v,c) is u if u is a child of v
and the edge (v,u) is labelled with ¢, and child(v,c) = L (null) if v
has no such child.

As an example, here is the insertion algorithm:

Algorithm 1.2: Insertion into trie
Input: trie(R) and a string S[0..m) € R
Output: trie(RU{S})

(1) v<root; 7+ O

(2) while child(v, S[j]) # L do

(3) v« child(v,S[j]); j + j+ 1
(4) while 5 <m do

(5) Create new node u (initializes child(u,c) to L for all c € X)
(6) child(v, S[j]) < u

(7) v jeg+1

(8) Mark v as representative of S

16



There are many implementation options for the child function including:

Array: Each node stores an array of size o. The space complexity is O(ocN),
where N is the number of nodes in trie(R). The time complexity of the
child operation is O(1). Requires an integer alphabet.

Binary tree: Replace the array with a binary tree. The space complexity is
O(N) and the time complexity O(logo). Works for an ordered alphabet.

Hash table: One hash table for the whole trie, storing the values
child(v,c) = L. Space complexity O(N), time complexity O(1).
Requires an integer alphabet.

A common simplification in the analysis of tries is to assume a constant
alphabet. Then the implementation does not matter: Insertion, deletion,
lookup and Icp query for a string S take O(|S|) time.

Note that a trie is a complete representation of the strings. There is no
need to store the strings separately.

17



Prefix free string sets

Many data structures and algorithms for a string set R become simpler if R
is prefix free.

Definition 1.3: A string set R is prefix free if no string in R is a prefix of
another string in K.

There is a simple way to make any string set prefix free:

o Let $ &3 be an extra symbol satisfying $ < ¢ for all c € >
e Append $ to the end of every string in K.

This has little or no effect on most operations on the set. The length of
each string increases by one only, and the additional symbol could be there
only virtually.

Example 1.4: The set {ali,alice,anna,elias,eliza} is not prefix free
because ali is a prefix of alice, but {ali$,alice$, anna$,elias$, eliza$} is
prefix free.

18



If R is prefix free, the leaves of trie(R) represent exactly R. This simplifies
the implementation of the trie.

Example 1.5: The trie for {ali$,alice$, anna$, elias$, eliza$}.
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Compact Trie

Tries suffer from a large number of nodes, close to ||R]|| in the worst case.

e For a string set R, we use |R| to denote the number of strings in R and
||R|| to denote the total length of the strings in R.

The space requirement can be problematic, since typically each node needs
much more space than a single symbol.

Compact tries reduce the number Example 1.6: Compact trie for
of nodes by replacing branchless {ali$,alice$, anna$, elias$, eliza$}.
path segments with a single edge.
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The space complexity of a compact trie is O(|R|) (in addition to the
strings):

e In a compact trie, every internal node (except possibly the root) has at
least two children. In such a tree, there is always at least as many
leaves as internal nodes. Thus the number of nodes is at most 2|R/|.

e The egde labels are factors of the input strings. If the input strings are

stored separately, the edge labels can be represented in constant space
using pointers to the strings.

The time complexities are the same or better than for tries:

e An insertion adds and a deletion removes at most two nodes.

e Lookups may execute fewer calls to the child operation, though the
worst case complexity is the same.

e Prefix and range queries are faster even on a constant alphabet
(exercise).
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There is also an intermediate form of trie called leaf-path-compacted trie,
where branchless path segments are compacted only when they end in a leaf.

e Typically (though not in the worst case) this achieves most of the
advantages of a compact trie.

e For trie algorithms, this means stopping the normal search, when only
one string is remaining in the subtree.

Example 1.7: Leaf-path-compacted trie for
{ali$,alice$, anna$, elias$, eliza$}.
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Ternary Trie

Tries can be implemented for ordered alphabets but a bit awkwardly using a
comparison-based child function. Ternary trie is a simpler data structure
based on symbol comparisons.

Ternary trie is like a binary search tree except:

e Each internal node has three children: smaller, equal and larger.

e T he branching is based on a single symbol at a given position as in a
trie. The position is zero (first symbol) at the root and increases along
the middle branches but not along side branches.

There are also compact ternary tries and leaf-path-compated ternary tries
based on compacting branchless path segments.
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Example 1.8: Ternary tries for {ali$,alice$, anna$,elias$, eliza$}.
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Ternary tries have the same asymptotic size as the corresponding (o-ary)
tries.
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A ternary trie is balanced if each left and right subtree contains at most half
of the strings in its parent tree.

e The balance can be maintained by rotations similarly to binary search

6d 09, (F, B

e We can also get reasonably close to a balance by inserting the strings in
the tree in a random order.

Note that there is no restriction on the size of the middle subtree.

25



In a balanced ternary trie each step down either

e moves the position forward (middle branch), or

e halves the number of strings remaining in the subtree (side branch).

Thus, in a balanced ternary trie storing n strings, any downward traversal

following a string S passes at most |S| middle edges and at most logn side
edges.

Thus the time complexity of insertion, deletion, lookup and Icp query is
O(|S| + logn).

In comparison based tries, where the child function is implemented using
binary search trees, the time complexities could be O(|S|logo), a
multiplicative factor O(log o) instead of an additive factor O(logn).

Prefix and range queries behave similarly (exercise).
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Longest Common Prefixes

The standard ordering for strings is the lexicographical order. It is induced
by an order over the alphabet. We will use the same symbols (<, <, >, £,
etc.) for both the alphabet order and the induced lexicographical order.

We can define the lexicographical order using the concept of the longest
common prefix.

Definition 1.9: The length of the longest common prefix of two strings
A[0..m) and B[0..n), denoted by Ilcp(A, B), is the largest integer
¢ < min{m,n} such that A[0..£) = B[0..0).

Definition 1.10: Let A and B be two strings over an alphabet with a total
order <, and let £ = lcp(A, B). Then A is lexicographically smaller than or
equal to B, denoted by A < B, if and only if

1. either |A| =¢

2. or |[A| > ¢, |B| > ¢ and A[{] < BI[].
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An important concept for sets of strings is the LCP (longest common
prefix) array and its sum.

Definition 1.11: Let R = {S51,52,...,5,} be a set of strings and assume
S1<S><---<8S,. Then the LCP array LCPgr[1..n] is defined so that
LCPr[1] =0 and for i € [2..n]

LCPgr[i] = lep(Si, Si—1)

Furthermore, the LCP array sum is

SLCP(R)= ) LCPg[i] .

1€[1..n]

Example 1.12: For R = {ali$,alice$,anna$,elias$, eliza$}, LCP(R) =7
and the LCP array is:

LCPr
0 ali$
3 alice$
1 anna$
0 elias$
3 eliza$
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A variant of the LCP array sum is sometimes useful:

Definition 1.13: For a string S and a string set R, define
lep(S,R) = max{lep(S,T) | T € R}
Slep(R) = Y lep(S, R\ {S})

SER

The relationship of the two measures is shown by the following two results:
Lemma 1.14: For ¢ € [2..n], LCPgr[i] = lep(S;, {S1,...,Si—1}).

Lemma 1.15: SLCP(R) < Zlep(R) < 2-ZLCP(R).

The proofs are left as an exercise.

The concept of distinguishing prefix is closely related and often used in place
of the longest common prefix for sets. The distinguishing prefix of a string
is the shortest prefix that separates it from other strings in the set. It is
easy to see that dp(S,R\S) =1lcp(S,R\S)+ 1 (at least for a prefix free R).

Example 1.16: For R = {ali$,alice$, anna$, elias$,eliza$}, Zicp(R) = 13
and Sdp(R) = 18.
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Theorem 1.17: The number of nodes in trie(R) is exactly
|IR|| = ZLCP(R) + 1, where ||R]|| is the total length of the strings in R.

Proof. Consider the construction of trie(R) by inserting the strings one by
one in the lexicographical order using Algorithm 1.2. Initially, the trie has
just one node, the root. When inserting a string S;, the algorithm executes
exactly |S;| rounds of the two while loops, because each round moves one
step forward in S;. The first loop follows existing edges as long as possible
and thus the number of rounds is LCPg[i] = lep(Si, {S1,...,Si—1}). This
leaves |S;| — LC Pr[i] rounds for the second loop, each of which adds one new
node to the trie. Thus the total number of nodes in the trie at the end is:

14+ ) [Si|—LCPrli) =||R|| - ZLCP(R) +1 .
1€[1..n]
]

The proof reveals a close connection between LCPr and the structure of
the trie. We will later see that LC' Pg is useful as an actual data structure in
its own right.
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String Sorting

Q(nlogn) is a well known lower bound for the number of comparisons
needed for sorting a set of n objects by any comparison based algorithm.
This lower bound holds both in the worst case and in the average case.

There are many algorithms that match the lower bound, i.e., sort using
O(nlogn) comparisons (worst or average case). Examples include quicksort,
heapsort and mergesort.

If we use one of these algorithms for sorting a set of n strings, it is clear
that the number of symbol comparisons can be more than O(nlogn) in the
worst case. Determining the order of A and B needs at least lcp(A, B)
symbol comparisons and lep(A, B) can be arbitrarily large in general.

On the other hand, the average number of symbol comparisons for two
random strings is O(1). Does this mean that we can sort a set of random
strings in O(nlogn) time using a standard sorting algorithm?
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The following theorem shows that we cannot achieve O(nlogn) symbol
comparisons for any set of strings (when o = n°().

Theorem 1.18: Let A be an algorithm that sorts a set of objects using
only comparisons between the objects. Let R = {S1,S52,...,5,} be a set of n
strings over an ordered alphabet > of size o. Sorting R using A requires
Q(nlognlog,n) symbol comparisons on average, where the average is taken
over the initial orders of R.

e If o is considered to be a constant, the lower bound is Q(n(logn)?).

e Note that the theorem holds for any comparison based sorting algorithm
A and any string set R. In other words, we can choose A and R to
minimize the number of comparisons and still not get below the bound.

e Only the initial order is random rather than “any”. Otherwise, we could
pick the correct order and use an algorithm that first checks if the order
is correct, needing only O(n + X LCP(R)) symbol comparisons.

An intuitive explanation for this result is that the comparisons made by a
sorting algorithm are not random. In the later stages, the algorithm tends
to compare strings that are close to each other in lexicographical order and
thus are likely to have long common prefixes.
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Proof of Theorem 1.18. Let k£ = |(log,n)/2]. For any string a € =*, let
Ra be the set of strings in R having «a as a prefix. Let ny = |Ra|.

et us analyze the number of symbol comparisons when comparing strings
in R, against each other.

e Each string comparison needs at least £ symbol comparisons.

e NOo comparison between a string in R, and a string outside R, gives
any information about the relative order of the strings in R,.

e Thus A needs to do Q(n.logn,) string comparisons and Q2(kn, 109 ng)
symbol comparisons to determine the relative order of the strings in R,.

Thus the total number of symbol comparisons is 2 (Z

\/_

west kna logng) and

analogna>k(n—\/_)log > k(n —+/n)log(v/n—1)

ac3k
= Q (knlogn) = Q2 (nlognlog,n) .

Here we have used the facts that o < /n, that }_ sina >n—0">n—/n,
and that ) .s.nalogne > (n—+/n)log((n — v/n)/o") (see exercises). ]
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The preceding lower bound does not hold for algorithms specialized for
sorting strings.

Theorem 1.19: Let R = {51,52,...,5,} be a set of n strings. Sorting R
into the lexicographical order by any algorithm based on symbol
comparisons requires Q(XZLCP(R) + nlogn) symbol comparisons.

Proof. If we are given the strings in the correct order and the job is to
verify that this is indeed so, we need at least X LCP(R) symbol
comparisons. No sorting algorithm could possibly do its job with less symbol
comparisons. This gives a lower bound Q(ZLCP(R)).

On the other hand, the general sorting lower bound 2(nlogn) must hold
here too.

The result follows from combining the two lower bounds. []

e Note that the expected value of ZLCP(R) for a random set of n
strings is O(nlog,n). The lower bound then becomes Q2(nlogn).

We will next see that there are algorithms that match this lower bound.
Such algorithms can sort a random set of strings in O(nlogn) time.
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String Quicksort (Multikey Quicksort)

Quicksort is one of the fastest general purpose sorting algorithms in
practice.

Here is a variant of quicksort that partitions the input into three parts
instead of the usual two parts.

Algorithm 1.20: TernaryQuicksort(R)

Input: (Multi)set R in arbitrary order.
Output: R in ascending order.
(1) if |R| <1 then return R
(2) select a pivot z € R
(3) R+ {s€eR|s<uz}
(4) R=<+ {s€ R|s=ux}
(5) R+ {s€R|s>uz}
(6) R< < TernaryQuicksort(R<)
(7) R- <« TernaryQuicksort(R-)
(8) return R. - R=- R~



In the normal, binary quicksort, we would have two subsets R< and R>, both
of which may contain elements that are equal to the pivot.

e Binary quicksort is slightly faster in practice for sorting sets.

e Ternary quicksort can be faster for sorting multisets with many
duplicate keys. Sorting a multiset of size n with o distinct elements
takes O(nlog o) comparisons (exercise).

The time complexity of both the binary and the ternary quicksort depends
on the selection of the pivot (exercise).

In the following, we assume an optimal pivot selection giving O(nlogn)
worst case time complexity.
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String quicksort is similar to ternary quicksort, but it partitions using a single
character position. String quicksort is also known as multikey quicksort.

Algorithm 1.21: StringQuicksort(R,¥)

Input: (Multi)set R of strings and the length ¢ of their common prefix.
Output: R in ascending lexicographical order.
(1) if [IR| <1 then return R
(2) R« {SeR||S|=4}; R+ R\R.L
(3) select pivot X € R
(4) Re+—{SeR|SH] < X[]}
(5) R=«+{SeR|S[]=X[]}
(6) R+ {SeR|S[] > X[}
(7) R« « StringQuicksort(R.,¥)
(8) R= <« StringQuicksort(R=,¢+ 1)
(9) Rs < StringQuicksort(R~,¥)
(10) return R - R« -R=-R-~

In the initial call, ¢ = 0.
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Example 1.22: A possible partitioning, when ¢ = 2.
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Theorem 1.23: String quicksort sorts a set R of n strings in
O(XLCP(R) +nlogn) time.

e Thus string quicksort is an optimal symbol comparison based algorithm.

e String quicksort is also fast in practice.
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Proof of Theorem 1.23. The time complexity is dominated by the symbol
comparisons on lines (4)—(6). We charge the cost of each comparison either
on a single symbol or on a string depending on the result of the comparison:

S[¢] = X[¢]: Charge the comparison on the symbol S[/].

e Now the string S is placed in the set R—. The recursive call on R=
increases the common prefix length to £+ 1. Thus S[¢] cannot be
involved in any future comparison and the total charge on S[¢] is 1.

e Only lep(S, R\ {S}) symbols in S can be involved in these
comparisons. Thus the total number of symbol comparisons
resulting equality is at most Xicp(R) = ©(XZLCP(R)).
(Exercise: Show that the number is exactly X LCP(R).)

S[4] # X[¢]: Charge the comparison on the string S.

e Now the string S is placed in the set R~ or R~. The size of either
set is at most |R|/2 assuming an optimal choice of the pivot X.

e Every comparison charged on S halves the size of the set containing
S, and hence the total charge accumulated by S is at most logn.
Thus the total number of symbol comparisons resulting inequality is
at most O(nlogn). ]
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Radix Sort

The Q(nlogn) sorting lower bound does not apply to algorithms that use
stronger operations than comparisons. A basic example is counting sort for
sorting integers.

Algorithm 1.24: CountingSort(R)
Input: (Multi)set R = {k1, k2, ...ky} Of integers from the range [0..0).
Output: R in nondecreasing order in array J[0..n).
(1) fori+0too—1do CJ[i] <« 0
(2) fori<«+ 1 ton do Clk;] «+ Clki] + 1
(3) sum <« 0
(4) fori<+ 0too—1do // cumulative sums
(5) tmp < C[i]; C[i] + sum; sum <+ sum + tmp
(6) for i« 1 ton do // distribute
(7) J[Clki]] « ki; Clki] <~ Clki] +1
(8) return J

e The time complexity is O(n + o).

e Counting sort is a stable sorting algorithm, i.e., the relative order of
equal elements stays the same.
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Similarly, the Q(XZLCP(R) + nlogn) lower bound does not apply to string
sorting algorithms that use stronger operations than symbol comparisons.
Radix sort is such an algorithm for integer alphabets.

Radix sort was developed for sorting large integers, but it treats an integer
as a string of digits, so it is really a string sorting algorithm.

There are two types of radix sorting:

MSD radix sort starts sorting from the beginning of strings (most
significant digit).

LSD radix sort starts sorting from the end of strings (least
significant digit).
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The LSD radix sort algorithm is very simple.

Algorithm 1.25: LSDRadixSort(R)
Input: (Multi)set R = {S1,55,...,S,} of strings of length m over alphabet [0..0).
Output: R in ascending lexicographical order.

(1) for £+ m —1 to 0 do CountingSort(R,¢)

(2) return R

e CountingSort(R,¢) sorts the strings in R by the symbols at position ¢
using counting sort (with k; replaced by S;[¢]). The time complexity is
O(IR| + o).

e T he stability of counting sort is essential.

Example 1.26: R = {cat,him, ham, bat}.

cat hi | m h|la|m b | at
him ha | m clalt c | at
ham = ca | t = bla|t = h | am
bat ba | t h|i|m h | im

It is easy to show that after ¢ rounds, the strings are sorted by suffix of
length 2. Thus, they are fully sorted at the end.
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The algorithm assumes that all strings have the same length m, but it can
be modified to handle strings of different lengths (exercise).

Theorem 1.27: LSD radix sort sorts a set R of strings over the alphabet
[0..0) in O(]|R|| + mo) time, where ||R|| is the total length of the strings in
R and m is the length of the longest string in K.

Proof. Assume all strings have length m. The LSD radix sort performs m
rounds with each round taking O(n + o) time. The total time is
O(mn + mo) = O(||R|| + mo).

The case of variable lengths is left as an exercise. []

e The weakness of LSD radix sort is that it uses Q(||R||) time even when
> LCP(R) is much smaller than ||R|].

e It is best suited for sorting short strings and integers.
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MSD radix sort resembles string quicksort but partitions the strings into o
parts instead of three parts.

Example 1.28: MSD radix sort partitioning.

al | p | habet al | g | orithm
al | 1 | gnment al | i | gnment
al | 1 | ocate al | 1 | as

al | g | orithm — al | 1 | ocate

al | t | ernative al | 1

al | 1| as al | p | habet

al | t | ernate al | t | ernative
al | 1 al | t | ernate
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Algorithm 1.29: MSDRadixSort(R,¥¢)
Input: (Multi)set R = {51, 5>,...,5,} of strings over the alphabet [0..0)
and the length ¢ of their common prefix.
Output: R in ascending lexicographical order.
(1) if |R| < o then return StringQuicksort(R, ¢)
(2) Ri+{SeR||S|=4}; R+ R\RL
(3) (Ro,R1,...,Rs—1) + CountingSort(R,¥)
(4) fori+ 0too—1do R; + MSDRadixSort(R;, £+ 1)
(5) return R, -Ro-R1---Ro-1

e Here CountingSort(R,£) not only sorts but also returns the partitioning
based on symbols at position ¢. The time complexity is still O(|R| + o).

e T he recursive calls eventually lead to a large number of very small sets,
but counting sort needs Q2(o) time no matter how small the set is. To
avoid the potentially high cost, the algorithm switches to string
quicksort for small sets.
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Theorem 1.30: MSD radix sort sorts a set R of n strings over the
alphabet [0..0) in O(ZLCP(R) + nlogo) time.

Proof. Consider a call processing a subset of size k > o

e [ he time excluding the recursive calls but including the call to counting
sort is O(k+ o) = O(k). The k symbols accessed here will not be
accessed again.

o At most dp(S, R\ {S}) <lep(S,R\ {S}) + 1 symbols in S will be
accessed by the algorithm. Thus the total time spent in this kind of
calls is O(Zdp(R)) = O(Zlep(R) +n) = O(ZLCP(R) + n).

The calls for a subsets of size k < o are handled by string quicksort. Each
string is involved in at most one such call. Therefore, the total time over all
calls to string quicksort is O(ZLCP(R) + nlogo).

]

e There exists a more complicated variant of MSD radix sort with time
complexity O(ZLCP(R)+n+ o).

e Q(XLCP(R)+ n) is a lower bound for any algorithm that must access
symbols one at a time.

e In practice, MSD radix sort is very fast, but it is sensitive to
implementation details.
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Lcp-Comparisons

General (non-string) comparison-based sorting algorithms are not optimal
for sorting strings because of an imbalance between effort and result in a
string comparison: it can take a lot of time but the result is only a bit or a
trit of useful information.

String quicksort solves this problem by processing the obtained information
immediately after each symbol comparison.

An opposite approach is to replace a standard string comparison with an
lcp-comparison, which is the operation LcpCompare(A, B, k):

e The return value is the pair (x,¢), where = € {<,=, >} indicates the
order, and ¢ = lcp(A, B), the length of the longest common prefix of
strings A and B.

e The input value k is the length of a known common prefix, i.e., a lower
bound on lep(A, B). The comparison can skip the first k characters.

Extra time spent in the comparison is balanced by the extra information
obtained in the form of the Icp value.
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The following result shows how we can use the information from earlier
comparisons to obtain a lower bound or even the exact value for an Icp.

Lemma 1.31: Let A, B and C be strings.

(@) lep(A,C) = min{lep(A, B),lep(B,C)}.

(b) If A< B <, then lep(A,C) = min{lep(A, B),lcp(B,C)}.

(c) If lep(A, B) # lep(B, C), then lep(A,C) = min{lep(A, B),lep(B,C)}.
Proof. Assume ¢ = lcp(A, B) <lep(B,C). The opposite case

lep(A, B) > lep(B, C) is symmetric.

(a) Now A[0..£) = B[0..£) = C[0..£) and thus Icp(A,C) > ¢.

(b) Either |A| = ¢ or A[{] < B[{] < C[f]. In either case, lep(A,C) = ¥.

(c) Now lep(A, B) < lep(B,C). If lep(A,C) > min{lep(A, B),lcp(B,C)}, then
lep(A, B) < min{lep(A,C),lep(B,C)}, which violates (a).

]

The above means that the three Icp values between three strings can never
be three different values. At least two of them are the same and the third
one is the same or bigger.
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It can also be possible to determine the order of two strings without
comparing them directly.

Lemma 1.32: Let A, B, B’ and C be strings such that A< B < (C and

A< B <C.

(@) If iep(A, B) > lep(A, B'), then B < B'.

(b) If lep(B,C) > lep(B',C), then B > B'.

Proof. We show (a); (b) is symmetric. Assume to the contrary that B > B'.

Then by Lemma 1.31, lep(A, B) = min{lcp(A, B'),lep(B’, B)} <lcp(A, B'),
which is a contradiction. ]

Intuitively, the above result makes sense if you think of lep(-,-) as a measure
of similarity between two strings. The higher the Icp, the closer the two

strings are lexicographically.
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String Mergesort

String mergesort is a string sorting algorithm that uses Icp-comparisons. It
has the same structure as the standard mergesort: sort the first half and the
second half separately, and then merge the results.

Algorithm 1.33: StringMergesort(R)
Input: Set R = {51, 52,...,S5,} of strings.
Output: R sorted and augmented with LCPr values.
(1) if |R| =1 then return ((S1,0))
(2) m <« [n/2]
(3) P « StringMergesort({Si1,S2,...,Sn})
(4) Q « StringMergesort({S,,+1, Sm+2,---,5n})
(5) return StringMerge(P, Q)

The output is of the form
((Tlagl)a (T27£2)7 ceey (Tn7£n))
where ¢; = lep(T;,T;—1) for ¢ > 1 and ¢; = 0. In other words, ¢; = LC Pg[1].

Thus we get not only the order of the strings but also a lot of information
about their common prefixes. The procedure StringMerge uses this
information effectively.
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Algorithm 1.34: StringMerge(P,Q)
Input: Sequences P = ((S1,k1),...,(Sm,km)) and Q@ = ((T1,41), ..., (T, tn))
Output: Merged sequence R

(1) R+0;i+1;j« 1

(2) while 1 <m and j <n do

(3) if ki > ¢; then append (Si, ki) to R; i+ i+1
(4) else if ¢; > k; then append (Tj,4;) to R; j+j+1
(5) else /) ki={¥;
(6) (z,h) < LcpCompare(S;, Ty, ki)
(7) if £ ="<" then
(8) append (S;, ki) toR; i+ i+ 1
(9) 0 < h
(10) else
(11) append (Tj,4;) to R; j«j+1
(12) ki ~— h

(13) while : < m do append (S;,k;) toR; i+ i+ 1
(14) while j <n do append (7;,¢;) toR; j<+j+1
(15) return R
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Lemma 1.35: StringMerge performs the merging correctly.
Proof. We will show that the following invariant holds at the beginning of
each round in the loop on lines (2)—(12):

Let X be the last string appended to R (or € if R =0). Then
ki = lep(X, S;i) and £; = lep(X, T)).

The invariant is clearly true in the beginning. We will show that the invariant
IS maintained and the smaller string is chosen in each round of the loop.

o If k; > ¢;, then lep(X, S;) > lep(X,T;) and thus

— S; <T; by Lemma 1.32.

— lep(S;, T;) = lep(X, T;) because, by Lemma 1.31,
lep(X, Tj) = min{lep(X, S;),lep(Si, Tj) }-

Hence, the algorithm chooses the smaller string and maintains the
invariant. The case ¢; > k; is symmetric.

o If k; = ¢;, then clearly lep(S;, Tj) > ki and the call to LcpCompare is safe,
and the smaller string is chosen. The update ¢; <— h or k; < h maintains

the invariant. L]
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Theorem 1.36: String mergesort sorts a set R of n strings in
O(XZLCP(R) + nlogn) time.

Proof. If the calls to LcpCompare took constant time, the time complexity
would be O(nlogn) by the same argument as with the standard mergesort.

Whenever LcpCompare makes more than one, say t + 1 symbol
comparisons, one of the Icp values stored with the strings increases by ¢t.
Since the sum of the final Icp values is exactly X LCP(R), the extra time
spent in LcpCompare is bounded by O(XZLCP(R)).

]

e Other comparison based sorting algorithms, for example heapsort and
insertion sort, can be adapted for strings using the Icp-comparison
technique.
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String Binary Search

An ordered array is a simple static data structure supporting queries in
O(logn) time using binary search.

Algorithm 1.37: Binary search
Input: Ordered set R = {ki1,k2,...,kn}, Query value x.
Output: The number of elements in R that are smaller than z.
(1) left <+ O; right < n—+1 // output value is in the range [left..right)
(2) while right —left > 1 do
(3) mid < | (left + right) /2]
(4) if kqa < x then left < mid
(5) else right < mid
(6) return left

With strings as elements, however, the query time is
e O(mlogn) in the worst case for a query string of length m

e O(lognlog,n) on average for a random set of strings.
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We can use the Icp-comparison technique to improve binary search for
strings. The following is a key result.

Lemma 1.38: Let A, B, B’ and C be strings such that A< B < (C and
A< B <C. Then lep(B,B") > lep(A, C).
Proof. Let B, = min{B, B’} and B, = max{B, B’}. By Lemma 1.31,

le(Aa C) - min(lcp(A, Bmaa:)a le(Bmcwca C))
< le(Aa Bma:c) - min(lcp(A, Bmz’n)a le(Bmz‘na Bmax))
< lep(Bmin, Bmaz) = lep(B, B/)
L]
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During the binary search of P in {S1,52,...,S,}, the basic situation is the
following:

e We want to compare P and S,,q4.

e We have already compared P against Si.r; and S, n:, and we know that
Sleft < P, Smid < Sm’ght-

e By using Icp-comparisons, we know lep(Siest, P) and lep(P, Sright)-

By Lemmas 1.31 and 1.38,

lep( P, Smia) 2 Llep(Sieft, Sright) = min{lep(Siepe, P), lep(P, Sright) }

Thus we can skip min{lep(Sieft, P), lep(P, Srignt)} first characters when
comparing P and S,,;4.
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Algorithm 1.39: String binary search (without precomputed Icps)
Input: Ordered string set R = {S51,S52,...,5,}, qQuery string P.
Output: The number of strings in R that are smaller than P.

(1) left < 0; right +~ n—+1

(2) llep <+ 0O // lep = lep(Siest, P)

(3) ricp < O /7 rlep = lep(P, Syignt)

(4) while right —left > 1 do

(5) mid < | (left + right) /2]

(6) mlcp < min{licp, ricp}

(7) (z, mlcp) < LcpCompare(P, S,,iq, mlcp)

(8) if x = " <" then right < mid; rlcp < mclp
(9) else left < mid; llcp + mclp

(10) return left

e The average case query time is now O(logn).

e The worst case query time is still O(mlogn) (exercise).



We can further improve string binary search using precomputed information
about the Icp’'s between the strings in K.

Consider again the basic situation during string binary search:
e We want to compare P and S,,;q4-

e We have already compared P against Sy and Sygne, and we know
le(Sleft,P) and lep(P, Sright)'

The values left and right are fully determined by mad independently of P.
That is, P only determines whether the search ends up at position mad at
all, but if it does, left and right are always the same.

Thus, we can precompute and store the values

LLCP[mid] = lep(Siest, Smid)
RLCP[mid] = lep(Smid, Sright)

Now we know all Icp values between P, Sict:, Smid, Sright €xcept lep(P, Smid)-
The following lemma shows how to utilize this.
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Lemma 1.40: Let A, B, B’ and C be strings such that A< B < (C and
A< B <C.

(a) If lep(A,B) > lep(A, B’), then B < B’ and lep(B,B’) = lcp(A, B').
(b) If lep(A,B) < lep(A, B’), then B > B’ and lep(B, B') = lep(A, B).
(c) If lep(B,C) > lep(B',C), then B > B’ and lep(B, B") = lep(B’,C).
(d) If lep(B,C) < lep(B',C), then B < B’ and lep(B, B') = lep(B,C).

(e) If lep(A,B) = lep(A, B') and lep(B,C) = lep(B', C), then
lep(B, B') > max{lcp(A, B),lcp(B,C)}.

Proof. Cases (a)—(d) are symmetrical, we show (a). B < B’ follows from
Lemma 1.32. Then by Lemma 1.31, lep(A, B") = min{lcp(A, B),lcp(B, B')}.
Since lep(A, B') < lep(A, B), we must have lep(A, B") = lep(B, B').

In case (e), we use Lemma 1.31:

lep(B, B") > min{lep(A, B),lep(A, B")} = lep(A, B)
lep(B, B") > min{lep(B, C),lcp(B',C)} = lep(B, C)
Thus lep(B, B') > max{lcp(A, B),lep(B,C)}.
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Algorithm 1.41: String binary search (with precomputed Icps)
Input: Ordered string set R = {S51,S52,...,5,}, arrays LLCP and RLCP,

query string P.

Output: The number of strings in R that are smaller than P.
(1) left <+ O; right < n—+1
(2) Uep < O; rlep < 0O
(3) while right —left > 1 do

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

mid < | (left + right)/2]
if LLCP[mid] > llcp then left < maid
else if LLCP[mid] < llep then right < mid; ricp < LLC P[mid]
else if RLCP[mid] > rlcp then right < mid
else if RLCP[mid] < rlcp then left < mid; llcp < RLC P[mid]
else

mlcp <— max{llcp, ricp}

(z, mlcp) < LcpCompare( P, S,,iq, mlcp)

if © = " <" then right < mad; rlcp + mclp

else left < mad, llcp < mclp

(14) return left
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Theorem 1.42: An ordered string set R = {S1,S52,...,5,} can be
preprocessed in O(ZLCP(R) 4+ n) time and O(n) space so that a binary
search with a query string P can be executed in O(|P|+ logn) time.

Proof. The values LLCP[mid] and RLCP|[mid] can be computed in
Olep(Smids R\ {Smia}) + 1) time. Thus the arrays LLCP and RLCP can be
computed in O(Zlep(R) +n) = O(XZLCP(R) + n) time and stored in O(n)
space.

The main while loop in Algorithm 1.41 is executed O(logn) times and
everything except LcpCompare on line (11) needs constant time.

If a given LcpCompare call performs ¢t + 1 symbol comparisons, mclp
increases by t on line (11). Then on lines (12)—(13), either licp or ricp
increases by at least t, since mlcp was max{licp, ricp} before LcpCompare.
Since llcp and rlcp never decrease and never grow larger than |P|, the total
number of extra symbol comparisons in LcpCompare during the binary
search is O(|P]). O

Other comparison-based data structures such as binary search trees can be
augmented with Icp information in the same way (study groups).
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Hashing and Fingerprints

Hashing is a powerful technique for dealing with strings based on mapping
each string to an integer using a hash function:

H:>*—[0.9) CN

The most common use of hashing is with hash tables. Hash tables come in
many flavors that can be used with strings as well as with any other type of
object with an appropriate hash function. A drawback of using a hash table
to store a set of strings is that they do not support Icp and prefix queries.

Hashing is also used in other situations, where one needs to check whether
two strings S and T are the same or not:

o If H(S) = H(T), then we must have S = T.

o If H(S) = H(T), then S=T and S #= T are both possible.
It S # T, this is called a collision.

When used this way, the hash value is often called a fingerprint, and its
range [0..q) is typically large as it is not restricted by a hash table size.
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Any good hash function must depend on all characters. Thus computing
H(S) needs Q(|S|) time, which can defeat the advantages of hashing:

e A plain comparison of two strings is faster than computing the hashes.

e The main strength of hash tables is the support for constant time
insertions and deletions, but inserting a string S into a hash table needs
Q(|S]) time when the hash computation time is included. Compare this
to the O(|S]) time for a trie under a constant alphabet and the
O(|S]| 4+ logn) time for a ternary trie.

However, a hash table can still be competitive in practice. Furthermore,
there are situations, where a full computation of the hash function can be
avoided:

e A hash value can be computed once, stored, and used many times.

e Some hash functions can be computed more efficiently for a related set
of strings. An example is the Karp—Rabin hash function.
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Definition 1.43: The Karp—Rabin hash function for a string
S = sps1...8m—1 Over an integer alphabet is

H(S) = (sor™ '+ 51724+ + sp_or + sm-1) mod q
for some fixed positive integers g and r.
Lemma 1.44: For any two strings A and B,
H(AB) = (H(A) - r'Bl + H(B)) mod ¢
H(B) = (H(AB) — H(A) - ') mod ¢

Proof. Without the modulo operation, the result would be obvious. The
modulo does not interfere because of the rules of modular arithmetic:

(z +y) mod ¢ = ((= mod q) + (y mod q)) mod g
(zy) mod ¢ = ((z mod ¢)(y mod q)) mod q

]

Thus we can quickly compute H(AB) from H(A) and H(B), and H(B) from
H(AB) and H(A). We will see applications of this later.

If ¢ and r are coprime, then r has a multiplicative inverse »—! modulo ¢, and
we can also compute H(A) = ((H(AB) — H(B)) - (r—1)IB) mod q.
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The parameters g and » have to be chosen with some care to ensure that
collisions are rare for any reasonable set of strings.

The original choice is »r =00 and ¢ is a large prime.

Another possibility is that g is a power of two and r is a small prime
(r = 37 has been suggested). This is faster in practice, because the
slow modulo operations can be replaced by bitwise shift operations. If
q = 2%, where w is the machine word size, the modulo operations can
be omitted completely.

If ¢ and r were both powers of two, then only the last [(logq)/logr]
characters of the string would affect the hash value. More generally, q
and r should be coprime, i.e, have no common divisors other than 1.

The hash function can be randomized by choosing g or r randomly. For
example, if g is a prime and r is chosen uniformly at random from [0..q),
the probability that two strings of length m collide is at most m/q.

A random choice over a set of possibilities has the additional advantage
that we can change the choice if the first choice leads to too many
collisions.
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Automata

Finite automata are a well known way of representing sets of strings. In this
case, the set is often called a (regular) language.

A trie is a special type of an automaton.
e The root is the initial state, the leaves are accept states, ...
e Trie is generally not a minimal automaton.
e T[rie techniques including path compaction can be applied to automata.

Automata are much more powerful than tries in representing languages:
e Infinite languages
e Nondeterministic automata
e Even an acyclic, deterministic automaton can represent a language of
exponential size.
Automata support set inclusion testing but not other trie operations:

e No insertions and deletions
e No satellite data, i.e., data associated to each string
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Sets of Strings: Summary

Efficient algorithms and data structures for sets of strings:

e Storing and searching: trie and ternary trie and their compact versions,
string binary search, Karp—Rabin hashing.

e Sorting: string quicksort and mergesort, LSD and MSD radix sort.

Lower bounds:

e Many of the algorithms are optimal.

e General purpose algorithms are asymptotically slower.
The central role of longest common prefixes:

e LCP array LCPgr and its sum LCP(R).

e |Lcp-comparison technique.
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2. Exact String Matching

Let T'=T[0..n) be the text and P = P[0..m) the pattern. We say that P
occurs in T at position j if T[j..j +m) = P.

Example: P = aine occurs at position 6 in T = karjalainen.
In this part, we will describe algorithms that solve the following problem.

Problem 2.1: Given text T'[0..n) and pattern P[0..m), report the first
position in T' where P occurs, or n if P does not occur in T

The algorithms can be easily modified to solve the following problems too.
e Existence: Is P a factor of T7
e Counting: Count the number of occurrences of P in T.

e Listing: Report all occurrences of P in T'.
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The naive, brute force algorithm compares P against T'[0..m), then against
T[1..1 +m), then against T'[2..2 4+ m) etc. until an occurrence is found or
the end of the text is reached. The text factor T'[j..7 + m) that is currently
being compared against the pattern is called the text window.

Algorithm 2.2: Brute force
Input: text T =T[0...n), pattern P = P[0...m)
Output: position of the first occurrence of P in T
(1) i< 0;57+0
(2) while i <m and j <n do
(3) if P[¢] =T[j] then i« 1+1;5+<35+1
(4) else j«j—i+1;i<+0
(5) if ¢ =m then return j —m else return n

The worst case time complexity is O(mn). This happens, for example, when
P=am"1p =a3aaa..ab and T = a" = aaaaaa. .aa.
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(Knuth—)Morris—Pratt

The Brute force algorithm forgets everything when it shifts the window.

The Morris—Pratt (MP) algorithm remembers matches. It never goes back
to a text character that already matched.

The Knuth—Morris—Pratt (KMP) algorithm remembers mismatches too.

Example 2.3:

Brute force Morris—Pratt Knuth—Morris—Pratt
ainaisesti—-ainainen ainaisesti-ainainen ainaisesti-ainainen
ainaiff-n (6 comp.) ainaift-n (6) ainaifl-n (6)
A (1) aif (1) 2% (1)
4 (1) 4 (1)
aip/ (3)
4 (1)
A (1)
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MP and KMP algorithms never go backwards in the text. When they
encounter a mismatch, they find another pattern position to compare
against the same text position. If the mismatch occurs at pattern position 1,
then fail[i] is the next pattern position to compare.

The only difference between MP and KMP is how they compute the failure
function faal.

Algorithm 2.4: Knuth—Morris—Pratt / Morris—Pratt
Input: text T=T[0...n), pattern P= P[0...m)
Output: position of the first occurrence of P in T
(1) compute fail[0..m]
(2) i1+ 0;57«0
(3) while i <m and j <n do
(4) ifi=—1or Pli]=T[j] then i<+ i+ 1;7+ j5j+1
(5) else i < fail[i]
(6) if i =m then return j —m else return n

e fail[{] = —1 means that there is no more pattern positions to compare
against this text positions and we should move to the next text position.

e fail[m] is never needed here, but if we wanted to find all occurrences, it
would tell how to continue after a full match.
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We will describe the MP failure function here. The KMP failure function is
left for the exercises.

e When the algorithm finds a mismatch between P[i] and T[j], we know
that P[0..5) = T[j —i..5).

e Now we want to find a new ¢ < i such that P[0..i") =T[j —4..5).
Specifically, we want the largest such 7.

e This means that P[0..7/) =T[j —4..j) = P[i —4..4). In other words,
P[0..7) is the longest proper border of P[0..7).

Example: ai is the longest proper border of ainai.

e Thus failli] is the length of the longest proper border of P[0..7).
e P[0..0) = ¢ has no proper border. We set fail[0] = —1.

72



Example 2.5: Let P = ainainen. i | P[0..7) border | fail[i]
O|e — -1
1l | a € 0
2| ai € 0
3 | ain g 0
4 | aina a 1
5 | ainai ai 2
6 | ainain ain 3
7 | ainaine g 0
8 | ainainen | ¢ 0

The (K)MP algorithm operates like an automaton, since it never moves
backwards in the text. Indeed, it can be described by an automaton that
has a special failure transition, which is an e-transition that can be taken
only when there is no other transition to take.
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An efficient algorithm for computing the failure function is very similar to
the search algorithm itself!

e In the MP algorithm, when we find a match P[i] = T'[j], we know that
P[0..i] = T[j — ¢..j]. More specifically, P[0..7] is the longest prefix of P
that matches a suffix of T'[0..5].

e Suppose T = #P[1..m), where # is a symbol that does not occur in P.
Finding a match P[i] = T'[j], we know that P[0..7] is the longest prefix
of P that is a proper suffix of P[0..7]. Thus fail[j + 1] =i+ 1.

Algorithm 2.6: Morris—Pratt failure function computation
Input: pattern P = P[0...m)

Output: array fail[0..m] for P
(1) i< —1;7 < 0; fail[j] < i
(2) while j <m do
(3) ifi=—1or P[i] =P[j] then i+ i+ 1;7 <« 7+ 1; fail[j] + 1
(4) else i < fail[i]
(5) return fail

e When the algorithm reads fail[i] on line 4, fail[i] has already been
computed.
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Theorem 2.7: Algorithms MP and KMP preprocess a pattern in time O(m)
and then search the text in time O(n) for ordered alphabet.

Proof. We show that the text search requires O(n) time. Exactly the same
argument shows that pattern preprocessing needs O(m) time.

It is sufficient to count the number of comparisons that the algorithms
make. After each comparison P[:] vs. T[j], one of the two conditional
branches is executed:

then Here j is incremented. Since j never decreases, this branch can be
taken at most n + 1 times.

else Here i decreases since fail[i] < ¢. Since i only increases in the
then-branch, this branch cannot be taken more often than the
then-branch.

[]
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Shift-And (Shift-Or)

When the MP algorithm is at position 5 in the text T, it computes the
longest prefix of the pattern P[0..m) that is a suffix of T'[0..j]. The
Shift-And algorithm computes all prefixes of P that are suffixes of T[0..5].

e The information is stored in a bitvector D of length m, where D.s =1 if
P[0..i] =T[j —..j] and D.i = 0 otherwise. (D.0 is the least significant
bit.)

e When D.(m — 1) =1, we have found an occurrence.
The bitvector D is updated at each text position j:

e There are precomputed bitvectors Blc], for all c € X, where Blc].i = 1 if
P[i] = ¢ and B]c].:« = 0 otherwise.

e D is updated in two steps:

1. D+ (D << 1) |1 (the bitwise shift and the bitwise or). Now D tells,
which prefixes would match if T'[j] would match every character.

2. D <+ D & B[T[j]] (the bitwise and). Remove the prefixes where T[]
does not match.
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Let w be the wordsize of the computer, typically 64. Assume first that
m < w. Then each bitvector can be stored in a single integer and the bitwise
operations can be executed in constant time.

Algorithm 2.8: Shift-And
Input: text T =T[0...n), pattern P = P[0...m)
Output: position of the first occurrence of P in T
Preprocess:
(1) for ce X do Blc] «+ O
(2) for i+ 0 to m — 1 do B[P[i]] + B[P[i]] + 2 // B[P[i]].i + 1
Search:
(3) D+ O
(4) for j«0ton—1do
(5) D+ ((D<<1)|1) & B[T[j]]
(6) if D& 2™ 1 £ 0 then return j —m+1 // D.(m—-1)=1
(7) return n

Shift-Or is a minor optimization of Shift-And. It is the same algorithm
except the roles of O's and 1's in the bitvectors have been swapped. Then
line 5 becomes D + (D << 1) | B[T[j]]. Note that the “| 1" was removed,
because the shift already brings the correct bit to the least significant bit
position.
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Example 2.9: P = assi, T = apassi, bitvectors are columns.

Blc], c€ {a,i,p,s} D at each step
ailps apassi
al0008®0 a0101000
s 0001 s 0000100
s 0001 s 0000010
10100 i00000O01

The Shift-And algorithm can also be seen as a bitparallel simulation of the
nondeterministic automaton that accepts a string ending with P.

>

After processing T'[j], D.« = 1 if and only if there is a path from the initial
state (state -1) to state i with the string T[0..5].
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On an integer alphabet when m < w:

e Preprocessing time is O(o + m).

e Search time is O(n).

If m > w, we can store the bitvectors in [m/w] machine words and perform
each bitvector operation in O([m/w]) time.

e Preprocessing time is O(o[m/w] + m).

e Search time is O(n[m/wl).
If no pattern prefix longer than w matches a current text suffix, then only

the least significant machine word contains 1's. There is no need to update
the other words; they will stay O.

e Then the search time is O(n) on average.

Algorithms like Shift-And that take advantage of the implicit parallelism in
bitvector operations are called bitparallel.
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Karp—Rabin

The Karp—Rabin hash function (Definition 1.43) was originally developed for
solving the exact string matching problem. The idea is to compute the hash
values or fingerprints H(P) and H(T[j..7 +m)) for all 7 € [0..n — m].

o If H(P) # H(T'[j..j +m)), then we must have P #T[j..j +m).
o If H(P) = H(T[j..; + m), the algorithm compares P and T[j..; +m) in
brute force manner. If P # T[j..7 + m), this is a false positive.

The text factor fingerprints are computed in a sliding window fashion. The
fingerprint for T[j + 1.5 + 1 +m) = oT[j + m] is computed from the
fingerprint for T'[j..j + m) = T[j]a in constant time using Lemma 1.44:
H(T[j+ 1.5+ 14+ m)) = (H(T[jla) — H(T[]) - ¥ 1) - v + H(T[j + m])) mod q
= (H(T[j-j +m)) =T -r™) - r + Tl +m]) mod g .

A hash function that supports this kind of sliding window computation is
known as a rolling hash function.
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Algorithm 2.10: Karp-Rabin

Input: text T=T[0...n), pattern P= P[0...m)
Output: position of the first occurrence of P in T

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Choose g and r; s + r™ ! mod ¢

hp < O;ht < O

fori<—0tom—1do hp<+ (hp-r+ P[i]) modq // hp= H(P)
for j < 0 tom —1 do ht < (ht-r+ T[j]) mod q

for j<~0ton—m—1do

if hp = ht then if P=T[j...j 4+ m) then return j
ht < ((ht = T[j] - s) -7+ T[j + m]) mod g
if hp = ht then if P=T[j...5 4+ m) then return j
return n

On an integer alphabet:

e The worst case time complexity is O(mn).

e The average case time complexity is O(m + n).

Karp—Rabin is not competitive in practice for a single pattern, but can be
for multiple patterns (exercise).
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Horspool

The algorithms we have seen so far access every character of the text. If we
start the comparison between the pattern and the current text position from
the end, we can often skip some text characters completely.

There are many algorithms that start from the end. The simplest are the
Horspool-type algorithms.

The Horspool algorithm checks first the last character of the text window,
i.e., the character aligned with the last pattern character. If that doesn’t
match, it moves (shifts) the pattern forward until there is a match.

Example 2.11: Horspool
sti-ainainen
al

ek
ainainen
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More precisely, suppose we are currently comparing P against T'[j..7 +m).
Start by comparing P[m — 1] to T[k], where k = j 4+ m — 1.

e If P[m — 1] # T[k], shift the pattern until the pattern character aligned
with T'[k] matches, or until the full pattern is past T'[k].

e If P[m — 1] = T'[k], compare the rest in a brute force manner. Then
shift to the next position, where T'[k] matches.

The length of the shift is determined by the shift table that is precomputed
for the pattern. shift[c] is defined for all c € X:
e If ¢ does not occur in P, shift[c] = m.

e Otherwise, shift[c] = m — 1 — 14, where P[i] = ¢ is the last occurrence of
c in P[0..m — 2].

Example 2.12: P = ainainen. c | last occ. | shift
a | ainainen 4
e | ainainen 1
i | ainainen 3
n | ainainen 2
>\ {a,e,i,n} — 8
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Algorithm 2.13: Horspool
Input: text T=T[0...n), pattern P= P[0...m)
Output: position of the first occurrence of P in T
Preprocess:

(1) for ¢ € X do shift[c] + m

(2) for i<+ 0 to m—2 do shift[P[i]] « m—1—1
Search:

(3) 7«0

(4) while j +m <n do

(5) if P[m — 1] =T[j 4+ m — 1] then

(6) i< m—2

(7) while i >0 and Pli] =T[j+i doi+i—1
(8) if ¢ = —1 then return j

(9) j < J+shift[T[j +m — 1]]

(10) return n
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On an integer alphabet:

e Preprocessing time is O(o + m).

e In the worst case, the search time is O(mn).
For example, P =ba™ 1 and T = a".

e In the best case, the search time is O(n/m).
For example, P =1b™ and T = a".

e In the average case, the search time is O(n/ min(m,o)).
This assumes that each pattern and text character is picked
independently by uniform distribution.

In practice, a tuned implementation of Horspool is very fast when the
alphabet is not too small.
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BNDM

Starting the matching from the end enables long shifts.
e The Horspool algorithm bases the shift on a single character.

e T he Boyer—Moore algorithm uses the matching suffix and the
mismatching character.

e Factor based algorithms continue matching until no pattern factor
matches. This may require more comparisons but it enables longer

shifts.

Example 2.14: Horspool shift

varmasti-aikaifen-ainainen

ainaisen—-ainainen

ainaisen—-ainainen
Boyer—Moore shift Factor shift
varmasti-aikaigen-ainainen varmasti-aikaisen-ainainen
ainaisen—-ainainen ainaisen—-ainainen
ainaisen—ainainen ainaisen—ainainen
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Factor based algorithms use an automaton that accepts suffixes of the
reverse pattern PZ (or equivalently reverse prefixes of the pattern P).

e BDM (Backward DAWG Matching) uses a deterministic automaton
that accepts exactly the suffixes of PZE,

DAWG (Directed Acyclic Word Graph) is also known as suffix automaton.

e BNDM (Backward Nondeterministic DAWG Matching) simulates a
nondeterministic automaton.

Example 2.15: P = assi.

e BOM (Backward Oracle Matching) uses a much simpler deterministic
automaton that accepts all suffixes of P® but may also accept some
other strings. This can cause shorter shifts but not incorrect behaviour.
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Suppose we are currently comparing P against T'[j..7 + m). We use the
automaton to scan the text backwards from T'[; + m — 1]. When the
automaton has scanned T[j 4+ i..5 + m):

e If the automaton is in an accept state, then T[j + .. + m) is a prefix
of P.
= If ¢« = 0, we found an occurrence.
= Otherwise, mark the prefix match by setting sh:ft = . This is the
length of the shift that would achieve a matching alignment.
e If the automaton can still reach an accept state, then T[j + .. +m) is

a factor of P.

= Continue scanning.

e When the automaton can no more reach an accept state:

= Stop scanning and shift: j < 5 4 shift.
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BNDM does a bitparallel simulation of the nondeterministic automaton,
which is quite similar to Shift-And.

The state of the automaton is stored in a bitvector D. When the
automaton has scanned T[j 4+ i..5 + m):

e D k=1 Iif and only if there is a path from the initial state to state k
with the string (T'[j + ¢..7 +m))%, and thus
Tlj+i.j4+m)=Pm—-k—1.2m—k—i—1).

e If D.(m—1) =1, then T[j 4+ .. +m) is a prefix of the pattern.
e If D =0, then the automaton can no more reach an accept state.

Updating D uses precomputed bitvectors Blc], for all c € X:
e Blc].i =1 if and only if P[m — 1 —1i] = PE[i] = c.

The update when reading T'[j + 4] is familiar: D = (D << 1) & B[T[j + i]]

e Note that there is no “| 1”. This is because D.(—1) = 0 always after
reading at least one character, so the shift brings the right bit to D.O.

e Before reading anything D.(—1) = 1. This exception is handled by
starting the computation with the first shift already performed.
Because of this, the shift is done at the end of the loop.

89



Algorithm 2.16: BNDM
Input: text T =T[0...n), pattern P = P[0...m)

Output: position of the first occurrence of P in T
Preprocess:

(1) for ce X do Blc] «+ 0

(2) for i<+ 0 tom—1do B[P[m—1—i]] + B[P[m—1—i]] + 2
Search:

(3) 1«0

(4) while j +m <n do

(5) i < m; shift < m

(6) D+ 2m—_1 // D+ 1m

(7) while D %= 0 do

// Now T'[j+i..j +m) is a pattern factor

(8) i—i—1

(9) D « D & B[T[j + ]
(10) if D & 2™~ 1 £ 0 then

// Now T[j+i..7 +m) is a pattern prefix

(11) if © =0 then return j
(12) else shift < i
(13) D+ D<<1
(14) j < j+ shift

(15) return n
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Example 2.17: P = assi, T = apassi.

Blc], c € {a,i,p,s} D when scanning apas backwards
aips s apa

i 0100 i1000

s 0001 s 1100

s 0001 s 1100

a1000 al1010 = shift=2

D when scanning apassi backwards

1 ssapa
i11000

s 10100

s 10010

al0001 = Occurrence



On an integer alphabet when m < w:

e Preprocessing time is O(o 4+ m).

e In the worst case, the search time is O(mn).
For example, P = a™ b and T = a”.

e In the best case, the search time is O(n/m).
For example, P =™ and T = a".

e In the average case, the search time is O(n(log, m)/m).
This is optimal! It has been proven that any algorithm needs to inspect
Q(n(log, m)/m) text characters on average.

When m > w, there are several options:

e Use multi-word bitvectors.

e Search for a pattern prefix of length w and check the rest when the
prefix is found.

e Use BDM or BOM.
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e The search time of BDM and BOM is O(n(log, m)/m), which is
optimal on average. (BNDM is optimal only when m < w.)

e MP and KMP are optimal in the worst case but not in the average case.

e There are also algorithms that are optimal in both cases. They are
based on similar techniques, but we will not describe them here.
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Crochemore

The Crochemore algorithm resembles the Morris—Pratt algorithm at a high
level:

e When the pattern P is aligned against a text factor T'[j..5 + m), they
compute the longest common prefix £ = lep(P,T[j..7 + m)) and report
an occurrence if £ = m. Otherwise, they shift the pattern forward.

e MP shifts the pattern forward by ¢ — fail[¢] positions. In the next Icp
computation, MP skips the first fail[¢] characters (cf. Icp-comparison).

e Crochemore either does the same shift and skip as MP, or a shorter
shift than MP and starts the Icp comparison from scratch. Note that
the latter case is inoptimal but always safe: no occurrence is missed.

Despite sometimes shorter shifts and less efficient Icp computation,
Crochemore runs in linear time. More remarkably, it does so without any
preprocessing and using only constant extra space in addition to P and T.

We will only outline the main ideas of the algorithm without detailed proofs.
Even then we will need some concepts from combinatorics on words, a
branch of mathematics that studies combinatorial properties of strings.
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Definition 2.18: Let S[0..m) be a string. An integer p € [1..m] is a period
of S, if S[i] = S[i + p] for all ¢ € [0..m — p). The smallest period of S is
denoted per(S). S is k-periodic if m > k- per(S).

Example 2.19: The periods of S; = aabaaabaa are 4,7,8 and 9. The periods
of So> = abcabcabcabca are 3, 6, 9, 12 and 13. S> is 3-periodic but S7 is not.

There is a strong connection between periods and borders.

Lemma 2.20: p is a period of S[0..m) if and only if S has a proper border
of length m — p.

Proof. Both conditions hold if and only if S[0..m —p) = S[p..m). O

Corollary 2.21: The length of the longest proper border of S is m — per(S).
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Recall that fail[f] in MP is the length of the longest proper border of P[0..£).
Thus the pattern shift by MP is ¢ — fail[¢] = per(P[0..£)) and the Icp skip is
faill{] = ¢ — per(P[0..£)). Thus knowing per(P[0..£)) is sufficient to emulate
MP shift and skip.

The Crochemore algorithm has two cases:

e If P[0..£) is 3-periodic, then compute per(P[0..£)) and do the MP shift
and skip.

e If P[0..£) is not 3-periodic, then shift by |£/3] + 1 < per(P[0..£)) and
start the Icp comparison from scratch.

To find out if P[0..£) is 3-periodic and to compute per(P[0..£)) if it is,
Crochemore uses another combinatorial concept.
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Definition 2.22: Let MS(S) denote the lexicographically maximal suffix of
a string S. If S = MS(S), S is called self-maximal.

Period computation is easier for maximal suffixes and self-maximal strings
than for arbitrary strings.

Lemma 2.23: Let S[0..m) be a self-maximal string and let p = per(S). For

any c € &,
MS(Sc) = Sc and per(Sc) =p if c= S[m — p]
MS(Sc) = Sc and per(Sc) =m+1 if ¢ < S[m — p]
MS(Sc) # Sc if ¢ > S[m —p]

Furthermore, let r = m mod p and R = S[m — r..m). Then R is self-maximal
and

MS(Sc) = MS(Re) if ¢ > S[m — p]
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Crochemore’s algorithm computes the maximal suffix and its period for
P[0..£) incrementally using Lemma 2.23. The following algorithm updates
the maximal suffix information when the match is extended by one
character.

Algorithm 2.24: Update-MS(P, ¢, s, p)

Input:

a string P and integers /¢, s,p such that
MS(P[0..£)) = P[s..£) and p = per(P[s..£)).

Output: a triple (/+ 1,5 ,p') such that

(1)
(2)
(3)

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

MS(P[0.£+4+ 1)) = P[s'..£+ 1) and p’ = per(P[s'..£+ 1)).
if £=0 then return (1,0,1)
R
while 1 < ¢+ 1 do
// P[s..i) is self-maximal and p = per(P[s..1))
if P[i] > P[i — p] then
i< 11— ((1 —s) mod p)
S <1
p+1
else if P[i] < P[i — p] then
p+<—1—s—+1
1<—1+1
return ({+ 1, s,p)
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As the final piece of the Crochemore algorithm, the following result shows

how to use the maximal suffix information to obtain information about the
periodicity of the full string.

Lemma 2.25: Let S[0..m) be a string and let S[s..m) = MS(S) and
p = per(MS(S)).

e S is 3-periodic if and only if p <m/3 and S[0..s) = S[p..p + s).
e If S is 3-periodic, then per(S) = p.

The algorithm is given on the next slide.
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Algorithm 2.26: Crochemore

Input: strings T'[0..n) (text) and P[0..m) (pattern).
Output: position of the first occurrence of P in T
(1) j« £+ p<+s<«+0
(2) while j +m <n do

(3) while j 4+ ¢ <n and £ < m and T[j + ¢] = P[¢] do
(4) (4,s,p) + Update-MS(P, ¢, s, p)
[/ £ =lep(P,T[j..5 +m))
(5) if £=m then return j
// MS(P[0..£)) = P[s..£) and p = per(P[s..£))
(6) if p<¥¢/3 and P[0..s) = P[p..p+ s) then
// per(P[0..£)) =p
(7) j<Ji+p
(8) L+ /0—0p
(9) else // per(P[0..£)) > £/3
(10) g+ [4/3]+1
(11) (¢4, s,p) < (0,0,0)

(12) return n
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For ordered alphabet:

e The time complexity is O(n).
e The algorithm uses only a constant number of integer variables in
addition to the strings P and T'.

Crochemore is not competitive in practice. However, there are situations,
where the pattern can be very long and the space complexity is more
important than speed.

There are also other linear time, constant extra space algorithms. All of
them are based on string periodicity in some way.
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Aho—Corasick

Given a text T and a set P = {P1.P»,..., P} of patterns, the multiple exact
string matching problem asks for the occurrences of all the patterns in the
text. The Aho—Corasick algorithm is an extension of the Morris—Pratt
algorithm for multiple exact string matching.

Aho—Corasick uses the trie trie(P) as an automaton and augments it with a
failure function similar to the Morris-Pratt failure function.

Example 2.27: Aho—Corasick automaton for P = {he, she,his, hers}.
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Let S, denote the string represented by a node v in the trie. The
components of the AC automaton are:
e root is the root and child() the child function of the trie.

e faillv) = u such that S, is the longest proper suffix of S, represented by
any trie node wu.

e patterns(v) is the set of pattern indices 7 such that P, is a suffix of S,.

Example 2.28: For the automaton in Example 2.27, patterns(2) = {1}
({ne}), patterns(5) = {1,2} ({he,shel}), patterns(7) = {3} ({nis}),
patterns(9) = {4} ({hers}), and patterns(v) = () for all other nodes wv.
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At each stage of the matching, the algorithm computes the node v such
that S, is the longest suffix of T'[0..j] represented by any node.

Algorithm 2.29: Aho—Corasick

Input: text T, pattern set P ={P1, P>,..., P}.

Output: all pairs (z,5) such that P, occurs in T ending at j.
(1) (root, child(), fail(), patterns()) <+ Construct-AC-Automaton(P)
(2) v < root
(3) for j«—~ 0ton—1do

(4) while child(v,T[7]) = L do v < fail(v)
(5) v < child(v, T[4])
(6) for ¢ € patterns(v) do output (z,7)

The construction of the automaton is done in two phases: the trie
construction and the failure links computation.

Algorithm 2.30: Construct-AC-Automaton

Input: pattern set P ={P1,P>,..., P}

Output: AC automaton: root, child(), fail() and patterns().
(1) (root, child(), patterns()) < Construct-AC-Trie(P)
(2) (fail(), patterns()) < Compute-AC-Fail(root, child(), patterns())
(3) return (root, child(), fail(), patterns())
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Algorithm 2.31: Construct-AC-Trie
Input: pattern set P ={P1,P>,..., P}.
Output: AC trie: root, child() and patterns().
(1) Create new node root
(2) fori<«+ 1 to k do

(3) v < root; 3+ 0
(4) while child(v, P;[j]) # L do
(5) v <= child(v, P[j]); j < j+1
(6) while j < |P;| do
(7) Create new node u
(8) child(v, B[j]) + u
(9) viu; J—7+1
(10) patterns(v) < {i}

(11) return (root, child(), patterns())

Lines (3)—(10) perform the standard trie insertion (Algorithm 1.2).

e Line (10) marks v as a representative of P;.

e The creation of a new node v initializes patterns(v) to 0
(in addition to initializing child(v,c) to L for all c € X).
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Algorithm 2.32: Compute-AC-Fail
Input: AC trie: root, child() and patterns()
Output: AC failure function fail() and updated patterns()

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)

Create new node fallback
for ¢ € X do child(fallback, c) < root
fail(root) <+ fallback
queue < {root}
while queue #= 0 do
u < popfront(queue)
for ¢ € X such that child(u,c) # L do
v < child(u, c)
w < fail(u)
while child(w,c) = L do w « fail(w)
fail(v) < child(w, c)
patterns(v) « patterns(v) U patterns(fail(v))
pushback(queue, v)
return (fail(), patterns())

The algorithm does a breath first traversal of the trie. This ensures that
correct values of fail() and patterns() are already computed when needed.
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fail(v) is correctly computed on lines (8)—(11):
o Let fail"(v) = {w, fail(v), fail(fail(v)), ..., root}. These nodes are exactly
the trie nodes that represent suffixes of S,.

e Let u = parent(v) and child(u,c) =v. Then S, = Syc and a string S is a
suffix of S, iff Sc is suffix of S,. Thus for any node w

— If w € fail"(v) \ {root}, then parent(w) € fail(u).
— If w e failf(u) and child(w,c) = L, then child(w,c) € fail*(v).

e Therefore, fail(v) = child(w,c), where w is the first node in fail(u)
other than w such that child(w,c) # L, or fail(v) = root if no such node
w exists.

patterns(v) is correctly computed on line (12):

patterns(v) = {i | P; is a suffix of S,}
={i| P, =S, and w € fail(v)}
= {i | P, = S,} U patterns(fail(v))
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Assuming o is constant:

e The search time is O(n).

e The space complexity is O(m), where m = ||P||.

The implementation of patterns() requires care (exercise).

e The preprocessing time is O(m), where m = ||P]|.

The only non-trivial issue is the while-loop on line (10).

Let root,vi,vo,...,vy be the nodes on the path from root to a node
representing a pattern P,. Let w; = fail(v;) for all j. Let depth(v) be
the depth of a node v (depth(root) = 0).

When processing v; and computing w; = fail(v;), we have
depth(w;) = depth(w;—1) + 1 before line (10) and

depth(w;) < depth(w;—1) + 1 —t; after line (10), where t; is the
number of rounds in the while-loop.

Thus, the total number of rounds in the while-loop when processing
the nodes vi,vo,...,v, is at most ¢ = ||, and thus over the whole
algorithm at most ||P|].

The analysis when o is not constant is left as an exercise.
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Summary: Exact String Matching

Exact string matching is a fundamental problem in stringology. We have
seen several different algorithms for solving the problem.

The properties of the algorithms vary with respect to worst case time
complexity, average case time complexity, type of alphabet
(ordered/integer) and even space complexity.

The algorithms use a wide range of completely different techniques:

e T here exists numerous algorithms for exact string matching but most
of them use variations or combinations of the techniques we have seen
(study groups).

e Many of the techniques can be adapted to other problems. All of the
techniques have some uses in practice.
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3. Approximate String Matching

Often in applications we want to search a text for something that is similar
to the pattern but not necessarily exactly the same.

To formalize this problem, we have to specify what does “similar’” mean.
This can be done by defining a similarity or a distance measure.

A natural and popular distance measure for strings is the edit distance, also
known as the Levenshtein distance.
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Edit distance

The edit distance ed(A, B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

S Substitution of a single character with another character.
I Insertion of a single character.
D Deletion of a single character.

Example 3.1: Let A = Lewensteinn and B = Levenshtein. T hen
ed(A, B) = 3.

The set of edit operations can be described

with an edit sequence: NNSNNNINNNND
or with an alignment: Lewens—-teinn
Levenshtein-

In the edit sequence, N means No edit.
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There are many variations and extension of the edit distance, for example:

e Hamming distance allows only the subtitution operation.
e Damerau—Levenshtein distance adds an edit operation:

T Transposition swaps two adjacent characters.

e With weighted edit distance, each operation has a cost or weight,
which can be other than one.

e Allow insertions and deletions (indels) of factors at a cost that is lower
than the sum of character indels.

We will focus on the basic Levenshtein distance.

Levenshtein distance has the following two useful properties, which are not
shared by all variations (exercise):

e Levenshtein distance is a metric.

e If ed(A, B) = k, there exists an edit sequence and an alignment with k
edit operations, but no edit sequence or alignment with less than k edit
operations. An edit sequence and an alignment with ed(A, B) edit
operations is called optimal.
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Computing Edit Distance

Given two strings A[l..m] and BJ[1..n], define the values d;; with the
recurrence:

doo = O,
diO:iy 1§7/§m7
dOj:j) 1§]§7’L, and
di—1,j—1 + 6(Al[z], B[j])
d;; = min di-1;+ 1 1<:<m,1 <35 <n,

dij—1+1

where

s sun={ 3 L4020

Theorem 3.2: d;; = ed(A[1..i], B[1..5]) forall 0 <i<m, 0 <j<n.
In particular, dm,, = ed(A, B).
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Example 3.3: A = ballad, B = handball

a
6
5

d b
2 3 4 5
2 3 4 4

n

8

7
6
5

1

2 3 4 4
2 3 4

5
5

2
4 4 3 3 3 4

3

4

5
5

4 4 4 4 4

mn — d6,8 = 6.

ed(A,B) =d
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Proof of Theorem 3.2. We use induction with respect to i + 5. For
brevity, write A; = A[l..q] and B; = B[1..j].

Basis:

doo = 0 = ed(e, €)

dio =1 =ed(A;,e) (i deletions)

doj = j = ed(e, Bj) (j insertions)

Induction step: We show that the claim holds for d;;, 1 <:<m,1 <j <n.
By induction assumption, d,; = ed(A,, B;) when p+4q < i+ j.

Let E;; be an optimal edit sequence with the cost ed(A;, B;). We have three
cases depending on what the last operation symbol in E;; is:

N or S: Eij = i—l,j—lN or Eij = Ei_l,j_ls and
ed(A;, Bj) = ed(Ai-1, Bj—1) +6(A[i], B[j]) = di-1,-1+(A[:], B[j])-
I: Ez'j = z’,j—lI and ed(Az-, Bj) = ed(Ai, Bj_l) + 1= dz‘,j—l + 1.
D: Eij = z’—l,jD and 6d(A1;, Bj) = ed(Ai_l, Bj) + 1= di—l,j + 1.

One of the cases above is always true, and since the edit sequence is

optimal, it must be one with the minimum cost, which agrees with the
definition of d;;. ]
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The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 3.4: Edit distance
Input: strings A[l..m] and B[1..n]
Output: ed(A, B)
(1) for i<+ 0 to m do djp « 1@
(2) for j+ 1 ton do do; < j
(3) for j« 1 ton do
(4) for i+ 1 to m do
(5) dij < min{d;—1,;-1 + 6(Ali], B[j]),di-1,; + 1,dij—1 + 1}
(6) return dmn

The time and space complexity is O(mn).
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The space complexity can be reduced by noticing that each column of the
matrix (d;;) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing d;;, we only need to store
the bottom part of column 53 — 1 and the already computed top part of

column j. We store these in an array C[0..m] and variables ¢ and d as shown
below:

C[0..m]
do,j—1 do,; do,;
C
di—1j-1 | di—1j di-1j-1 | di—1, d
dzy—l dz’,j dzg—l dzj
dm,j-1 | dm,; dm,j—1
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Algorithm 3.5: Edit distance in O(m) space
Input: strings A[l1..m] and B[1..n]
Output: ed(A, B)

(1) for i+ 0 to m do C[i] + ¢

(2) for j«+ 1 ton do

(3) ¢+ C[0]; C[0] «-j

(4) for i < 1 to m do

(5) d < min{c+6(A[i], B[5]),Cl: — 1] +1,C[i] + 1}
(6) c + CJi]

(7) Cli] + d

(8) return C[m]

Note that because ed(A, B) = ed(B, A) (exercise), we can always choose A
to be the shorter string so that m < n.
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It is also possible to find optimal edit sequences and alignments from the
matrix d;;.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

o If Ali] = B[j] and d;; = d;—1,-1, thereis an edge (: —1,j — 1) — (3,5)
labelled with N.

o If A[i] # B[j] and d;; =d;i—1,-1+ 1, thereis an edge (i—1,57—1) — (4,5)
labelled with S.

o If djj =d;j—1+ 1, there is an edge (3,5 — 1) — (4,5) labelled with I.
o If djj =d;—1;+ 1, there is an edge (i — 1,j) — (¢,j) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.
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Example 3.6: A = ballad, B = handball

d h a n d b a 1 1
O==1=2=2=3=4 5356 —>7—8
bl | X N N N N\
1 1l -+-2-=3 =4 4 -5 =6 —=>17
al | N ol X N
2 2 1l =2 —-3 >4 4 -5 —> 6
1 ] N | I X N\ % NN N
3 3 2 2 =3 >4 -5 4 — 5
1 | N | RV RN A\ N Nl X
4 4 3 3 3=4 -5 5 4
al Lo 4N by LN N Yy J
5 5 4 4 4 4 4 = 5 5
dl | N | N | DI VI S\ XY )
6 6 5 5 4 — 5 5 5 =06

There are 7 paths from (0,0) to (6,8) corresponding to 7 different optimal
edit sequences and alignments, including the following three:

IITINNNNDD SNISSNIS SNSSINSI
-——-ballad ba-1la-d ball-ad-
handball-- handball handball
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Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 3.7: Given a text T[1..n], a pattern P[1..m] and an integer k > O,
report all positions j € [1..m] such that ed(P,T(j —¢...j]) < k for some £ >0
The factor T'(j — £...5] is called an approximate occurrence of P.

There can be multiple occurrences of different lengths ending at the same
position 5, but usually it is enough to report just the end positions.

We ask for the end position rather than the start position because that is
more natural for the algorithms.
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Define the values g;; with the recurrence:
goj =0, 0 <j=<mn,
gio =1, 1 <i<m, and

gi-1,—-1 + 6(P[i], T'[5])
gij = min gi-1,; +1 1<i<m,1<j5<n.

Theorem 3.8: Forall 0<:1<m, 0<j5<n:

In particular, 5 is an ending position of an approximate occurrence if and
only if gmj < k.
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Proof. We use induction with respect to : 4 j.

Basis:
goo = 0 = ed(e, €)

goj = 0 = ed(e,€) = ed(e,T(j — 0.4])  (min at £=0)
gio = i = ed(P[1..4],¢) = ed(P[1..i],T(0—0..0]) (0<£¢<j=0)

Induction step: Essentially the same as in the proof of Theorem 3.2.
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Example 3.9:

P=match, T=remachine, k=1

gl r e m a ¢ h 1 n e
0O O 0
m X
1 1 1
a Xy
2 2 0
T Y
3 3 1
X
4 4 2
h N
5 5 3

One occurrence ending at position 6.
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Algorithm 3.10: Approximate string matching

Input: text T[1..n], pattern P[1..m], and integer k

Output: end positions of all approximate occurrences of P
(1) for i< 0 to m do gjo < ¢
(2) for j«1ton do gg; < O
(3) for j« 1 ton do

(4) for i1 < 1 to m do
(5) gij < min{gi-1;-1 + d(A[:], Bl5]), gi-15 + 1,9i5-1 + 1}
(6) if gm; < k then output j

e Time and space complexity is O(mn) on ordered alphabet.

e The space complexity can be reduced to O(m) by storing only one
column as in Algorithm 3.5,
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Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gi;):

A diagonal d, —m < d < n, consists of the cells g;; with j —¢ =d.
Every diagonal in (g;;) is monotonically non-decreasing.

Example 3.11: Diagonals -3 and 2.
g r e m a ¢ h 1 n e

m N

)
/

+
/

-y
/
/
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Lemma 3.12: For every i € [1..m] and every j € [1..n],
9ij = 9i-1,-1 OF gij = gi-15-1 T 1.

Proof. By definition, g;; < gi—1,j—1 + (P[], T[j]) < gi—1,-1 + 1. We show
that g;; > gi—1,j—1 by induction on i 4 j.

The induction assumption is that gy, > gp—14-1 When p € [1..m], ¢ € [1..n] and
p+qg<i+j. At least one of the following holds:

1.
2.

gij = gi-1,-1 + 6(P[i], T[5]). Then g > gi—1,-1.
gij =9gi-1;+ 1 and ¢ > 1. Then

ind. assump. definition
9ii =¢gi-1;,+1 > go2j-1+1 > gi-1;-1

g9ii =gij—1+1and j>1. Then

ind. assump. definition
9ii = gij-1+1 > g-1j22+1 > gi—1;-1

gij = Gi—1,5 + 1 and s = 1. Then gij = O+1>0= gi—1,j—1-

. gj=¢gij—1+1land j=1. Theng;j=i4+1=0(-1)4+2=gi—1,-1+ 2,

which cannot be true. Thus this case can never happen. L]
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We can reduce computation using diagonal monotonicity:

e \Whenever the value on a diagonal d grows larger than k, we can discard
d from consideration, because we are only interested in values at most k
on the row m.

e We keep track of the smallest undiscarded diagonal d. Each column is
computed only up to diagonal d+ 1.

Example 3.13: P=strict, T =datastructure, k=1

g d a t a s t r u c t u r e
o o0 o o o o o o o o o o o o
S
1 1 1 1 1 o 1 1 1 1 1 1 1 1
t
2 2 2 1 2 1 0 1 2 2 1 2 2 2
T
2 2 2 1 0 1 2 2 2
1
2 1 1 2 3 3
2 2 1 2 3
t
2 1 2
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The position of the smallest undiscarded diagonal on the current column is
kept in a variable top.

Algorithm 3.14: Ukkonen’s cut-off algorithm
Input: text T'[1..n], pattern P[1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) top < min(k+ 1,m)
(2) for i<+ 0 to top dO gijo < @
(3) for j<—1ton do gg; < O
(4) for j«+ 1 ton do

(5) for 1 <+ 1 to top do

(6) gis - min{gi_ 1,1+ 6CALL, BUD, gi 15 + Loy 1+ 1)
(7) while giop; > k dO top < top — 1

(8) if top = m then output j

(9) else top <— top 4+ 1; giop; < k+1
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The time complexity is proportional to the computed area in the
matrix (gi;).

e The worst case time complexity is still O(mn) on ordered alphabet.

e The average case time complexity is O(kn). The proof is not trivial.

There are many other algorithms based on diagonal monotonicity. Some of
them achieve O(kn) worst case time complexity.
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Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix (g;;), we store differences between adjacent cells:

Vertical delta: A’U@'j = Gij — Gi—1,j
Horizontal delta: Ahij = Gij — Gi,j—1
Diagonal delta: Adi; = gij — gi—1,j-1

Because gio =% ja go; = O,
A’Ulj —|— A’UQJ' —|— s —|— Afvl‘j
1+ Ahin + Ahip + -+ - + Ahjj

Because of diagonal monotonicity, Ad;; € {0,1} and it can be stored in one
bit. By the following result, Ah;; and Awv;; can be stored in two bits.

Gij

Lemma 3.15: Ah;;, Av;; € {—1,0,1} for every 4,5 that they are defined for.

The proof is left as an exercise.
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"' means 0 and ‘4+’ means +1

‘~" means —1, °

Example 3.16:

o -tatmtw Il
=+=10+10+10-+1I++
oO4+—-4+NF+N+4+< | ™
+1n+1+I1++1+
o4+—-4+NF+m || M N
N+1n+il++++ 11+
O+ 4+ ||| v
I+ ++++++ 100
O+~ |l = |l = [ =4+«
1 I 1 ol ol [ O R T
o+~ |l o+—-++m
1 e o | O | IO R T
ollo+—~4++m+<
1 T | | O |
O4+—~4+N+0M+4+< +w0
=10+ 10+ 1+l
O+ +N+®M+< +10
=+ 1+ 10+1-+I1 4l
O+~ +N+®M+< +1w0

8 o + O o
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In the standard computation of a cell:
o Inputis gi—1;, gi-1,-1, gi,j—1 and §(P[i], T'[5]).
e Output is g;;.
In the corresponding bitparallel computation:
e Input is Av" = Awv; 1, AR = Ah;_1; and Eq;; = 1 — §(P[i], T[4]).

° OUtDUt is A’UOUt = A’Ui’j and AhOUt = Ah@',j.

Ahin
A’Uin A,Uout
gij—1 Aot ? gij

The algorithm does not compute the Ad values but they are useful in the
proofs.
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The computation rule is defined by the following result.

Lemma 3.17: If Eg =1 or Av" = -1 or AR" = —1,
then Ad =0, Av°'" = —AL™ and ARt = —A™". |
Otherwise Ad =1, Av°'t =1 — AR" and ARt =1 — Av™.

Proof. We can write the recurrence for g;; as

gi; = min{gi—1,-1 + 6(P[i], T[5]),9,j-1+1,9i-1; + 1}
=gi_1,-1+min{l — Eq, Av" + 1, AM™ + 1},

Then Ad = g;j — gi—1,j-1 = min{l — Eq, Av" 4+ 1, AR 4+ 1}

which is 0 if Eq =1 or Av'" = —1 or AR™ = —1 and 1 otherwise.

Clearly Ad = Av" + ARt = ARIN + ApOUt,
Thus Avo"t = Ad — AR and AR = Ad — Av". O

134



To enable bitparallel operation, we need two changes:

e The Av and Ah values are ‘“trits” not bits. We encode each of them
with two bits as follows:

Py — 1 if Av=+1 Mo — 1 if Av=-1
Y=Y 0 otherwise Y=Y 0 otherwise
(1 ifAR=+1 (1 ifAR=-1
Ph = { 0O otherwise Mh = { 0O otherwise
Then
Av = Pv— Mv
Ah = Ph— Mh
e We replace arithmetic operations (4, —, min) with Boolean (logical)

operations (A, Vv, —).
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Now the computation rules can be expressed as follows.

Lemma 3.18:  pyout = pp" v —(XoV PR")  Mw®Ut = PR A Xu
PhOYt = My'" Vv =(XhV Pu'™) MRt = Py'" A Xh
where Xv = EqVv Mv"™ and Xh = EqV Mh™.

Proof. We show the claim for Pv and Mwv only. Ph and Mh are symmetrical.

By Lemma 3.17,
POt = (=Ad A ME™ VvV (Ad A -PRM)
Mvo't = (=Ad A PR™ V (AdA0) = =-AdA PA"
Because Ad = —(EqV Mv"V Mh") = =(XvV Mh") = - Xv A -MA",
POt = ((XoV MA™) A MR™ V (=Xv A =Mh" A =PR™M)
= Mh"V ~(XvV MA" Vv Ph'") = MA™ Vv —(Xv VvV Ph™")
Mot = (Xv Vv MA™) A PR'" = (Xv A PR'™) v (MR" A PR'™) = Xv A PR

All the steps above use just basic IaV\_/s of Boo_lean algebra except the last
step, where we use the fact that MA'™ and Ph'"™ cannot be 1 simultaneously.
]
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According to Lemma 3.18, the bit representation of the matrix can be

computed as follows.

for 1 <1 to m do
P’Ul'o ~— 1; M’Uz'o +—0
for <1 ton do
Phgj <~ 0; Mhg; <~ 0O
for 1 <1 to m do
Xhij — Eqij V Mhi_l,j
Phij — M’Ui’j_l V —I(Xhij V P’Ui,j_l)
Mhz'j — P’Uz"j_l VAN Xhij
for i <1 to m do
X”Uij — Eqij V M’Ui,j_l
P’Uij — Mhi_l,j V ﬂ(X’Uij V Phi_l,j)
M’Uij — th‘—l,j N X’Uz'j

This is not yet bitparallel though.
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To obtain a bitparallel algorithm, the columns Puvs;, Mvsj, Xvsj, Phyj, Mhy;,
Xhy; and Egq,; are stored in bitvectors.

Now the second inner loop can be replaced with the code

A similar attempt with the for first inner loop leads to a problem:

Mh*j < P’U*,j_l AN Xh*j

Now the vector Mh,; is used in computing Xh,; before Mh,; itself is
computed! Changing the order does not help, because Xh,; is needed to
compute Mh,;.

To get out of this dependency loop, we compute Xh,; without Mh,; using
only Egq.; and Puv, j_1 which are already available when we compute Xh,;.
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Lemma 3.19: Xh;; =30 € [1,i] : Eqy N (Vx € [(,i— 1] : Pvy;_1).
Proof. We use induction on 1.

Basis ¢« = 1: The right-hand side reduces to Eq;;, because £ = 1. By
Lemma 3.18, Xhi; = Eq1; V Mhoj, which is Eq;; because Mhg; = 0 for all j.

Induction step: The induction assumption is that Xh;_1; is as claimed. Now
we have

e [1,i] : Eqj AN (Vx € [l,i— 1] : Pvgj—1)
= FEq;; VI € [1,7 —1]: Eqp; N (Vx e [¢,71— 1] : Pvm’j_l)
= Eq;; V (P’Uz'_l,j_l AN e[l,i—1]: Eqe N (Ve € [¢,1— 2] : P’Ux,j_l))
= Eq;; V (Pvi_l,j_l VAN Xhi_l,j) (ind. assump.)
= Eq;; V Mh;_1 (Lemma 3.18)
= Xhij (Lemma 3.18)
]
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At first sight, we cannot use Lemma 3.19 to compute even a single bit in
constant time, let alone a whole vector Xh,;. However, it can be done, but
we need more bit operations:

e Let VY denote the xor-operation: OY1 =1Y0=1and 0O¥Y0=1Y1=0.

e A Dbitvector is interpreted as an integer and we use addition as a bit
operation. The carry mechanism in addition plays a key role. For
example 0001 4+ 0111 = 1000.

In the following, for a bitvector B, we will write
B = B[1..m] = B[m]B[m — 1]... B[1]

The reverse order of the bits reflects the interpretation as an integer.
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Lemma 3.20: Denote X = Xh,;, £ = Eq.;, P = Pv,j_1 and let
Y=((EANP)+P)YP)VE. Then X =Y.

Proof. By Lemma 3.19, X[i] = 1 iff and only if

a) E[i{] =1 or
b) I e(l,i]:E[f...i]i=00---0LAP[£...i—1] =11---1.

and X|[i{] = 0 iff and only if

C) FEFi ;=00---0 or
d) 3¢e[1,i]: E[¢...q]=00---0LAP[(...i—1] = 11---1.

We prove that Y[i] = X[i] in all of these cases:

a) The definition of Y ends with “VE" which ensures that Y[i{] = 1 in this
case.
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b) The following calculation shows that Y[i] = 1 in this case:

d)

i 14
El¢...i] =00...01
P[¢...i] =bl...11
(EANP)[L...i] =00...01
((EANP)+ P)[£...1] =b0...0c
((EANP)+P)YP)[L...i] =11...1¢c
Y=((EAP)4+P)YP)VE){...i] =11...11
where b is the unknown bit P[i], c is the possible carry bit coming from
the summation of bits 1 ...,/— 1, and b and ¢ are their negations.

Because for all bitvectors B, OANB =0 ja 0+ B = B, we get
Y=((0AP)+P)YP)VO=(PYP)Vv0=0.

Consider the calculation in case b). A key point there is that the carry
bit in the summation travels from position ¢ to ¢ and produces b to
position . The difference in this case is that at least one bit P[k],

¢ < k <1, is zero, which stops the carry at position k. Thus
(EANP)4+P)li]=band Y[i] = (b¥Yb)Vv0O=0.

[l
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As a final detail, we compute the bottom row values g,,; using the equalities
gmo = m ja 9mji — Gm,j—1 + Ahmj-

Algorithm 3.21: Myers’' bitparallel algorithm
Input: text T'[1..n], pattern P[1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) for ce X do Bjc] « 0™
(2) for i<+ 1 to m do B[PJ[i]][i]] =1
(3) Pv+ 1™, Mv<+0; g+ m
(4) for j+ 1 ton do

(5) Eq + B[T[j]]
(6) Xh <+ (((Eq A Pv) 4+ Pv) Y Pv)V Eq
(7) Ph < MuvV —~(XhV Pv)
(8) Mh « Pv A Xh
(9) Xv <+ EqV Mv
(10) Pv <+ (Mh<<1)V-(XvV (Ph<<1))
(11) Mv <+ (Ph << 1) A Xv
(12) g « g+ Phlm] — Mh[m]
(13) if ¢ <k then output j
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On an integer alphabet, when m < w:

e Pattern preprocessing time is O(m + o).
e Search time is O(n).

When m > w, we can store each bit vector in [m/w] machine words:

e The worst case search time is O(n[m/wl).

e Using Ukkonen's cut-off heuristic, it is possible reduce the average case
search time to O(n[k/w]).

There are also algorithms for bitparallel simulation of a nondeterministic
automaton that recognizes the aprroximate occurrences of the pattern.

p a t t e r n

Example 3.22: @& O noerrors
P = pattern, k=3 S S - B B BN

2 2 t ! & ' d O 1lerror
Z\Z\Z\Z\Z\Z\Z\Z

2 2 t ! & ' d 2 errors
SR ESC D SE RS IS - BEDNE I SEDNE I SIS -

O P a t t © ' n © 3errors



Another way to utilize Lemma 3.15 (Ah;j, Av;; € {—1,0,1}) is to use
precomputed tables to process multiple matrix cells at a time.

e T here are at most 3™ different columns. Thus there exists a
deterministic automaton with 3™ states and ¢3™ transitions that can
find all approximate occurrences in O(n) time. However, the space and
constructions time of the automaton can be too big to be practical.

e There is a super-alphabet algorithm that processes O(log,n) characters
at a time and O(Iogg n) matrix cells at a time using lookup tables of
size O(n). This gives time complexity O(mn/log2n).

e A practical variant uses smaller lookup tables to compute multiple
entries of a column at a time.
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Baeza-Yates—Perleberg Filtering Algorithm

A filtering algorithm for approximate string matching searches the text for
factors having some property that satisfies the following conditions:

1. Every approximate occurrence of the pattern has this property.
2. Strings having this property are reasonably rare.

3. Text factors having this property can be found quickly.

Each text factor with the property is a potential occurrence, which is then
verified for whether it is an actual approximate occurrence.

Filtering algorithms can achieve linear or even sublinear average case time
complexity.
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The following lemma shows the property used by the Baeza-Yates—Perleberg
algorithm and proves that it satisfies the first condition.

Lemma 3.23: Let PP ... P41 = P be a partitioning of the pattern P into
k + 1 nonempty factors. Any string S with ed(P,S) < k contains P, as a
factor for some i € [1..k + 1].

Proof. Each single symbol edit operation can change at most one of the

pattern factors P;,. Thus any set of at most k edit operations leaves at least
one of the factors untouched. []
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The algorithm has two phases:

Filtration: Search the text T for exact occurrences of the pattern factors P,.

Using the Aho—Corasick algorithm this takes O(n) time for a constant
alphabet.

Verification: An area of length O(m) surrounding each potential occurrence
found in the filtration phase is searched using the standard dynamic
programming algorithm in O(m?) time.

The worst case time complexity is O(m?n), which can be reduced to O(mn)
by combining any overlapping areas to be searched.
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Let

us analyze the average case time complexity of the verification phase.

The best pattern partitioning is as even as possible. Then each pattern
factor has length at least r = |m/(k+ 1)].

The expected number of exact occurrences of a random string of
length r in a random text of length n is at most n/o".

The expected total verification time is at most

o (mQ(k:a—l— 1)n> <0 (wjn)

This is O(n) if r > 3log, m.

The condition r» > 3log, m is satisfied when (k+ 1) <m/(3log, m + 1).

Theorem 3.24: The average case time complexity of the
Baeza-Yates—Perleberg algorithm is O(n) when k < m/(3log, m + 1) — 1.
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Many variations of the algorithm have been suggested:
e The filtration can be done with a different multiple exact string
matching algorithm.

e T he verification time can be reduced using a technique called
hierarchical verification.

e The pattern can be partitioned into fewer than k& + 1 pieces, which are
searched allowing a small number of errors.

A lower bound on the average case time complexity is Q(n(k + log, m)/m),
and there exists a filtering algorithm matching this bound.
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Summary: Approximate String Matching

We have seen two main types of algorithms for approximate string matching:

e Basic dynamic programming time complexity is O(mn). The time
complexity can be improved to O(kn) using diagonal monotonicity, and

to O(n[m/w]) using bitparallelism.

e Filtering algorithms can improve average case time complexity and are
the fastest in practice when k is not too large.

Similar techniques can be useful for other variants of edit distance but not
always straightforwardly.
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4. Suffix Trees and Arrays

Let T'=T[0..n) be the text. For i € [0..n], let T; denote the suffix T[i..n).
Furthermore, for any subset C € [0..n], we write T = {T; | i € C}. In
particular, Tig , is the set of all suffixes of T

Suffix tree and suffix array are search data structures for the set Ty ,.

e Suffix tree is @ compact trie for T ;.

e Suffix array is an ordered array for Tig -
They support fast exact string matching on T

e A pattern P has an occurrence starting at position ¢ if and only if P is a
prefix of T;.

e Thus we can find all occurrences of P by a prefix search in Tig_ ;-

A data structure supporting fast string matching is called a text index.

There are numerous other applications too, as we will see later.
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The set Tjy , contains [T}, )| = n + 1 strings of total length

| T10.|| = ©(n?). It is also possible that LCP(Ty ) = ©(n?), for example,
when T'=a" or T'= X X for any string X.

e A basic trie has ©(n?) nodes for most texts, which is too much.

e A compact trie with O(n) nodes and an ordered array with n + 1 entries
have linear size.

e A compact ternary trie has O(n) nodes too. However, the construction
algorithms and some other algorithms we will see are not
straightforward to adapt for it.

Even for a compact trie or an ordered array, we need a specialized
construction algorithm, because any general construction algorithm would
need Q(XLCP(Tjo ,1)) time.
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Suffix Tree

The suffix tree of a text T' is the compact trie of the set Tjy ,) of all suffixes
of T.

We assume that there is an extra character $ ¢ > at the end of the text.
That is, T'[n] = $ and T; = T'[i..n] for all © € [0..n]. Then:

e No suffix is a prefix of another suffix, i.e., the set Tjy , is prefix free.

e All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithmes.

Example 4.1: T = banana$.

Q__$

na$

banana$

154



As with tries, there are many possibilities for implementing the child
operation. We again avoid this complication by assuming that o is constant.
Then the size of the suffix tree is O(n):
e [ here are exactly n + 1 leaves and at most n internal nodes.
e There are at most 2n edges. The edge labels are factors of the text
and can be represented by pointers to the text.

Given the suffix tree of T', all occurrences of P in T' can be found in time
O(|P| 4+ occ), where occ is the number of occurrences.
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Brute Force Construction

Let us now look at algorithms for constructing the suffix tree. We start with
a brute force algorithm with time complexity © (X LCP(Ty ,)). Later we
will modify this algorithm to obtain a linear time complexity.

The idea is to add suffixes to the trie one at a time starting from the
longest suffix. The insertion procedure is essentially the same as we saw in
Algorithm 1.2 (insertion into trie) except it has been modified to work on a

compact trie instead of a trie.
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Let S, denote the string represented by a node u. The suffix tree
representation uses four functions:

child(u,c) is the child v of node u such that the label of the edge
(u,v) starts with the symbol ¢, and L if u has no such child.

parent(u) is the parent of .
depth(u) is the length of S,.

start(u) is the starting position of some occurrence of S, in T.
Then

e S, = T[start(u)...start(u) 4+ depth(u)).

e T'[start(u) + depth(parent(w))...start(u) + depth(u)) is the label of the
edge (parent(u),u).
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A locus in the suffix tree is a pair (u,d) where
depth(parent(u)) < d < depth(u). It represents

e the uncompact trie node that would be at depth d along the
edge (parent(u),w), and

e the corresponding string S, 4) = T'[start(u) ...start(u) + d).

Every factor of T' is a prefix of a suffix and thus has a locus along the path
from the root to the leaf representing that suffix.

During the construction, we need to create nodes at an existing locus in the
middle of an edge, splitting the edge into two edges:

CreateNode(u, d) // d < depth(u)
(1) i<« start(u); p < parent(u)
(2) create new node v
(3) start(v) < i; depth(v) < d
(4) child(v,T[i 4+ d]) < u; parent(u) <+ v
(5) child(p,T[i 4+ depth(p)]) < v; parent(v) < p
(6) return v
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Now we are ready to describe the construction algorithm.

Algorithm 4.2: Brute force suffix tree construction

Input: text T[0..n] (T[n] = $)

Output: suffix tree of T': root, child, parent, depth, start
(1) create new node root; depth(root) < O

(2) w<+root; d+ 0 // (u,d) is the active locus
(3) for i« 0 ton do // insert suffix T;
(4) while d = depth(u) and child(u,T[i + d]) #= L do
(5) u < child(u,T[i +d]); d <+ d+ 1
(6) while d < depth(w) and T[start(u) +d] =T[i+d] dod<+d—+1
(7) if d < depth(u) then // (u,d) is in the middle of an edge
(8) u < CreateNode(u, d)
(9) CreatelLeaf(i,u)
(10) u < root; d <+ 0O
CreatelLeaf(i, u) // Create leaf representing suffix T;

(1) create new leaf w

(2) start(w) « i; depth(w) < n—i—+1

(3) child(u,T[i+ d]) < w; parent(w) < u // Set u as parent
(4) return w
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Suffix Links

The key to efficient suffix tree construction are suffix links:

slink(u) is the node v such that S, is the longest proper suffix of
Sy, i.e., if S, =T[i.j) then S, =T[i 4+ 1..5).

Example 4.3: The suffix tree of T' = banana$ with internal node suffix links.
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Suffix links are well defined for all nodes except the root.

Lemma 4.4: If the suffix tree of T' has a node u representing T'[:..5) for any
0 <i< j<n, then it has a node v representing T[: + 1..7).

Proof. If u is the leaf representing the suffix 7;, then v is the leaf
representing the suffix T;4;.

If v is an internal node, then it has two child edges with labels starting with
different symbols, say a and b, which means that T'[:..7)a and T[:..7)b are
both factors of T'. Then, T[:+ 1..57)a and T[:+ 1..5)b are factors of T too,
and thus there must be a branching node v representing T'[i + 1..5). L]

Usually, suffix links are needed only for internal nodes. For root, we define
slink(root) = root.
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Suffix links are the same as Aho—Corasick failure links but Lemma 4.4
ensures that depth(slink(u)) = depth(u) — 1. This is not the case for an
arbitrary trie or a compact trie.

Suffix links are stored for compact trie nodes only, but we can define and
compute them for any locus (u,d):

slink(u, d)
(1) v <« slink(parent(u))
(2) while depth(v) <d—1 do
(3) v < child(v, T[start(u) + depth(v) 4+ 1])
(4) return (v,d—1)

__ e Slink(parent(u))
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The same idea can be used for computing the suffix links during or after the
brute force construction.

ComputeSlink(u)
(1) d <+ depth(u)
(2) v < slink(parent(u))
(3) while depth(v) <d—1 do

(4) v < child(v, T'[start(u) + depth(v) + 1])
(5) if depth(v) >d— 1 then // no node at (v,d—1)
(6) v < CreateNode(v,d — 1)

(7) slink(u) < v
The procedure CreateNode(v,d — 1) sets slink(v) = L.

The algorithm uses the suffix link of the parent, which must have been
computed before. Otherwise the order of computation does not matter.

163



The creation of a new node on line (6) is never needed in a fully

constructed suffix tree, but during the brute force algorithm the necessary
node may not exist yet:

e If a new internal node u; was created during the insertion of the suffix
T;, there exists an earlier suffix Tj, 7 < that branches at u; into a
different direction than T;.

e Then slink(u;) represents a prefix of T,;4; and thus exists at least as a
locus on the path labelled T;1;. However, it might not become a
branching node until the insertion of T;4;.

e In such a case, ComputeSlink(u;) creates slink(u;) a moment before it
would otherwise be created by the brute force construction.
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McCreight’'s Algorithm

McCreight's suffix tree construction is a simple modification of the brute
force algorithm that computes the suffix links during the construction and

uses them as short cuts:

e Consider the situation, where we have just added a leaf w; representing
the suffix T; as a child to a node u;. The next step is to add w;4; as a

child to a node wu;41.

e The brute force algorithm finds u;4+1 by traversing from the root.
McCreight's algorithm takes a short cut to slink(u;).

 wslink(u;)

Wi+1

e This is safe because slink(u;) represents a prefix of T;41.
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Algorithm 4.5: McCreight

Input: text T[0..n] (T'[n] = $)

Output: suffix tree of T': root, child, parent, depth, start, slink
(1) create new node root; depth(root) <— O; slink(root) < root

(2) u<root; d<+ 0O // (u,d) is the active locus
(3) for i+ 0 to n do // insert suffix T;
(4) while d = depth(u) and child(u,T[: 4+ d]) # L do
(5) u < child(u,T[i +d]); d<d+1
(6) while d < depth(u) and T[start(uv) +d] =T[i+d] do d + d+ 1
(7) if d < depth(u) then // (u,d) is in the middle of an edge
(8) u < CreateNode(u, d)
(9) CreatelLeaf(s, u)
(10) if slink(u) = L then ComputeSlink(u)
(11) u <+ slink(u); d<+d—1
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Theorem 4.6: Let T be a string of length n over an alphabet of constant
size. McCreight's algorithm computes the suffix tree of T in O(n) time.

Proof. Insertion of a suffix 7; takes constant time except in two points:

e The while loops on lines (4)—(6) traverse from the node slink(u;) to
u;+1. Every round in these loops increments d. The only place where d
decreases is on line (11) and even then by one. Since d can never
exceed n, the total time on lines (4)—(6) is O(n).

e The while loop on lines (3)—(4) during a call to ComputeSlink(u;)
traverses from the node slink(parent(u;)) to slink(u;). Let d; be the
depth of parent(u;). Clearly, d;+1 > d; — 1, and every round in the while

loop during ComputeSlink(w;) increases d;,,. Since d; can never be

larger than n, the total time in the loop on lines (3)—(4) in
ComputeSlink is O(n).

[]
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There are other linear time algorithms for suffix tree construction:

e Weiner's algorithm was the first. It inserts the suffixes into the tree in
the opposite order: 1,,,T,-1,...,T0.

e Ukkonen's algorithm constructs suffix tree first for T'[0..1) then for
T[0..2), etc.. The algorithm is structured differently, but performs
essentially the same tree traversal as McCreight’s algorithm.

e All of the above are linear time only for constant alphabet size.
Farach’s algorithm achieves linear time for an integer alphabet of
polynomial size. The algorithm is complicated and unpractical.

e Practical linear time construction for an integer alphabet is possible via
suffix array.
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Applications of Suffix Tree

Let us have a glimpse of the numerous applications of suffix trees.

Exact String Matching

As already mentioned earlier, given the suffix tree of the text, all occ
occurrences of a pattern P can be found in time O(|P| + occ).

Even if we take into account the time for constructing the suffix tree, this is
asymptotically as fast as Knuth—Morris—Pratt for a single pattern and
Aho—Corasick for multiple patterns.

However, the primary use of suffix trees is in indexed string matching, where
we can afford to spend a lot of time in preprocessing the text, but must
then answer queries very quickly.
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Approximate String Matching

Several approximate string matching algorithms achieving O(kn) worst case
time complexity are based on suffix trees.

Filtering algorithms that reduce approximate string matching to exact string
matching such as partitioning the pattern into k + 1 factors, can use suffix
trees in the filtering phase.

Another approach is to generate all strings in the k-neighborhood of the
pattern, i.e., all strings within edit distance k from the pattern and search
for them in the suffix tree.

The best practical algorithms for indexed approximate string matching are
hybrids of the last two approaches. For example, partition the pattern into
¢ < k+ 1 factors and find approximate occurrences of the factors with edit
distance |k/¢] using the neighborhood method in the filtering phase.
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Text Statistics

Suffix tree is useful for computing all kinds of statistics on the text. For
example:

e Every locus in the suffix tree represents a factor of the text and, vice
versa, every factor is represented by some locus. Thus the number of
distinct factors in the text is exactly the number of distinct locuses,
which can be computed by a traversal of the suffix tree in O(n) time
even though the resulting value is typically ©(n?).

e The longest repeating factor of the text is the longest string that
occurs at least twice in the text. It is represented by the deepest
internal node in the suffix tree.
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Generalized Suffix Tree

A generalized suffix tree of two strings S and T is the suffix tree of the string
SL£LTS, where £ and $ are symbols that do not occur elsewhere in S and T.

Each leaf is marked as an S-leaf or a T-leaf according to the starting
position of the suffix it represents. Using a depth first traversal, we
determine for each internal node if its subtree contains only S-leafs, only
T-leafs, or both. The deepest node that contains both represents the
longest common factor of S and T'. It can be computed in linear time.

The generalized suffix tree can also be defined for more than two strings.
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AC Automaton for the Set of Suffixes

As already mentioned, a suffix tree with suffix links is essentially an
Aho—Corasick automaton for the set of all suffixes.

e We saw that it is possible to follow suffix link / failure transition from
any locus, not just from suffix tree nodes.

e Following such an implicit suffix link may take more than a constant
time, but the total time during the scanning of a string with the
automaton is linear in the length of the string. This can be shown with
a similar argument as in the construction algorithm.

Thus suffix tree is asymptotically as fast to operate as the AC automaton,
but needs much less space.
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Matching Statistics
The matching statistics of a string S[0..n) with respect to a string T is an
array MS[0..n), where MSJ[i] is a pair (4;,p;) such that

1. S[i..i + ¢;) is the longest prefix of S; that is a factor of T', and

2. Tpi..pi +4;) = S[i.i + £).

Matching statistics can be computed by using the suffix tree of T' as an
AC-automaton and scanning S with it.

e If before reading S[i] we are at the locus (v,d) in the automaton, then
Sli —d..i) =T[j..7 +d), where j = start(v). If reading S[i] causes a
failure transition, then MS[i —d] = (d, 7).

e Following the failure transition decrements d and thus increments ¢ — d

by one. Following a normal transition/edge, increments both 7 and d by
one, and thus 7 — d stays the same. Thus all entries are computed.

From the matching statistics, we can easily compute the longest common
factor of S and T'. Because we need the suffix tree only for 1", this saves
space compared to a generalized suffix tree.

Matching statistics are also used in some approximate string matching
algorithms.
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LCA Preprocessing

The lowest common ancestor (LCA) of two nodes u and v is the deepest
node that is an ancestor of both v and v. Any tree can be preprocessed in
linear time so that the LCA of any two nodes can be computed in constant
time. The details are omitted here.

e Let w; and w; be the leaves of the suffix tree of T' that represent the
suffixes T; and T;. The lowest common ancestor of w; and w; represents
the longest common prefix of T; and T;. Thus

lep(T;,T;) = depth(LC A(w;, wj)) ,
which can be computed in constant time using the suffix tree with LCA
preprocessing.

e The longest common prefix of two suffixes S; and T; from two different
strings S and T is called the longest common extension. Using the
generalized suffix tree with LCA preprocessing, the longest common
extension for any pair of suffixes can be computed in constant time.

Some O(kn) worst case time approximate string matching algorithms use
longest common extension data structures.
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Longest Palindrome

A palindrome is a string that is its own reverse. For example,
saippuakauppias iS a palindrome.

We can use the LCA preprocessed generalized suffix tree of a string 71" and
its reverse T! to find the longest palindrome in T in linear time.

e Let k; be the length of the longest common extension of T;4; and Tf
which can be computed in constant time. Then T[i — k;..i + k;] is the
longest odd length palindrome with the middle at .

e We can find the longest odd length palindrome by computing k; for all
i € [0..n) in O(n) time.

e The longest even length palindrome can be found similarly in O(n)
time. The longest palindrome overall is the longer of the two.
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Suffix Array

The suffix array of a text T is a lexicographically ordered array of the set
Tio..n) OF all suffixes of T'. More precisely, the suffix array is an array SA[O..n]
of integers containing a permutation of the set [0..n] such that

Toapo) <Tsap) < <Tgapm-

A related array is the inverse suffix array SA~1 which is the inverse
permutation, i.e., SA [SA[i]] = for all ¢« € [0..n]. The value SA~1[j] is the
lexicographical rank of the suffix T;

As with suffix trees, it is common to add the end symbol T'[n] = $. It has no
effect on the suffix array assuming $ is smaller than any other symbol.

Example 4.7: The suffix array and the inverse suffix array of the text
T" = banana$.

i SA[] Tsap i SAT'j]

0 6 $ 0 4 banana$
1 5 a$ 1 3 anana$
2 3 ana$ 2 6 nana$

3 1 anana$ 3 2 ana$

4 0 banana$ 4 5 na$

5 4 na$ 5 1 a$

6 2 nana$ 6 0 $
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Suffix array is much simpler data structure than suffix tree. In particular,
the type and the size of the alphabet are usually not a concern.

e The size on the suffix array is O(n) on any alphabet.
e We will later see that the suffix array can be constructed in the same

asymptotic time it takes to sort the characters of the text.

Suffix array construction algorithms are quite fast in practice too. Probably
the fastest way to construct a suffix tree is to construct a suffix array first
and then use it to construct the suffix tree. (We will see how in a moment.)

Suffix arrays are rarely used alone but are augmented with other arrays and
data structures depending on the application. We will see some of them in
the next slides.
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Exact String Matching

As with suffix trees, exact string matching in T' can be performed by a
prefix search on the suffix array. The answer can be conveniently given as a
contiguous interval SA[b..e) that contains the suffixes with the given prefix.
The interval can be found using string binary search.

e If we have the additional arrays LLC'P and RLCP, the result interval
can be computed in O(|P|+ logn) time.

e Without the additional arrays, we have the same time complexity on
average but the worst case time complexity is O(|P|logn).

e We can then count the number of occurrences in O(1) time, list all occ
occurrences in O(occ) time, or list a sample of k£ occurrences in O(k)
time.

An alternative algorithm for computing the interval SA[b..e) is called
backward search. It is commonly used with compressed representations of
suffix arrays and will be covered in the course Data Compression Techniques.
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LCP Array

Efficient string binary search uses the arrays LLC'P and RLCP. However, for
many applications, the suffix array is augmented with the Icp array of
Definition 1.11 (Lecture 2). For all i € [1..n], we store

LCP[i] = lep(Tsags Tsagi-11)

Example 4.8: The LCP array for T' = banana$.

SA[i] LCPJ[i] T

$

a$

ana$
anana$
banana$
na$
nana$

OO0 P, WN KO .
NPOFLWOGIO
NOOWwWRrO
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Using the solution of Exercise 2.4 (construction of compact trie from sorted
array and LCP array), the suffix tree can be constructed from the suffix and
LCP arrays in linear time.

However, many suffix tree applications can be solved using the suffix and
LCP arrays directly. For example:

e The longest repeating factor is marked by the maximum value in the
LCP array.

e The number of distinct factors can be compute by the formula

n(n—+ 1)

——+1- Y LCP[i]

=1
since it equals the number of nodes in the uncompact suffix trie, for
which we can use Theorem 1.17.

e Matching statistics of S with respect to 1" can be computed in linear
time using the generalized suffix array of S and T (i.e., the suffix array
of SE£T$) and its LCP array (exercise).
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LCP Array Construction

The LCP array is easy to compute in linear time using the suffix array SA
and its inverse SA~1. The idea is to compute the Icp values by comparing
the suffixes, but skip a prefix based on a known lower bound for the Icp
value obtained using the following result.

Lemma 4.9: For any i € [0..n), LCP[SA~1[i]] > LCP[SA~[i —1]] -1

Proof. For each j € [0..n), let ®(j) = SA[SA™![j] — 1]. Then Ty, is the
immediate lexicographical predecessor of T; and
LCP[SA 1[]]] — lcp(r‘z—}aT@(]))

Let £ = LCP[SA'[i — 1]] and ¢ = LCP[SA~1[i{]]. We want to show that
¢ >¢—1. If £ =0, the claim is trivially true.

If £> 0, then for some symbol ¢, Ti-1 = cT; and Tg;_1) = T o@i—1)+1-
Thus Te-1)+1 < T; and le(Tz,T¢(z +1) = lep(Tie1, To-1)) — 1 =4£-1

If &) = P — 1)+ 1, then ¢/ = lep(Ti, Toy) = lep(Ti, Toi—1)+1) = £ — 1.

If ®(i) =P —1)+ 1, then Ty_1y41 < Touy < T; and
0= lep(Ty, Toy) > le(Tuch(z H41) =£—1.
[]
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The algorithm computes the Icp values in the order that makes it easy to
use the above lower bound.

Algorithm 4.10: LCP array construction
Input: text T[0..n], suffix array SA[0..n], inverse suffix array SA~1[0..n]
Output: LCP array LCP[1..n]

(1) £+ 0

(2) fori+<0ton—1do

(3)
(4)
(5)
(6)
(7)

k< SA [i]

j + SA[k — 1] [/ 3= ®(>)
while T[i + ¢ =T[j+ ¢ do L+ (41
LCP[k] « ¢

if¢>0then {«+¢—-1

(8) return LCP

The time complexity is O(n):

e Everything except the while loop on line (5) takes clearly linear time.

e Each round in the loop increments ¢. Since ¢ is decremented at most n
times on line (7) and cannot grow larger than n, the loop is executed
O(n) times in total.
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RMQ Preprocessing

The range minimum query (RMQ) asks for the smallest value in a given
range in an array. Any array can be preprocessed in linear time so that RMQ
for any range can be answered in constant time.

In the LCP array, RMQ can be used for computing the Icp of any two
suffixes.

Lemma 4.11: The length of the longest common prefix of two suffixes
T, < T is lep(T;, T;) = min{LCP[k] | k € [SA71[i] + 1..SA7[4]]}.

The lemma can be seen as a generalization of Lemma 1.31 (Lecture 3) and
holds for any sorted array of strings. The proof is left as an exercise.

e The RMQ preprocessing of the LCP array supports the same kind of
applications as the LCA preprocessing of the suffix tree, but RMQ
preprocessing is simpler than LCA preprocessing.

e The RMQ preprocessed LCP array can also replace the LLCP and
RLCP arrays in binary searching.
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We will next describe the RMQ data structure for an arbitrary array L[1..n]
of integers.

e We precompute and store the minimum values for the following
collection of ranges:

— Divide L[1..n] into blocks of size logn.

— For all 0 <4< log(n/logn)), include all ranges that consist of 2¢

blocks. There are O(logn - Iogn) = O(n) such ranges.

— Include all prefixes and suffixes of blocks. There are a total of O(n)
of them.

e Now any range L[i..j] that overlaps or touches a block boundary can be
exactly covered by at most four ranges in the collection.

— ' —

The minimum value in L[i..7] is the minimum of the minimums of the
covering ranges and can be computed in constant time.
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Ranges LJi..j] that are completely inside one block are handled differently.

o Let NSV (i) = min{k > | L[k] < L[i]} (NSV=Next Smaller Value).
Then the position of the minimum value in the range LJ[i..j] is the last
position in the sequence i, NSV (i), NSV(NSV (2)),... that is in the
range. We call these the NSV positions for 1.

e For each i, store the NSV positions for ¢« up to the end of the block
containing 7 as a bit vector B(i). Each bit corresponds to a position
within the block and is one if it is an NSV position. The size of B(i) is
logn bits and we can assume that it fits in a single machine word. Thus
we need O(n) words to store B(i) for all i.

e The position of the minimum in L[i..j] is found as follows:

— Turn all bits in B(i) after position j into zeros. This can be done in
constant time using bitwise shift -operations.

— The right-most 1-bit indicates the position of the minimum. It can
be found in constant time using a lookup table of size O(n).

All the data structures can be constructed in O(n) time (exercise).
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Enhanced Suffix Array

The enhanced suffix array adds two more arrays to the suffix and LCP
arrays to make the data structure fully equivalent to suffix tree.

e The idea is to represent a suffix tree node v representing a factor S, by
the suffix array interval of the suffixes that begin with S,. That interval
contains exactly the suffixes that are in the subtree rooted at w.

e T he additional arrays support navigation in the suffix tree using this

representation: one array along the regular edges, the other along suffix
links.

With all the additional arrays the suffix array is not very space efficient data
structure any more. Nowadays suffix arrays and trees are often replaced with
compressed text indexes that provide the same functionality in much smaller
space. These will be covered in the course Data Compression Techniques.
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Burrows—Wheeler Transform

The Burrows—Wheeler transform (BWT) is an important technique for text
compression, text indexing, and their combination compressed text indexing.

Let T'[0..n] be the text with T'[n] = $. For any ¢ € [0..n], T[¢.n]T[0..7) is a
rotation of T'. Let M be the matrix, where the rows are all the rotations of
T in lexicographical order. All columns of M are permutations of T'. In
particular:

e The first column F contains the text characters in order.
e The last column L is the BWT of T.

Example 4.12: The BWT of T' = banana$ iS L — annb$aa.
L

BB o emg
P PO B B O
o8B e LS
P M AT BB P

B e B o OO
p TP B L B
“Lp B P OBE
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Here are some of the key properties of the BWT.

e The BWT is easy to compute using the suffix array:

. [ if SA[:] =0
Lli] = { T[SA[i] — 1] otherwise

e The BWT is invertible, i.e., T' can be reconstructed from the BWT L
alone. The inverse BWT can be computed in the same time it takes to
sort the characters.

e The BWT L is typically easier to compress than the text T'. Many text
compression algorithms are based on compressing the BWT.

e The BWT supports backward searching, a different technique for
indexed exact string matching. This is used in many compressed text
indexes.

BWT will be covered in more detail in the course Data Compression
Techniques.
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Suffix Array Construction

Suffix array construction means simply sorting the set of all suffixes.

e Using standard sorting or string sorting the time complexity is
Q(XLCP(T..n)))-

e Another possibility is to first construct the suffix tree and then traverse
it from left to right to collect the suffixes in lexicographical order. The
time complexity is O(n) on a constant alphabet.

Specialized suffix array construction algorithms are a better option, though.
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Prefix Doubling

Our first specialized suffix array construction algorithm is a conceptually
simple algorithm achieving O(nlogn) time.

Let T denote the text factor T'[i..min{i + ¢,n + 1}) and call it an ¢-factor.
In other words:

° Tf is the factor starting at z and of length ¢ except when the factor is
cut short by the end of the text.

e T' is the prefix of the suffix T; of length ¢, or T; when |T;| < £.
The idea is to sort the sets T[eo._n] for ever increasing values of /.

e First sort T n]’ which is equivalent to sorting individual characters.

[0..
This can be done in O(nlogn) time.
e Then, for ¥ =1,2,4,8,..., use the sorted set T[ﬁo'_n] to sort the set T[%‘f'n]
in O(n) time.

e After O(logn) rounds, £ > n and T[go'_n] = Tjo.n],» SO we have sorted the
set of all suffixes.
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We still need to specify, how to use the order for the set T[go._n] to sort the
set T[%‘f.n]. The key idea is assigning order preserving names (lexicographical
names) for the factors in T[EO..n]' For i € [0..n], let Nf be an integer in the
range [0..n] such that, for all 7,5 € [0..n]:

N{ < N! if and only if T/ < T .
Then, for £ >n, Nf = SA~1[i].

For smaller values of ¢, there can be many ways of satisfying the conditions
and any one of them will do. A simple choice is

Nf=|{jelo,n] | T < T} .

Example 4.13: Prefix doubling for T' = banana$.

N1 N? N4 N8 =85A-1
4 b 4 ba 4 bana 4 banana$
1 a 2 an 3 anan 3 anana$
5 n 5 na 6 nana 6 nana$

1 a 2 an 2 ana$ 2 ana$

5 n 5 na 5 na$ 5 na$

1 a 1 a$ 1 a$ 1 a$

O $ O| $ O] $ O] $
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Now, given N¢, for the purpose of sorting, we can use

e Nf to represent T

e the pair (N}, N{,,) to represent T?* =TT/ ,.

Thus we can sort T[%‘f.n] by sorting pairs of integers, which can be done in

O(n) time using LSD radix sort.

Theorem 4.14: The suffix array of a string T[0..n] can be constructed in
O(nlogn) time using prefix doubling.

e The technique of assigning order preserving names to factors whose
lengths are powers of two is called the Karp—Miller—Rosenberg naming
technique. It was developed for other purposes in the early seventies
when suffix arrays did not exist yet.

e T he best practical variant is the Larsson—Sadakane algorithm, which
uses ternary quicksort instead of LSD radix sort for sorting the pairs,
but still achieves O(nlogn) total time.
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et us return to the first phase of the prefix doubling algorithm: assigning
names NZ.1 to individual characters. This is done by sorting the characters,
which is easily within the time bound O(nlogn), but sometimes we can do
it faster:

e On an ordered alphabet, we can use ternary quicksort for time
complexity O(nlogor) where or is the number of distinct symbols in T.

e On an integer alphabet of size n® for any constant ¢, we can use LSD
radix sort with radix n for time complexity O(n).

After this, we can replace each character T'[i] with N! to obtain a new
string T":

e The characters of T’ are integers in the range [0..n].

e The character T'[n] = 0 is the unique, smallest symbol, i.e., $.

e The suffix arrays of T and T" are exactly the same.

Thus we can construct the suffix array using 77 as the text instead of T.

As we will see next, the suffix array of TV can be constructed in linear time.
Then sorting the characters of T to obtain T" is the asymptotically most
expensive operation in the suffix array construction of T" for any alphabet.
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Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We
assume that the alphabet of the text T[0..n) is [1..n] and that T'[n] =0 (=$
in the examples).

The outline of the algorithms is:

0. Choose a subset C C [0..n].

1. Sort the set T. This is done as follows:

(a) Construct a reduced string R of length |C|, whose characters are
order preserving names of text factors starting at the positions in C'.

(b) Construct the suffix array of R recursively.

2. Sort the set Tjy ,) using the order of T¢.
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Assume that

e |C| < an for a constant a < 1, and

e excluding the recursive call, all steps in the algorithm take linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) 4+ t(an), whose solution is t(n) = O(n).

To make the scheme work, the set C must satisfy two nontrivial conditions:

1. There exists an appropriate reduced string R.

2. Given sorted T the suffix array of T' is easy to construct.

Finding sets C' that satisfy both conditions is difficult, but there are two
different methods leading to two different algorithms:

e DC3 uses difference cover sampling

e SAIS uses induced sorting
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Difference Cover Sampling

A difference cover D, modulo ¢ is a subset of [0..q) such that all values in
[0..q) can be expressed as a difference of two elements in D, modulo ¢. In

other words:
[0..¢) ={i—jmodq|ije Dy} .

Example 4.15: D; = {1,2,4}

1-1=0 1-4=-3=4 (mod q)
2—-1=1 2—4=-2=5 (mod gq)
4-2=2 1-2=-1=6 (mod q)
4-1=3

In general, we want the smallest possible difference cover for a given gq.

e For any ¢, there exist a difference cover D, of size O(,/q).

e The DC3 algorithm uses the simplest non-trivial difference cover
Dz ={1,2}.
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A difference cover sample is a set T of suffixes, where
C={i€[0.n] | (imodgq) € D} .

Example 4.16: If T'= banana$ and D3z = {1,2},

then C ={1,2,4,5} and Ty = {anana$, nana$,na$, a$}.

Once we have sorted the difference cover sample T, we can compare any
two suffixes in O(q) time. To compare suffixes T; and Tj:

e If 2 € C and 5 € C, then we already know their order from 1.

e Otherwise, find ¢ such that 1 +¢ & C and 5+ ¢ € C. There always exists
such £ € [0..q). Then compare:

Ty = Tli..i + £)Tite
Ty =T[j..5 + 0T+

That is, compare first T'[:..:i + £) to T[j..7 + £), and if they are the same,
then 7,4, to T4, using the sorted T¢.

Example 4.17: D3 ={1,2} and C = {1,2,4,5,...}
To = T[0]Ty To = T[0]T[1]T% To = T[0]Ty
Ty = T[1]T5 T» = T[2]T[3]T4 T3 = T[3]T4
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Algorithm 4.18: DC3
Step 0: Choose C.

e Use difference cover D3 = {1, 2}.
e For k € {0,1,2}, define Cp, = {i € [0..n] | i mod 3 = k}.
e let C=C;UC> and (_;':Co.

Example 4.19: 7 0O 1 2 3 4 5 6 7 8 9 10 11 12

Tl] v a b b a d a b b a d o $

Co =1{0,3,6,9,12}, C; ={1,4,7,10}, C> ={2,5,8,11} and

C
C={1,2,4,5,7,8,10,11}.
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Step 1: Sort 1.

e For k € {1,2}, Construct the strings Ry = (T2, T 3, 16, » Traxc,)

» “max
whose characters are 3-factors of the text, and let R = R1R>.

e Replace each factor T in R with an order preserving name N3 € [1..|R|].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R’ be the result appended with 0.

e Construct the inverse suffix array SAJ_%,l of R'. This is done recursively
using DC3 unless all symbols in R’ are unique, in which case SA;{,l = R.

e From SAI‘%,l, we get order preserving names for suffixes in T¢.

For i € C, let N; = SAL}[j], where j is the position of T3 in R.
Forie C, let N;= 1. Also let N,4+1 = N4> = 0.

Example 4.20: R abb ada bba do$ bba dab bad o$
R’ 1 2 4 7 4 6 3 8 O
SARY 1 2 5 7 4 6 3 8 O
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T[) vy a b b a d a b b a d o $
N, L 1 4 1 2 6 1 5 3 L 7 8 L 0 0
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Step 2(a): Sort Tg.

e For each i € C, we represent T; with the pair (T[i], N;+1). Then
T; <T; <= (T'[i], Nit+1) < (T[], Nj3+1) .
Note that N;;1 # L for all i € C.

e The pairs (T[i], N;3+1) are sorted by LSD radix sort in O(n) time.

Example 4.21:

) 0 1 2 3 4 b 6 7 8 9 10 11 12
T[(] y a b b a d4d a b b a d o $
N, 1L 1 4 1 2 6 L 5 3 L 7 8 L
T12 < T6 < T9 < T3 < TO because ($a O) < (aa 5) < (a7 7) < (ba 2) < (Ya 1)
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Step 2(b): Merge Ty and Tj.
e Use comparison based merging algorithm needing O(n) comparisons.

e To compare 1; € T¢ and T; € T, we have two cases:

i€ C1: T; <Tj < (T[i], Nit+1) < (T[5], Nj+1)
i€ Co: T; <Tj <= (T[], T[i + 1], Niy2) < (T[j],T[5 + 1], Nj42)
Note that none of the N-values is L.

Example 4.22:

) 0 1 2 3 4 b 6 7 8 9 10 11 12
T[(] y a b b a d4d a b b a d o $
N, L 1 4 1 2 6 L 5 3 L 7 8 L

T1 < T because (a,4) < (a,5).
T5 < Tg because (b,a,6) < (b,a, 7).
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Theorem 4.23: Algorithm DC3 constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

There are many variants:

e DC3 is an optimal algorithm under several parallel and external memory
computation models, too. There exists both parallel and external
memory implementations of DC3.

e Using a larger value of g, we obtain more space efficient algorithms. For

example, using ¢ = logn, the time complexity is O(nlogn) and the
space needed in addition to the text and the suffix array is O(n/+/logn).
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Induced Sorting

Define three type of suffixes —, 4+ and x as follows:
€ ={i € [0.n) | Ty > Ti41}
Ct={ic[0.n)|Ti < Tiy1}
C*={ieCt|i—-1eC}
Example 4.24:
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T(] m m i s s i s s i i p p i i $
typeof 7, — — *x — — % — — *x 4+ - - - —
For every a € X and x € {—, +.x} define
Co={i€[0.n] | T[i] =a}
Cr=C,NnC”

Then C, ={ie€Cqy|T; <a>}

Cj:{ZECa|ﬂ>aoo}
and thus, if i € C; and j € C;f, then T; < T;. Hence the suffix array is
nC1Cs...Cho_1 =nC{CTC;CF...C_,CF ,.
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The basic idea of induced sorting is to use information about the order of T;
to induce the order of the suffix T;_1 = T'[i — 1]7;. The main steps are:

1. Sort the sets C¥, a € [1..0).

2. Use C¥, a € [l..0), to induce the order of the sets C, a € [1..0).

3. Use C,, a € [1..0), to induce the order of the sets C.t, a € [1..0).

a !

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 4.25: For all a € [1..0)

(a) i—1eC, iffi>0and T[i — 1] = a and one of the following holds
1. :1=n
2. 1€ C*
3. i€ C™ and T[i— 1] > T4].

(b) i— 1€ CF iffi >0 and T[i — 1] = a and one of the following holds
1. i€ C™ and T[i — 1] < T1i]
2. 5€Ct and T[i — 1] < T[q].
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To induce ('~ suffixes:

1. Set C, empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € C~ in lexicographical order,
append ¢+ — 1 into C;[Z._l].

By Lemma 4.25(a), Step 2 can be done by checking the relevant conditions
for all 1 e nC; C7C,C5. ...

Algorithm 4.26: InduceMinusSuffixes
Input: Lexicographically sorted lists C¥, a € >
Output: Lexicographically sorted lists C, a € >
(1) forae X do C, +
(2) pushback(n — 1, C;[n_l])
(3) fora+<1too—1do

(4) forie C; do // include elements added during the loop
(5) if 4 >0 and T[: — 1] > a then pushback(i — 1,05[2._1])
(6) for i € C* do pushback(i — 1, C;[Z._l])

Note that since T;_1 > T; by definition of C—, we always have ¢ inserted
before 7 — 1.
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Inducing +-type suffixes goes similarly but in reverse order so that again z is
always inserted before 7 — 1:

1. Set C; empty for all a € [1..0).

2. For all suffixes T, such that i — 1 € CT in descending lexicographical

order, append i — 1 into C;f[z._l].

Algorithm 4.27: InducePlusSuffixes

Input: Lexicographically sorted lists C;, a € &

Output: Lexicographically sorted lists CF, a € =
(1) foraex do CF «+ 0

(2) for a<+ o —1 downto 1 do

(3) for i € C;F in reverse order do // include elements added during loop
(4) if ¢ >0 and T[i — 1] < a then pushfront(i — 1, C;f[z._l])

(5) for ¢ € C in reverse order do

(6) if >0 and T[i — 1] < a then pushfront(i — 1, C;f[l._l])
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We still need to explain how to sort the x-type suffixes. Define
Fli]=min{fk e [i+1..n] | ke C* or k=n}
S; = T[i..F[]]
S! = Sio
where o is a special symbol larger than any other symbol.

Lemma 4.28: For any i,j € [0..n), T; < T} iff S] < S} or S; =S} and
Trp < Trp-

Proof. The claim is trivially true except in the case that S, is a proper

prefix of S; (or vice versa). In that case, S; > S; but S, < S’ and thus T; < Tj
by the claim. We will show that this is correct

Let /¥ = F[j] and k=1i+ /¢ —j. Then
e /cC*and thus /-1 € C~. By Lemma 4.25(b), T[¢ — 1] > T'[¢].

o Tlk—1..k] =T[¢—1.4] and thus T[k — 1] > T[k]. If we had k€ CT, we
would have k € C*. Since this is not the case, we must have k € C.

o Let a=TI[¢]. Since £ € C;t and k€ C,, we must have T}, < a® < Ty.

e Since Tli..k) =T[j..£) and T} < Ty, we have T; < Tj.
[
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Algorithm 4.29: SAIS
Step 0: Choose C.

e Compute the types of suffixes. This can be done in O(n) time based on
Lemma 4.25.

o Set C' = Uy »)C; U{n}. Note that |C| < n/2, since for all < € C,
i—1leC-CC.

Example 4.30:
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T[] m m i s s i s s
typeof I, — — x — — % — —

¥ K
+ ~
| O
| o
| +
| +
<

Cr=1{2,5,8}, C: =C;=C; =0, C={2,5,8,14}.
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Step 1: Sort 1.

Sort the strings S}, i € C*. Since the total length of the strings S. is
O(n), the sorting can be done in O(n) time using LSD radix sort.

Assign order preserving names N; € [1..|C| — 1] to the string S! so that
N; < Nj iff S; < 8.

Construct the sequence R = N; N;,... N0, where i1 < i3 < --- <1 are
the *-type positions.

Construct the suffix array SAr of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

The order of the suffixes of R corresponds to the order of x-type
suffixes of T'. Thus we can construct the lexicographically ordered lists
C* a€[l..0).

Example 4.31:

¢ 0 1 2 3 4 5 6 v 8 9 10 11 12 13 14

Tl(] m m i s s i s s i i p p i i $
N; 2 2 1 0
R = [issic][issico][iippii$o]$ = 2210, SAr = (3,2,1,0), C¥ = (8,5,2)
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Step 2: Sort T[O..n]-

e Run InduceMinusSuffixes to construct the sorted lists C;, a € [1..0).

e Run InducePlusSuffixes to construct the sorted lists C.f, a € [1..0).

e The suffix array is SA =nC;CHC,CF ...C._,CT .

Example 4.32:
1 0 1 2 3 4 5 6 7 8

T[(] m m i s s i s s i

O 10 11 12 13 14
i
typeof 7, — — x — — % — — x 4+ - - - =

P P i i $

n=14 = O =(13,12)
C;Cr=(13,12,8,5,2) = C; =(1,0), C; =(11,10), C; = (7,4,6,3)

= C=(8,9,5,2)
= SA=C4C;C{CyCyCs = (14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)
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Theorem 4.33: Algorithm SAIS constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

e In Step 1, to sort the strings S/, i € C*, SAIS does not actually use LSD
radix sort but the following procedure:

1.
2.
3.

4.

Construct the sets C*, a € [1..0) in arbitrary order.
Run InduceMinusSuffixes to construct the lists C., a € [1..0).

a

Run InducePlusSuffixes to construct the lists C;, a € [1..0).

Remove non-*-type positions from C;{CY ...CH ,.

With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists C? are accessed
sequentially during the procedures.

e The currently fastest suffix sorting implementation in practice is
probably divsufsort by Yuta Mori. It sorts the *-type suffixes
non-recursively in O(nlogn) time and then continues as SAIS.
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Summary: Suffix Trees and Arrays

The most important data structures for string processing:

e Designed for indexed exact string matching.

e Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string
processing:

e Linear time for constant and integer alphabet.
Often augmented with additional data structures:

e suffix links, LCA preprocessing

e LCP array, RMQ preprocessing, BWT, ...
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