3. Approximate String Matching

Often in applications we want to search a text for something that is similar
to the pattern but not necessarily exactly the same.

To formalize this problem, we have to specify what does ‘similar’ mean.
This can be done by defining a similarity or a distance measure.

A natural and popular distance measure for strings is the edit distance, also
known as the Levenshtein distance.
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Edit distance

The edit distance ed(A, B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

S Substitution of a single character with another character.
I Insertion of a single character.

D Deletion of a single character.

Example 3.1: Let A = Lewensteinn and B = Levenshtein. T hen
ed(A, B) = 3.

The set of edit operations can be described

with an edit sequence: NNSNNNINNNND
or with an alignment: Lewens-teinn
Levenshtein-

In the edit sequence, N means No edit.
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There are many variations and extension of the edit distance, for example:
e Hamming distance allows only the subtitution operation.

e Damerau—Levenshtein distance adds an edit operation:
T Transposition swaps two adjacent characters.

e With weighted edit distance, each operation has a cost or weight,
which can be other than one.

e Allow insertions and deletions (indels) of factors at a cost that is lower
than the sum of character indels.
We will focus on the basic Levenshtein distance.
Levenshtein distance has the following two useful properties, which are not
shared by all variations (exercise):
e Levenshtein distance is a metric.

e If ed(A, B) = k, there exists an edit sequence and an alignment with &
edit operations, but no edit sequence or alignment with less than k edit
operations. An edit sequence and an alignment with ed(A, B) edit
operations is called optimal.
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Computing Edit Distance

Given two strings A[l..m] and B[1l..n], define the values d;; with the

recurrence:
doo = 0,
dio =1, 1 <1< m,
doj =73, 1 <35 <mn, and
di—1-1+ d(Al[, B[j])
dij =min{ di_1;+1 1<i<m,1<j<n,
dij—1+1
where

S(A[:], Blj]) = { é :E im i g{ﬁ

Theorem 3.2: d;; = ed(A[1..4], B[1..5]) forall 0 <i<m, 0 <j < n.

In particular, dm, = ed(A, B).
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Example 3.3: A = ballad, B = handball

d b a
3 4

n

5 6 7 8

2

3 4 4 5 6 7

5

3 4 4

3 4 5 4 b5

2
4 4 3 3 3 4 b5

5
5

5 4 4 4 4 4

5

«

mn — d6,8 = 6.

ed(A,B) =d
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Proof of Theorem 3.2. We use induction with respect to 4 5. For
brevity, write A; = A[1..¢] and B; = B[1..j].

dio =1 =ed(A;,e) (i deletions)

doj = j = ed(e, Bj) (j insertions)
Induction step: We show that the claim holds for d;;, 1 <:<m,1 <j<n.
By induction assumption, d,, = ed(A,, B;) when p+q < i+ j.

Let E;; be an optimal edit sequence with the cost ed(A;, Bj). We have three
cases depending on what the last operation symbol in E;; is:

N or S: Eij = Ei_l’j_lN or Eij = i_l,j_ls and
ed(A;, Bj) = ed(Ai-1, Bj—1) +6(Ald], Blj]) = di-1,j-1+6(A[z], Blj]).
I: Ez'j = E@"j_ll and ed(A@', Bj) = ed(Ai, Bj_l) + 1= di,j—l + 1.

D: Eij = Ei_l,jD and ed(Ai, Bj) = ed(AZ-_l, Bj) + 1 = di—l,j 4+ 1.
One of the cases above is always true, and since the edit sequence is
optimal, it must be one with the minimum cost, which agrees with the
definition of d;;. ]
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The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 3.4: Edit distance
Input: strings A[l..m] and B[1..n]
Output: ed(A, B)
(1) for ¢ <~ 0 to m do djo < i
(2) for j+ 1 ton do do; < j
(3) for j«+ 1 ton do
(4) for i+~ 1 to m do
(5) dij <= min{d;—1,j-1 + 6(Ali], B[j]),di-1; + 1,dij—1 + 1}
(6) return dpmn

The time and space complexity is O(mn).
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The space complexity can be reduced by noticing that each column of the
matrix (d;;) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing d;;, we only need to store
the bottom part of column 5 — 1 and the already computed top part of

column j. We store these in an array C[0..m] and variables ¢ and d as shown
below:

C[0..m]
do,j—1 do,; do,;
C
di—l,j—l di—l,j di—l,j—l di—l,j d
dz',j_l dz"j dz‘,j—l dz’,j
dm,j—l dm,j dm,j—l
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Algorithm 3.5: Edit distance in O(m) space
Input: strings A[l1..m] and B[1..n]
Output: ed(A, B)

(1) for i<+ 0 to m do CJi] <1

(2) for j«+ 1 ton do

(3) ¢ + C[0]; C[0] «j

(4) for i < 1 to m do

(5) d < min{c 4 0(A[:], B[j]),Cli —1] +1,C[i] 4+ 1}
(6) c <+ Cli]

(7) Cli] < d

(8) return C[m]

e Note that because ed(A, B) = ed(B, A) (exercise), we can assume that
m < n.
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It is also possible to find optimal edit sequences and alignments from the
matrix d;;.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

o If Ali] = B[j] and d;; = d;—1,-1, there is an edge (i—1,57—1) — (4,5)
labelled with N.

o If A[i] # BJ[j] and d;j =d;—1,-1+ 1, there is an edge (: —1,5—1) — (4,4)
labelled with S.

o If djj =d;;j—1+ 1, there is an edge (i,5 — 1) — (4,5) labelled with I.
o If djj =di—1,;+ 1, there is an edge (i — 1,5) — (4,4) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.
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Example 3.6: A = ballad, B = handball

d h a n d b 1 1
O=>1=22=3=4—-5—>6—7 — 8
bl | X ¢ ¢ ¢ Xy
1 l1—+2-=3 =4 4 -5 =6 =17
al | N ol X N
2 2 l=2—-3 >4 4 - 5 — 6
1 ] N ] X Y N\ NN N\
3 3 2 2 =3 =4 =5 4 — 5
1] N Nl X Xy . NN
4 4 3 3 3 =4 — 5 5 4
al L N LN LN 1N ] N N\ (!
5 5 4 4 4 4 4 = 5 5
dl | N | VRN VS VI SR\ X )
6 6 5 5 4 —» 5 5 5 =06

There are 7 paths from (0,0) to (6,8) corresponding to 7 different optimal
edit sequences and alignments, including the following three:

ITTINNNNDD SNISSNIS SNSSINSI
-——--ballad ba-1lla-d ball-ad-
handball-- handball handball
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