Difference Cover Sampling

A difference cover D, modulo ¢ is a subset of [0..q) such that all values in
[0..q) can be expressed as a difference of two elements in D, modulo ¢. In

other words:
[0..¢) ={i—jmodgq|i,j€ Dy} .

Example 4.20: D7 = {1,2,4}

1-1=0 1-4=-3=4 (mod q)
2-1=1 2-4=-2=5 (mod q)
4-2=2 1-2=-1=6 (mod q)
4-1=3

In general, we want the smallest possible difference cover for a given gq.
e For any ¢, there exist a difference cover D, of size O(,/q).
e The DC3 algorithm uses the simplest non-trivial difference cover

Ds = {1,2}.

191

A difference cover sample is a set T of suffixes, where
C={ie€[0.n]]| (imodgq) € D,} .

Example 4.21: If T = banana$ and D3z = {1,2},
then C ={1,2,4,5} and Ty = {anana$,nana$,na$, a$}.

Once we have sorted the difference cover sample T, we can compare any
two suffixes in O(q) time. To compare suffixes T; and Tj:

e If 2 € C and 5 € C, then we already know their order from 1.

e Otherwise, find £ such that i +/¢¢€ C and 54 ¢ € C. There always exists
such £ € [0..q). Then compare:

Ty = Tli.i + 0)Tiyy
Ty =T[j.j + OT;4s

That is, compare first T'[i..i + ¢) to T[j..7 + £), and if they are the same,
then T;4, to T4, using the sorted T¢.

Example 4.22: D3 ={1,2} and C ={1,2,4,5,...}
To = T[0]Ty To = T[0]T[1]T% To = T[0]T}
Ty = T[1]T» T> = T[2]T[3] T4 Ts = T[3]|T4

192

Algorithm 4.23: DC3

Step 0: Choose C.
e Use difference cover D3 = {1,2}.
e For k € {0,1,2}, define Cp, = {i € [0..n] | i mod 3 = k}.
e Let C=C1,UC> and C = Cp.

Example 4.24:) 1 2 3 4 5 6 7 8 9 10 11 12

Tl)] v a b b a d a b b a d o $

Co = {0,3,6,9,12}, C; = {1,4,7,10}, C>» = {2,5,8,11} and
{(1,2.4,5,7,8,10,11}.

Q Q

193

Step 1: Sort 1.

e For k € {1,2}, Construct the strings Ry = (T, T 3, Tir6: - » Troaxc,)

» T max C,
whose characters are 3-factors of the text, and let R = R1R».

e Replace each factor T¢3 in R with a lexicographic name Nf’ e [1..|R]].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R’ be the result appended with 0.

e Construct the inverse suffix array SA;%,l of R'. This is done recursively
using DC3 unless all symbols in R’ are unique, in which case SA]},l =R,

e From SA;L,l, we get lexicographic names for suffixes in T¢.

For i € C, let N; = SAR![j], where j is the position of T2 in R.
Forie C, let N;= 1. Also let N,,;1 = N30 = 0.

Example 4.25: R abb ada bba do$ bba dab bad o$
R’ 1 2 4 4 4 §) 3 8 O
SAxY 1 2 5 7 4 6 3 8 O
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T[) vy a b b a d a b b a d4d o $
N, 1L 1 4 1 2 6 L 5 3 L 7 8 1 0 0

194

Step 2(a): Sort Tg.

e For each i € C, we represent T; with the pair (T[i], N;+1). Then
T; <T; <= (T'[i], Nit+1) < (T[], Nj3+1) .
Note that N;;1 # L for all i € C.

e The pairs (T[i], N;3+1) are sorted by LSD radix sort in O(n) time.

Example 4.26:

) 0 1 2 3 4 b 6 7 8 9 10 11 12
T[(] y a b b a d4d a b b a d o $
N, 1L 1 4 1 2 6 L 5 3 L 7 8 L
T12 < T6 < T9 < T3 < TO because ($a O) < (aa 5) < (a7 7) < (ba 2) < (Ya 1)

195

Step 2(b): Merge Ty and Tj.
e Use comparison based merging algorithm needing O(n) comparisons.

e To compare 1; € T¢ and T; € T, we have two cases:

i€ C1: T; <Tj < (T[i], Nit+1) < (T[5], Nj+1)
i€ Co: T; <Tj <= (T[], T[i + 1], Niy2) < (T[j],T[5 + 1], Nj42)
Note that none of the N-values is L.

Example 4.27:

) 0 1 2 3 4 b 6 7 8 9 10 11 12
T[(] y a b b a d4d a b b a d o $
N, L 1 4 1 2 6 L 5 3 L 7 8 L

T1 < T because (a,4) < (a,5).
T5 < Tg because (b,a,6) < (b,a, 7).

196

Theorem 4.28: Algorithm DC3 constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

There are many variants:

e DC3 is an optimal algorithm under several parallel and external memory
computation models, too. There exists both parallel and external
memory implementations of DC3.

e Using a larger value of g, we obtain more space efficient algorithms. For

example, using ¢ = logn, the time complexity is O(nlogn) and the
space needed in addition to the text and the suffix array is O(n/+/logn).

197

Induced Sorting

Define three type of suffixes —, + and % as follows:
C~ ={i€[0.n) | T; > Tis1}
Ct={ic[0.n)|Ti < Tiy1}
C*={ieCt|i—-1eC}
Example 4.29:
¢1 0 1 2 3 4 5 6 7 8 10 11 12 13 14
T[] m m i s s i s s i p p i i $

9
i
typeof 7, — — *x — — % — — *x 4+ - - - —

For every a € X and x € {—, +.x} define
Co={i€[0.n] | T[i] =a}
Ci=C,NnC*

Then C,={i€Co| Ty <a"t'}

Cr={e€Cy|T>a"t}
and thus, if i € C; and j € C;f, then T; < T;. Hence the suffix array is
CoC1Cs...Co1 = CoC{C{C5CF ...Co_,CF .

198

The basic idea of induced sorting is to use information about the order of T;
to induce the order of the suffix T;_1 = T'[i — 1]7;. The main steps are:

1. Sort the sets C*, a € [1..0).
2. Use C*, a € [l..0), to induce the order of the sets C, a € [1..0).

3. Use C,, a € [1..0), to induce the order of the sets Cit, a € [1..0).

a !

The suffixes involved in the induction steps can be indentified using the
following rules (proof is left as an exercise).

Lemma 4.30: For all a € [1..0)

(@) i—1eC, iff i >0 and T[i — 1] = a and one of the following holds
1. i€ Co (i =n)
2. ieC*
3. i€ C~ and T[i— 1] > T[4].

(b) i— 1€ Cl iffi >0 and T[i — 1] = a and one of the following holds
1. 1€ C™ and T[i — 1] < T3]
2. 5€Ct and T[i — 1] < T[q].

199

To induce —-type suffixes:
1. Set C; empty for all a € [1..0).

2. For all suffixes T; such that : — 1 € C~ in lexicographical order,
append 7 — 1 into C;[i_l].

By Lemma 4.30(a), Step 2 can be done by checking the relevant conditions
for all 1 € CoC; C1C,C5

Algorithm 4.31: InduceMinusSuffixes
Input: Lexicographically sorted lists C}, a € X
Output: Lexicographically sorted lists C, a € >
(1) forae X do C, + 0
(2) pushback(n — 1, C;[n_l])
(3) fora<+1too—1do

(4) forie C - do // include elements added during the loop
(5) if 2> 0 and T[: — 1] > a then pushback(i — 1,05[1._1])
(6) for + € C* do pushback(i — 1, C;[Z._l])

Note that since T;_1 > T; by definition of C—, we always have ¢ inserted
before : — 1.

200

Inducing +-type suffixes goes similarly but in reverse order so that again 7 is
always inserted before 7 — 1:

1. Set C;f empty for all a € [1..0).

2. For all suffixes T; such that i — 1 € CTt in descending lexicographical

order, append i — 1 into C;S[Z._l].

Algorithm 4.32: InducePlusSuffixes
Input: Lexicographically sorted lists C, a € >
Output: Lexicographically sorted lists Cj, a€E >
(1) for a € X do CF + ()
(2) for a + o —1 downto 1 do

(3) for i € C.F in reverse order do // include elements added during loop
(4) if i >0 and T[i — 1] < a then pushfront(i — 1, Cj‘f[l._l])

(5) for ¢ € C in reverse order do

(6) if ¢ >0 and T[i — 1] < a then pushfront(i — 1, C;f[i_l])

201

We still need to explain how to sort the x-type suffixes. Define
Fli] =min{ke[i+ 1.n] | ke C* or k =n}
S; = T[i..F[]]
S; — SZ'O‘
where o is a special symbol larger than any other symbol.

Lemma 4.33: For any 4,5 € [0..n), T; < T} iff S; < S} or S{ =S} and
Trp < TFp)-

Proof. The claim is trivially true except in the case that S, is a proper

prefix of S; (or vice versa). In that case, S; > S; but S. < S;. and thus T; < T;
by the claim. We will show that this is correct.

Let £ =F[j] and k=:4+/¢—j. Then
e /cC*¥and thus/—-—1e€C~. By Lemma 4.30, T[¢] < T[¢— 1].

o Tlk—1..k] =T[¢ —1.4] and thus T[k] < T[k — 1]. If we had k€ CT, we
would have k£ € C*. Since this is not the case, we must have k € C~.

o Let a=TI[]. Since £ € C;f and k€ C;, we must have T < a"t! < Ty.
e Since Ti..k) =T[j..£) and T} < Ty, we have T; < Tj.
[]
202

Algorithm 4.34: SAIS

Step 0: Choose C.

e Compute the types of suffixes. This can be done in O(n) time based on
Lemma 4.30.

o Set C' = Uyepn »)C; U{n}. Note that |C| <n/2, since for all < € C,
i—1leC™ CC.

Example 4.35:
¢ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Tl(] m m i s s i s s i i i i
typeof7;, — — x — — x — —

¥ K
+ ~
| o
| o
| +
| +
&

C:={2,5,8}, C; =C:=C:=0, C={2,5,8,14}.

203

Step 1: Sort 1.

Sort the strings S!, ¢ € C*. Since the total length of the strings S; is
O(n), the sorting can be done in O(n) time using LSD radix sort.

Assign lexicographic names N; € [1..|C| — 1] to the string S] so that
N; < Nj iff S, < 5.

Construct the sequence R = N; N,;, ... N;0, where 11 < i3 < --- <1} are
the *-type positions.

Construct the suffix array SAr of R. This is done recursively unless all
symbols in R are unique, in which case a simple counting sort is
sufficient.

The order of the suffixes of R corresponds to the order of x-type
suffixes of T'. Thus we can construct the lexicographically ordered lists
C* a€[l.o).

Example 4.36:

¢ 0O 1 2 3 4 5 6 v 8 9 10 11 12 13 14

T[(] m m i s s i s s i i p p i i $

N; 2 2 1 0
R = [issiz|[issiz][iippii$z]$ = 2210, SAr =(3,2,1,0), C7 = (8,5,2)

204

Step 2: Sort T[On]

e Run InduceMinusSuffixes to construct the sorted lists C, a € [1..0).

e Run InducePlusSuffixes to construct the sorted lists CF, a € [1..0).

e The suffix array is SA =nC;CHC,Cf ...C._,CT |,

Example 4.37:
i1 0 1 2 3 4 5 6 7

8 9 10 11 12 13 14
T[] m m i s s i s s i i p p i i $
typeof 7, — — * — — *x — — x 4+ - - —

Cy=(14) = C7=(13,12)
C7Cr = (13,12,8,5,2)

= Ci=(8,9,5,2)
= SA=CyC;CfCyCrCr = (14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)

= Cp, =(1,0), ¢5 =(11,10), C5 = (7,4,6,3)

205

Theorem 4.38: Algorithm SAIS constructs the suffix array of a string
T[0..n) in O(n) time plus the time needed to sort the characters of T.

e In Step 1, to sort the strings S/, i € C*, SAIS does not actually use LSD
radix sort but the following procedure:

1. Construct the sets C¥, a € [1..0) in arbitrary order.
2. Run InduceMinusSuffixes to construct the lists C, a € [1..0).
3. Run InducePlusSuffixes to construct the lists C,, a € [1..0).

4. Remove non-*-type positions from C{C...CT ..
With this change, most of the work is done in the induction procedures.

This is very fast in practice, because all the lists C? are accessed
sequentially during the procedures.

e The currently fastest suffix sorting implementation in practice is
probably divsufsort by Yuta Mori. It sorts the *-type suffixes
non-recursively in O(nlogn) time and then continues as SAIS.

206

