Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix (g;;), we store differences between adjacent cells:

Vertical delta: Av;; = gij — gi—1;
Horizontal delta: Ah;; = gij — gij—1
Diagonal delta: Adi; = gij — gi—1,5

Because gio =% ja go; = O,
A’Ulj —|— A’UQJ' —|— s —|— Afvl‘j
1+ Ahin + Ahip + -+ - + Ahjj

Because of diagonal monotonicity, Ad;; € {0,1} and it can be stored in one
bit. By the following result, Ah;; and Awv;; can be stored in two bits.

Gij

Lemma 3.15: Ah;;, Av;; € {—1,0,1} for every 4,5 that they are defined for.

The proof is left as an exercise.
118

"' means 0 and ‘4+’ means +1

‘~" means —1, °

Example 3.16:

o -tatmtw Il
=+=10+10+10-+1I++
oO4+—-4+NF+N+4+< | ™
+1n+1+I1++1+
o4+—-4+NF+m || M N
N+1n+il++++ 11+
O+ 4+ ||| v
I+ ++++++ 100
O+~ |l = |l = [=4+«
1 I 1 ol ol [O R T
o+~ |l o+—-++m
1 e o | O | IO R T
ollo+—~4++m+<
1 T | | O |
O4+—~4+N+0M+4+< +w0
=10+ 10+ 1+l
O+ +N+®M+< +10
=+ 1+ 10+1-+I1 4l
O+~ +N+®M+< +1w0

8 o + O o

119

In the standard computation of a cell:
e Input is gi—1j, gi-1,j-1, gi,j—1 and 6(P[i], T[j]).
e Output is g;;.
In the corresponding bitparallel computation:
o Input is Av'" = Av;;_1, AR = Ah; ;-1 and Eg; = 1 — §(P[i], T[j]).

e Output is Av°Ut = Aw;; and ARCUt = Ah; ;.

Ahin
gi—1,j—1 7 Gi—1,5
Avin AUO”t
gi"j_l Ahout ’ gw

120

The computation rule is defined by the following result.

Lemma 3.17: If Eg =1 or Av" = -1 or AR" = —1,
then Ad =0, Av°'" = —AL™ and ARt = —A™". |
Otherwise Ad =1, Av°'t =1 — AR" and ARt =1 — Av™.

Proof. We can write the recurrence for g;; as

gi; = min{gi—1,-1 + 6(P[i], T[5]),9,j-1+1,9i-1; + 1}
=gi_1,-1+min{l — Eq, Av" + 1, AM™ + 1},

Then Ad = g;j — gi—1,j-1 = min{l — Eq, Av" 4+ 1, AR 4+ 1}

which is 0 if Eq =1 or Av'" = —1 or AR™ = —1 and 1 otherwise.

Clearly Ad = Av" + ARt = ARIN + ApOUt,
Thus Avo"t = Ad — AR and AR = Ad — Av". O

121

To enable bitparallel operation, we need two changes:

e The Av and Ah values are ‘“trits” not bits. We encode each of them
with two bits as follows:

Py — 1 if Av=+1 Mo — 1 if Av=-1
Y=Y 0 otherwise Y=Y 0 otherwise
(1 ifAR=+1 (1 ifAR=-1
Ph = { 0O otherwise Mh = { 0O otherwise
Then
Av = Pv— Mv
Ah = Ph— Mh
e We replace arithmetic operations (4, —, min) with Boolean (logical)

operations (A, Vv, —).

122

Now the computation rules can be expressed as follows.

Lemma 3.18: py,out = Mp" v ~(XvV PR") Mot = PR'" A X
PhOUt = Mo v =(XhV Pv") MRt = Pv" A Xh

where Xv = EqV Mv" and Xh = EqV MAh'".

Proof. We show the claim for Pv and Mwv only. Ph and Mh are symmetrical.

By Lemma 3.17,
POt = (=Ad A MR™ Vv (Ad A -PRM)
Moot = (=Ad A PRV (Ad A O) = -Ad A PR
Because Ad = —(EqV Mv"V MA'") = =(XvV Mh") = - Xv A-MA",
POt = ((Xv Vv MR™ A MR™ vV (=Xv A =M™ A =Ph™M)
= Mh" Vv —(XvV MA" Vv PRM)
= M~h'" Vv —(Xv Vv Ph'™)
Mvo't = (Xv Vv MA™) A PK'" = Xv A PRI"

All the steps above use just basic laws of Boolean algebra except the last
step, where we use the fact that MAR'™" and Ph'" cannot be 1 simultaneously.
N

123

According to Lemma 3.18, the bit representation of the matrix can be

computed as follows.

for 1 <1 to m do
P’Ul'o ~— 1; M’Uz'o +—0
for <1 ton do
Phgj <~ 0; Mhg; <~ 0O
for 1 <1 to m do
Xhij — Eqij V Mhi_l,j
Phij — M’Ui’j_l V —I(Xhij V P’Ui,j_l)
Mhz'j — P’Uz"j_l VAN Xhij
for i <1 to m do
X”Uij — Eqij V M’Ui,j_l
P’Uij — Mhi_l,j V ﬂ(X’Uij V Phi_l,j)
M’Uij — th‘—l,j N X’Uz'j

This is not yet bitparallel though.

124

To obtain a bitparallel algorithm, the columns Puvs;, Mvsj, Xvsj, Phyj, Mhy;,
Xhy; and Egq,; are stored in bitvectors.

Now the second inner loop can be replaced with the code

A similar attempt with the for first inner loop leads to a problem:

Mh*j < P’U*,j_l AN Xh*j

Now the vector Mh,; is used in computing Xh,; before Mh,; itself is
computed! Changing the order does not help, because Xh,; is needed to
compute Mh,;.

To get out of this dependency loop, we compute Xh,; without Mh,; using
only Egq.; and Puv, j_1 which are already available when we compute Xh,;.

125

Lemma 3.19: Xh;; =30 € [1,i] : Eqy N (Vx € [(,i— 1] : Pvy;_1).
Proof. We use induction on 1.

Basis ¢« = 1: The right-hand side reduces to Eq;;, because £ = 1. By
Lemma 3.18, Xhi; = Eq1; V Mhoj, which is Eq;; because Mhg; = 0 for all j.

Induction step: The induction assumption is that Xh;_1; is as claimed. Now
we have

e [1,i] : Eqj AN (Vx € [l,i— 1] : Pvgj—1)
= FEq;; VI € [1,7 —1]: Eqp; N (Vx e [¢,71— 1] : Pvm’j_l)
= Eq;; V (P’Uz'_l,j_l AN e[l,i—1]: Eqe N (Ve € [¢,1— 2] : P’Ux,j_l))
= Eq;; V (Pvi_l,j_l VAN Xhi_l,j) (ind. assump.)
= Eq;; V Mh;_1 (Lemma 3.18)
= Xhij (Lemma 3.18)
]

126

At first sight, we cannot use Lemma 3.19 to compute even a single bit in
constant time, not to mention a whole vector Xh,;. However, it can be
done, but we need more bit operations:

e Let VY denote the xor-operation: OY1 =1Y0=1and O0O¥Y0=1Y1=0.

e A Dbitvector is interpreted as an integer and we use addition as a bit
operation. The carry mechanism in addition plays a key role. For
example 0001 4+ 0111 = 1000.

In the following, for a bitvector B, we will write
B = B[1..m] = B[m]B[m — 1]... B[1]

The reverse order of the bits reflects the interpretation as an integer.

127

Lemma 3.20: Denote X = Xh,j, £ = Eq«;, P = Pv,j_1 and let
Y=((EAP)4+P)YP)VE. Then X =Y.

Proof. By Lemma 3.19, X[i] = 1 iff and only if
a) E[i] =1 or
b) I e(1,i]:E[f...ii=00---0LAP[£...i—1] =11---1.

and X|[i{] = 0 iff and only if
c) E1.,=00---0 or
d) 3¢ e[1,i]:E[f...q] =00---0LAP[f...i—1] #11---1.

We prove that Y[:] = X[:] in all of these cases:

a) The definition of Y ends with “VE" which ensures that Y[i] = 1 in this
case.

128

b) The following calculation shows that Y[i] = 1 in this case:

d)

1

E[¢...i] =00..

Pl[¢...i] =bil..

(EAP)[£...1] =00..

((EANP)+ P)[f...i] =b0..
((EAP)4+P)YP)[L...i] =11..
Y=((EAP)+P)YP)VE)...i]=11..

l

.01
11
.01
.Oc
.1c
11

where b is the unknown bit P[i], c is the possible carry bit coming from
the summation of bits 1 ...,/ — 1, and b and ¢ are their negations.

Because for all bitvectors B, OAB =0 ja 0+ B = B, we get

Y = (((OAP)+P)YP)VO=(PYP)VO=0.

Consider the calculation in case b). A key point there is that the carry
bit in the summation travels from position ¢ to 7 and produces b to
position 7. The difference in this case is that at least one bit P[k],

¢ < k <1, is zero, which stops the carry at position k. Thus

((EAP)+ P)[i] =b and Y[i] = 0.
L]

129

As a final detail, we compute the bottom row values g,,; using the equalities
gmo = m ja 9mji — Gm,j—1 + Ahmj-

Algorithm 3.21: Myers’' bitparallel algorithm
Input: text T'[1..n], pattern P[1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) for ce X do Bjc] « 0™
(2) for i<+ 1 to m do B[PJ[i]][i]] =1
(3) Pv+ 1™, Mv<+0; g+ m
(4) for j+ 1 ton do

(5) Eq + B[T[j]]
(6) Xh <+ (((Eq A Pv) 4+ Pv) Y Pv)V Eq
(7) Ph < MuvV —~(XhV Pv)
(8) Mh « Pv A Xh
(9) Xv <+ EqV Mv
(10) Pv <+ (Mh<<1)V-(XvV (Ph<<1))
(11) Mv <+ (Ph << 1) A Xv
(12) g « g+ Phlm] — Mh[m]
(13) if ¢ <k then output j

130

On an integer alphabet, when m < w:
e Pattern preprocessing time is O(m + o).

e Search time is O(n).

When m > w, we can store each bit vector in [m/w]| machine words:
e The worst case search time is O(n[m/w]).

e Using Ukkonen’s cut-off heuristic, it is possible reduce the average case
search time to O(n[k/w]).

131

There are also algorithms based on bitparallel simulation of a
nondeterministic automaton.

Example 3.22: P = pattern, k=3

o—P -2 0t -0t 00— 0" 0" -0 noeror
S IR IEDSE D BN BN BN NG S ARG -
éA P «A 2 «A t «A t € d n O lerror
SR NG IR I NE I BENS S BN P SIS S SN -
éA P «A 2 «A t «A t © ' n O 2erors
SR TEDSE D EENE I BN - BN P NG S SRS -
é P «5 2 «5 t «5 t > € > r > n O 3erors

e The algorithm of Wu and Manber uses a bit vector for each row. It can
be seen as an extension of Shift-And. The search time complexity is
O(kn[m/w]).

e The algorithm of Baeza-Yates and Navarro uses a bit vector for each
diagonal, packed into one long bitvector. The search time complexity is
O(n[km/w]).

132

Baeza-Yates—Perleberg Filtering Algorithm

A filtering algorithm for approximate string matching searches the text for
factors having some property that satisfies the following conditions:

1. Every approximate occurrence of the pattern has this property.
2. Strings having this property are reasonably rare.

3. Text factors having this property can be found quickly.

Each text factor with the property is a potential occurrence, which is then
verified for whether it is an actual approximate occurrence.

Filtering algorithms can achieve linear or even sublinear average case time
complexity.

133

The following lemma shows the property used by the Baeza-Yates—Perleberg
algorithm and proves that it satisfies the first condition.

Lemma 3.23: Let PP ... P41 = P be a partitioning of the pattern P into
k + 1 nonempty factors. Any string S with ed(P,S) < k contains P, as a
factor for some i € [1..k + 1].

Proof. Each single symbol edit operation can change at most one of the

pattern factors P;,. Thus any set of at most k edit operations leaves at least
one of the factors untouched. []

134

The algorithm has two phases:

Filtration: Search the text T for exact occurrences of the pattern factors P,.

Using the Aho—Corasick algorithm this takes O(n) time for a constant
alphabet.

Verification: An area of length O(m) surrounding each potential occurrence
found in the filtration phase is searched using the standard dynamic
programming algorithm in O(m?) time.

The worst case time complexity is O(m?n), which can be reduced to O(mn)
by combining any overlapping areas to be searched.

135

Let us analyze the average case time complexity of the verification phase.

e [he best pattern partitioning is as even as possible. Then each pattern
factor has length at least r = |m/(k+1)].

e The expected number of exact occurrences of a random string of
length r in a random text of length n is at most n/o".

e T he expected total verification time is at most

O (mQ(k—l— 1)n> <o (m3n>

o o’

This is O(n) if r > 3log, m.
e The condition r > 3log, m is satisfied when (k+ 1) <m/(3log,m + 1).

Theorem 3.24: The average case time complexity of the
Baeza-Yates—Perleberg algorithm is O(n) when £k < m/(3log, m + 1) — 1.

136

Many variations of the algorithm have been suggested:
e The filtration can be done with a different multiple exact string
matching algorithm:

— The first algorithm of this type by Wu and Manber used an
extension of the Shift-And algorithm.

— An extension of BDM achieves O(nk(log, m)/m) average case
search time. This is sublinear for small enough k.

— An extension of the Horspool algorithm is very fast in practice for
small k£ and large o.

e Using a technique called hierarchical verification, the average
verification time for a single potential occurrence can be reduced to

O((m/k)?).

A filtering algorithm by Chang and Marr has average case time complexity
O(n(k 4+ log, m)/m), which is optimal.

137

