
3. Approximate String Matching

Often in applications we want to search a text for something that is similar
to the pattern but not necessarily exactly the same.

To formalize this problem, we have to specify what does “similar” mean.
This can be done by defining a similarity or a distance measure.

A natural and popular distance measure for strings is the edit distance, also
known as the Levenshtein distance.

97



Edit distance

The edit distance ed(A,B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

S Substitution of a single character with another character.

I Insertion of a single character.

D Deletion of a single character.

Example 3.1: Let A = Lewensteinn and B = Levenshtein. Then
ed(A,B) = 3.

The set of edit operations can be described

with an edit sequence: NNSNNNINNNND
or with an alignment: Lewens-teinn

Levenshtein-

In the edit sequence, N means No edit.

98



There are many variations and extension of the edit distance, for example:

• Hamming distance allows only the subtitution operation.

• Damerau–Levenshtein distance adds an edit operation:

T Transposition swaps two adjacent characters.

• With weighted edit distance, each operation has a cost or weight,
which can be other than one.

• Allow insertions and deletions (indels) of factors at a cost that is lower
than the sum of character indels.

We will focus on the basic Levenshtein distance.

99



Computing Edit Distance

Given two strings A[1..m] and B[1..n], define the values dij with the
recurrence:

d00 = 0,

di0 = i, 1 ≤ i ≤ m,
d0j = j, 1 ≤ j ≤ n, and

dij = min


di−1,j−1 + δ(A[i], B[j])

di−1,j + 1

di,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n,

where

δ(A[i], B[j]) =

{
1 if A[i] 6= B[j]
0 if A[i] = B[j]

Theorem 3.2: dij = ed(A[1..i], B[1..j]) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.
In particular, dmn = ed(A,B).

100



Example 3.3: A = ballad, B = handball

d h a n d b a l l

0 1 2 3 4 5 6 7 8
b 1 1 2 3 4 4 5 6 7
a 2 2 1 2 3 4 4 5 6
l 3 3 2 2 3 4 5 4 5
l 4 4 3 3 3 4 5 5 4
a 5 5 4 4 4 4 4 5 5
d 6 6 5 5 4 5 5 5 6

ed(A,B) = dmn = d6,8 = 6.

101



Proof of Theorem 3.2. We use induction with respect to i+ j. For
brevity, write Ai = A[1..i] and Bj = B[1..j].

Basis: d00 = 0 = ed(ε, ε)

di0 = i = ed(Ai, ε) (i deletions)

d0j = j = ed(ε, Bj) (j insertions)

Induction step: We show that the claim holds for dij, 1 ≤ i ≤ m,1 ≤ j ≤ n.
By induction assumption, dpq = ed(Ap, Bq) when p+ q < i+ j.

Let Eij be an edit sequence with the cost ed(Ai, Bj). Such an optimal edit
sequence always exists. We have three cases depending on what the last
operation symbol in Eij is:

N or S: Eij = Ei−1,j−1N or Eij = Ei−1,j−1S and
ed(Ai, Bj) = ed(Ai−1, Bj−1)+δ(A[i], B[j]) = di−1,j−1 +δ(A[i], B[j]).

I: Eij = Ei,j−1I and ed(Ai, Bj) = ed(Ai, Bj−1) + 1 = di,j−1 + 1.

D: Eij = Ei−1,jD and ed(Ai, Bj) = ed(Ai−1, Bj) + 1 = di−1,j + 1.

One of the cases above is always true, and since the edit sequence is
optimal, it must be one with the minimum cost, which agrees with the
definition of dij. �

102



The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 3.4: Edit distance
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do di0 ← i
(2) for j ← 1 to n do d0j ← j
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) dij ← min{di−1,j−1 + δ(A[i], B[j]), di−1,j + 1, di,j−1 + 1}
(6) return dmn

The time and space complexity is O(mn).

103



The space complexity can be reduced by noticing that each column of the
matrix (dij) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing dij, we only need to store
the bottom part of column j − 1 and the already computed top part of
column j. We store these in an array C[0..m] and variables c and d as shown
below:

d0,j−1

dm,j−1

di−1,j

d0,j

dm,j

di−1,j

d0,j

di−1,j−1

c

di,j di,j−1di,j−1

dm,j−1

di,j

ddi−1,j−1

C[0..m]

104



Algorithm 3.5: Edit distance in O(m) space
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do C[i]← i
(2) for j ← 1 to n do
(3) c← C[0]; C[0]← j
(4) for i← 1 to m do
(5) d← min{c+ δ(A[i], B[j]), C[i− 1] + 1, C[i] + 1}
(6) c← C[i]
(7) C[i]← d
(8) return C[m]

• Note that because ed(A,B) = ed(B,A) (exercise), we can assume that
m ≤ n.

105



It is also possible to find optimal edit sequences and alignments from the
matrix dij.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

• If A[i] = B[j] and dij = di−1,j−1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with N.

• If A[i] 6= B[j] and dij = di−1,j−1 + 1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with S.

• If dij = di,j−1 + 1, there is an edge (i, j − 1)→ (i, j) labelled with I.

• If dij = di−1,j + 1, there is an edge (i− 1, j)→ (i, j) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.

106



Example 3.6: A = ballad, B = handball

d h a n d b a l l

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4 → 5 → 6 → 7 → 8
b

→ ⇒ → → → ⇒
1 1 → 2 → 3 → 4 4 → 5 → 6 → 7

a

→ → → ⇒ ⇒
2 2 1 ⇒ 2 → 3 → 4 4 → 5 → 6

l

→ → → → ⇒ ⇒ → → → ⇒ →
3 3 2 2 ⇒ 3 → 4 → 5 4 → 5

l

→ → → → → → ⇒ ⇒ → → → ⇒
4 4 3 3 3 ⇒ 4 → 5 5 4

a

→ → → → → → → → → → ⇒ ⇒

5 5 4 4 4 4 4 ⇒ 5 5
d

→ → → → → → → → → → → ⇒ ⇒ ⇒

6 6 5 5 4 → 5 5 5 ⇒ 6

There are 7 paths from (0,0) to (6,8) corresponding to 7 different optimal
edit sequences and alignments, including the following three:

IIIINNNNDD SNISSNIS SNSSINSI
----ballad ba-lla-d ball-ad-
handball-- handball handball

107



Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 3.7: Given a text T [1..n], a pattern P [1..m] and an integer k ≥ 0,
report all positions j ∈ [1..m] such that ed(P, T (j − `...j]) ≤ k for some ` ≥ 0.

The factor T (j − `...j] is called an approximate occurrence of P .

There can be multiple occurrences of different lengths ending at the same
position j, but usually it is enough to report just the end positions.
We ask for the end position rather than the start position because that is
more natural for the algorithms.

108



Define the values gij with the recurrence:

g0j = 0, 0 ≤ j ≤ n,
gi0 = i, 1 ≤ i ≤ m, and

gij = min


gi−1,j−1 + δ(P [i], T [j])

gi−1,j + 1

gi,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n.

Theorem 3.8: For all 0 ≤ i ≤ m, 0 ≤ j ≤ n:

gij = min{ed(P [1..i], T (j − `...j]) | 0 ≤ ` ≤ j} .
In particular, j is an ending position of an approximate occurrence if and
only if gmj ≤ k.

109



Proof. We use induction with respect to i+ j.

Basis:
g00 = 0 = ed(ε, ε)

g0j = 0 = ed(ε, ε) = ed(ε, T (j − 0..j]) (min at ` = 0)

gi0 = i = ed(P [1..i], ε) = ed(P [1..i], T (0− 0..0]) (0 ≤ ` ≤ j = 0)

Induction step: Essentially the same as in the proof of Theorem 3.2.

110



Example 3.9: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m ⇒
1 1 1 0 1 1 1 1 1 1

a ⇒
2 2 2 1 0 1 2 2 2 2

t

⇒

3 3 3 2 1 1 2 3 3 3
c ⇒

4 4 4 3 2 1 2 3 4 4
h ⇒

5 5 5 4 3 2 1 2 3 4

One occurrence ending at position 6.

111



Algorithm 3.10: Approximate string matching
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(6) if qmj ≤ k then output j

• Time and space complexity is O(mn).

• The space complexity can be reduced to O(m) by storing only one
column as in Algorithm 3.5.

112



Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gij):

A diagonal d, −m ≤ d ≤ n, consists of the cells gij with j − i = d.
Every diagonal in (gij) is monotonically increasing.

Example 3.11: Diagonals -3 and 2.

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m –

1 1 1 0 1 1 1 1 1 1
a –

2 2 2 1 0 1 2 2 2 2
t –

3 3 3 2 1 1 2 3 3 3
c – –

4 4 4 3 2 1 2 3 4 4
h – –

5 5 5 4 3 2 1 2 3 4

113



More specifically, we have the following property.

Lemma 3.12: For every i ∈ [1..m] and every j ∈ [1..n],
gij = gi−1,j−1 or gij = gi−1,j−1 + 1.

Proof. By definition, gij ≤ gi−1,j−1 + δ(P [i], T [j]) ≤ gi−1,j−1 + 1. We show
that gij ≥ gi−1,j−1 by induction on i+ j.

The induction assumption is that gpq ≥ gp−1,q−1 when p ∈ [1..m], q ∈ [1..n] and
p+ q < i+ j. At least one of the following holds:

1. gij = gi−1,j−1 + δ(P [i], T [j]). Then gij ≥ gi−1,j−1.

2. gij = gi−1,j + 1 and i > 1. Then

gij = gi−1,j + 1
ind. assump.

≥ gi−2,j−1 + 1
definition
≥ gi−1,j−1

3. gij = gi,j−1 + 1 and j > 1. Then

gij = gi,j−1 + 1
ind. assump.

≥ gi−1,j−2 + 1
definition
≥ gi−1,j−1

4. gij = gi−1,j + 1 and i = 1. Then gij ≥ 0 = gi−1,j−1.

5. gij = gi,j−1 + 1 and j = 1. Then gi1 ≤ gi−1,0 + 1 = gi0. Thus this case is
not possible. �

114



We can reduce computation using diagonal monotonicity:

• Whenever the value on a diagonal d grows larger than k, we can discard
d from consideration, because we are only interested in values at most k
on the row m.

• We keep track of the smallest undiscarded diagonal d. Each column is
computed only up to diagonal d.

Example 3.13: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m
1 1 1 0 1 1 1 1 1 1

a
2 2 1 0 1 2 2 2 2

t
1 1 2 3

c
1 2 3

h
1 2

115



The position of the smallest undiscarded diagonal on the current column is
kept in a variable top.

Algorithm 3.14: Ukkonen’s cut-off algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to min(k,m) do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) top← min(k + 1,m)
(4) for j ← 1 to n do
(5) for i← 1 to top do
(6) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(7) while gtop,j > k do top← top− 1
(8) if top = m then output j
(9) else top← top+ 1

116



The time complexity is proportional to the computed area in the
matrix (gij).

• The worst case time complexity is still O(mn).

• The average case time complexity is O(kn). The proof is not trivial.

There are many other algorithms based on diagonal monotonicity. Some of
them achieve O(kn) worst case time complexity.

117


