
Karp–Rabin

The Karp–Rabin hash function (Definition 1.39) was originally developed for
solving the exact string matching problem. The idea is to compute the hash
values or fingerprints H(P ) and H(T [j..j +m)) for all j ∈ [0..n−m].

• If H(P ) 6= H(T [j..j +m)), then we must have P 6= T [j..j +m).

• If H(P ) = H(T [j..j +m), the algorithm compares P and T [j..j +m) in
brute force manner. If P 6= T [j..j +m), this is a false positive.

The text factor fingerprints are computed in a sliding window fashion. The
fingerprint for T [j + 1..j + 1 +m) = αT [j +m] is computed from the
fingerprint for T [j..j +m) = T [j]α in constant time using Lemma 1.40:

H(T [j + 1..j + 1 +m)) = (H(T [j]α)−H(T [j]) · rm−1) · r +H(T [j +m])) mod q

= (H(T [j..j +m))− T [j] · rm−1) · r + T [j +m]) mod q .

A hash function that supports this kind of sliding window computation is
known as a rolling hash function.
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Algorithm 2.17: Karp-Rabin

Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) Choose q and r; s← rm−1 mod q
(2) hp← 0;ht← 0
(3) for i← 0 to m− 1 do hp← (hp · r + P [i]) mod q // hp = H(P )
(4) for j ← 0 to m− 1 do ht← (ht · r + T [j]) mod q
(5) for j ← 0 to n−m− 1 do
(6) if hp = ht then if P = T [j . . . j +m) then return j
(7) ht← ((ht− T [j] · s) · r + T [j +m]) mod q
(8) if hp = ht then if P = T [j . . . j +m) then return j
(9) return n

On an integer alphabet:

• The worst case time complexity is O(mn).

• The average case time complexity is O(m+ n).
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Aho–Corasick Algorithm

Given a text T and a set P = {P1.P2, . . . , Pk} of patterns, the multiple exact
string matching problem asks for the occurrences of all the patterns in the
text. The Aho–Corasick algorithm is an extension of the Morris–Pratt
algorithm for multiple exact string matching.

Aho–Corasick uses the trie trie(P) as an automaton and augments it with a
failure function similar to the Morris-Pratt failure function.

Example 2.18: Aho–Corasick automaton for P = {he, she, his, hers}.
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Algorithm 2.19: Aho–Corasick
Input: text T , pattern set P = {P1, P2, . . . , Pk}.
Output: all pairs (i, j) such that Pi occurs in T ending at j.

(1) Construct AC automaton
(2) v ← root
(3) for j ← 0 to n− 1 do
(4) while child(v, T [j]) = ⊥ do v ← fail(v)
(5) v ← child(v, T [j])
(6) for i ∈ patterns(v) do output (i, j)

Let Sv denote the string that node v represents.

• root is the root and child() the child function of the trie.

• fail(v) = u such that Su is the longest proper suffix of Sv represented by
any trie node u.

• patterns(v) is the set of pattern indices i such that Pi is a suffix of Sv.

At each stage, the algorithm computes the node v such that Sv is the
longest suffix of T [0..j] represented by any node.
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Algorithm 2.20: Aho–Corasick trie construction
Input: pattern set P = {P1, P2, . . . , Pk}.
Output: AC trie: root, child() and patterns().

(1) Create new node root
(2) for i← 1 to k do
(3) v ← root; j ← 0
(4) while child(v, Pi[j]) 6= ⊥ do
(5) v ← child(v, Pi[j]); j ← j + 1
(6) while j < |Pi| do
(7) Create new node u
(8) child(v, Pi[j])← u
(9) v ← u; j ← j + 1

(10) patterns(v)← {i}

This is the standard trie insertion (Algorithm 1.3) except for the
computation of patterns():

• The creation of a new node v initializes patterns(v) to ∅.

• At the end, i ∈ patterns(v) iff v represents Pi.
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Algorithm 2.21: Aho–Corasick automaton construction
Input: AC trie: root, child() and patterns()
Output: AC automaton: fail() and updated AC trie

(1) Create new node fallback
(2) for c ∈ Σ do child(fallback, c)← root
(3) fail(root)← fallback
(4) queue← {root}
(5) while queue 6= ∅ do
(6) u← popfront(queue)
(7) for c ∈ Σ such that child(u, c) 6= ⊥ do
(8) v ← child(u, c)
(9) w ← fail(u)

(10) while child(w, c) = ⊥ do w ← fail(w)
(11) fail(v)← child(w, c)
(12) patterns(v)← patterns(v) ∪ patterns(fail(v))
(13) pushback(queue, v)

The algorithm does a breath first traversal of the trie. This ensures that
correct values of fail() and patterns() are already computed when needed.
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fail(v) is correctly computed on lines (8)–(11):

• The nodes that represent suffixes of Sv that are exactly
fail∗(v) = {v, fail(v), fail(fail(v)), . . . , root}.

• Let u = parent(v) and child(u, c) = v. Then Sv = Suc and a string S is a
suffix of Su iff Sc is suffix of Sv. Thus for any node w

– If w ∈ fail∗(v), then parent(fail(v)) ∈ fail∗(u).

– If w ∈ fail∗(u) and child(w, c) 6= ⊥, then child(w, c) ∈ fail∗(v).

• Therefore, fail(v) = child(w, c), where w is the first node in fail∗(u)
other than u such that child(w, c) 6= ⊥.

patterns(v) is correctly computed on line (12):

patterns(v) = {i | Pi is a suffix of Sv}
= {i | Pi = Sw and w ∈ fail∗(v)}
= {i | Pi = Sv} ∪ patterns(fail(v))
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Assuming σ is constant:

• The search time is O(n).

• The space complexity is O(m), where m = ||P||.

– Implementation of patterns() requires care (exercise).

• The preprocessing time is O(m), where m = ||P||.

– The only non-trivial issue is the while-loop on line (10).

– Let root, v1, v2, . . . , v` be the nodes on the path from root to a node
representing a pattern Pi. Let wj = fail(vj) for all j. Let depth(v) be
the depth of a node v (depth(root) = 0).

– When processing vj and computing wj = fail(vj), we have
depth(wj) = depth(wj−1) + 1 before line (10) and
depth(wj) ≤ depth(wj−1) + 1− tj after line (10), where tj is the
number of rounds in the while-loop.

– Thus, the total number of rounds in the while-loop when processing
the nodes v1, v2, . . . , v` is at most ` = |Pi|, and thus over the whole
algorithm at most ||P||.

The analysis when σ is not constant is left as an exercise.
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