582487 Data Compression Techniques (Spring 2012)

Exercises 4 (15 February)

Solve the following problems before the exercise session and be prepared to present your solutions at the session.

- 1. Let $T_k = X^{n/k}$, where X is a random (uncompressible) string of length k over a binary alphabet. What is the (asymptotic) compression ratio of the following algorithms on T_k ?
 - (a) LZ77 with $d_{\text{max}} = l_{\text{max}}$ and fixed length encoding
 - (b) LZ77 without length or distance limits and γ coding
- 2. Let T_k be as in Problem 1. What is the (asymptotic) compression ratio of LZ78 on T_k ?
- 3. Encode the following string using LZFG:

how much wood would a woodchuck chuck if a woodchuck could chuck wood

4. Let R be the string of terminals and non-terminals resulting from running Re-Pair on a text T. Let α and β be two substrings of R. Show that

 $expand(\alpha) = expand(\beta)$ if and only if $\alpha = \beta$

where expand(α) is the result of repeatedly replacing non-terminals in α with their right-hand side until there are no non-terminals left.

- 5. Let $\Sigma = \{\$, \exists, a, b, c, \dots, z\}$ with the ordering $\$ < \exists < a < b < \dots < z$.
 - (a) Decode lnmthm_caaaain\$iiin.
 - (b) Encode lnmthm_caaaain\$iiin using MTF encoding. The initial list contains the symbols in alphabetical order.
- 6. (a) Compute the BWT of abcabcabc without the sentinel symbol \$.
 - (b) Compute the inverse BWT assuming the position of the last text symbol has been provided. What problem do you encounter? How can you solve it?