Compressed Graphs

We will next describe a simple representation for graphs.

Let G = (V,E) be a directed graph, where V =[0.n) and ECV xV
with |E| = m.

We will use adjency lists to represent the graph. For each v e V, let
Sy=(weV:(ww)eFE)
be the adjacency list for v.

Let S[0..m) = SpS1...S5,-1 be the concatenation of the adjacency lists.
Let L[0..n) be the sizes of the adjacency lists, i.e., L[v] = |S,|.

Now each e € [0..m) represents an edge:
target(e) = accessg(e)
source(e) = searchy(e)
The edges incident to a node v can be listed as follows:
out-edges(v) = [sumy(v),sum(v + 1))

in-edges(v) = {selects(v,1) | i € [0..rankgs(v,m))}

141

Thus the graph G is represented by:

e A string S[0..m) over the alphabet V = [0..n) with support for
operations access, rank and select.

e An array L[0..n) of non-negative integers summing up to m with
support for operations sum and search.

Both can be stored in compressed form.
Example 3.16:

S= bcdcde d
L= 3 1201

Additional attributes such as weights can be associated to nodes using an
array A[0..n) and to edges using an array B[0..m).

142

Balanced Parentheses

Let B[0..2n) be a bit vector with n 1-bits and n 0-bits. Define
excessp(i) = rank-1g(7) — rank-0pg(7)

B is a balanced parentheses (BP) sequence if excessg(i) > 0 for all
i € [0..2n]. Then each 1-bit can be interpreted as an opening parenthesis
“(** and each 0-bit as a closing parenthesis “)".

Example 3.17: (((
11

)) CC)) C)))
100110101000
excess | 01232123232321

0

Interesting operations on BP sequences include finding the matching

parenthesis and the nearest enclosing pair of parentheses:

find-closep(i) = min{j € [+ 1..n) | excessp(j + 1) = excessp(i)} for B[i] =1

find-openg(j) = max{i € [0..5) | excessp(i) = excessp(j + 1)} for B[j]=0
enclosep(i) = max{k € [0..7) | excessp(k) < excessgp(i)} for Bli] =1

The operations can be supported in constant time using o(n) bits of space
in addition to the bit vector. The details are omitted.

143

Succinct Trees

Any rooted tree of n nodes can be represented as a BP sequence of 2n bits:

e A leaf u is represented by BP(u) = 10.

e An internal node v with children wi,uo,...,u; IS represented by
BP(v) = 1BP(u1)BP(u2)...BP(u:)O0.

Example 3.18: ((())(000))

(CO)Y O O 0))

A pointer to a node v is expressed as the starting position of BP(v) in the
whole sequence. Interesting operations include (the ones on the right
assume that the requested node exists):

is-leaf(v) = [accessg(v + 1) = 0] parent(v) = encloseg(v)
depth(v) = excessg(v) first-child(v) = v+ 1
preorder-rank(v) = rank-1z(v) next-sibling(v) = find-closeg(v) + 1

144

Sparse bit vectors

Many applications involve sparse bit vectors with few 1-bits. The following
is a useful result for analysing them:

Lemma 3.19: Let B[0..u) be a bit vector with n < /2 1-bits. Then
uHo(B) = nlog(u/n) + O(n).

Proof. Since Inx <z —1 for all x > 0,
In(u/(u—n)) < (u/(u—n)) —1=n/(u—n).

Noting that logx = (loge) Inz, where loge ~ 1.44, we get
u

uHo(B) = nlog ¢ + (u —n) log
n uU—n
n

< nlog— + (u—n)(loge)
n
=

Thus such bit vectors with support for rank and select can be stored in
uHo(B) = nlog(u/n) + O(n) + o(u) bits. We used this result on slide 138.

Gap encoding is another method for compressing sparse bit vectors: Encode
gaps between 1-bits using v or 6 encoding. It can be made to support rank
and select too.

U
= nlog—+nloge.
u—n n

145

Summary

e We have seen how data structures with nontrivial functionality can be
implemented in small additional space even when the primary data is in
compressed form.

e We have seen how complex data structures can be built using a toolbox
of basic components and techniques such as bit vectors with rank and
select. This is not unlike traditional data structures but the toolbox is
different.

e [hese data structures are practical: they are used in real world
applications in bioinformatics, and there are a couple of libraries with
implementations of the basic components (see course home page).

e All the data structures we have seen are static: they do not support
operations that modify the data. There are dynamic versions of many
of the data structures, including dynamic bit vectors, though the
dynamicity often comes at a cost in time and/or space.

146

