
Compressed Graphs

We will next describe a simple representation for graphs.

• Let G = (V,E) be a directed graph, where V = [0..n) and E ⊆ V × V
with |E| = m.

• We will use adjency lists to represent the graph. For each v ∈ V , let

Sv = (w ∈ V : (v, w) ∈ E)

be the adjacency list for v.

• Let S[0..m) = S0S1 . . . Sn−1 be the concatenation of the adjacency lists.
Let L[0..n) be the sizes of the adjacency lists, i.e., L[v] = |Sv|.

• Now each e ∈ [0..m) represents an edge:

target(e) = accessS(e)

source(e) = searchL(e)

• The edges incident to a node v can be listed as follows:

out-edges(v) = [sumL(v), sumL(v + 1))

in-edges(v) = {selectS(v, i) | i ∈ [0..rankS(v,m))}
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Thus the graph G is represented by:

• A string S[0..m) over the alphabet V = [0..n) with support for
operations access, rank and select.

• An array L[0..n) of non-negative integers summing up to m with
support for operations sum and search.

Both can be stored in compressed form.

Example 3.16:

S = bcd c de d
L = 3 1 2 0 1

a

b

c

d

e

Additional attributes such as weights can be associated to nodes using an
array A[0..n) and to edges using an array B[0..m).
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Balanced Parentheses

Let B[0..2n) be a bit vector with n 1-bits and n 0-bits. Define

excessB(i) = rank-1B(i)− rank-0B(i)

B is a balanced parentheses (BP) sequence if excessB(i) ≥ 0 for all
i ∈ [0..2n]. Then each 1-bit can be interpreted as an opening parenthesis
“(“ and each 0-bit as a closing parenthesis “)”.

Example 3.17: ( ( ( ) ) ( ( ) ( ) ( ) ) )
1 1 1 0 0 1 1 0 1 0 1 0 0 0

excess 0 1 2 3 2 1 2 3 2 3 2 3 2 1 0

Interesting operations on BP sequences include finding the matching
parenthesis and the nearest enclosing pair of parentheses:

find-closeB(i) = min{j ∈ [i+ 1..n) | excessB(j + 1) = excessB(i)} for B[i] = 1

find-openB(j) = max{i ∈ [0..j) | excessB(i) = excessB(j + 1)} for B[j] = 0

encloseB(i) = max{k ∈ [0..i) | excessB(k) < excessB(i)} for B[i] = 1

The operations can be supported in constant time using o(n) bits of space
in addition to the bit vector. The details are omitted.
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Succinct Trees

Any rooted tree of n nodes can be represented as a BP sequence of 2n bits:

• A leaf u is represented by BP(u) = 10.

• An internal node v with children u1, u2, . . . , uk is represented by
BP(v) = 1BP(u1)BP(u2) . . .BP(uk)0.

Example 3.18: ((())(()()()))

() () () () ) )(( ( )

A pointer to a node v is expressed as the starting position of BP(v) in the
whole sequence. Interesting operations include (the ones on the right
assume that the requested node exists):

is-leaf(v) = [accessB(v + 1) = 0]

depth(v) = excessB(v)

preorder-rank(v) = rank-1B(v)

parent(v) = encloseB(v)

first-child(v) = v + 1

next-sibling(v) = find-closeB(v) + 1
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Sparse bit vectors

Many applications involve sparse bit vectors with few 1-bits. The following
is a useful result for analysing them:

Lemma 3.19: Let B[0..u) be a bit vector with n ≤ u/2 1-bits. Then
uH0(B) = n log(u/n) +O(n).

Proof. Since lnx ≤ x− 1 for all x > 0,

ln(u/(u− n)) ≤ (u/(u− n))− 1 = n/(u− n).

Noting that logx = (log e) lnx, where log e ≈ 1.44, we get

uH0(B) = n log
u

n
+ (u− n) log

u

u− n
≤ n log

u

n
+ (u− n)(log e)

n

u− n
= n log

u

n
+ n log e.

�

Thus such bit vectors with support for rank and select can be stored in
uH0(B) = n log(u/n) +O(n) + o(u) bits. We used this result on slide 138.

Gap encoding is another method for compressing sparse bit vectors: Encode
gaps between 1-bits using γ or δ encoding. It can be made to support rank
and select too.
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Summary

• We have seen how data structures with nontrivial functionality can be
implemented in small additional space even when the primary data is in
compressed form.

• We have seen how complex data structures can be built using a toolbox
of basic components and techniques such as bit vectors with rank and
select. This is not unlike traditional data structures but the toolbox is
different.

• These data structures are practical: they are used in real world
applications in bioinformatics, and there are a couple of libraries with
implementations of the basic components (see course home page).

• All the data structures we have seen are static: they do not support
operations that modify the data. There are dynamic versions of many
of the data structures, including dynamic bit vectors, though the
dynamicity often comes at a cost in time and/or space.
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