
Other notable rank/select data structures for sequences include:

• The multiary wavelet tree replace the binary tree with a higher degree
tree and supports operations in O(1 + (logσ)/ log logn) time.

• The GMR data structure needs n(logσ + o(logσ)) bits and supports
select in O(1) time, and rank and access O(log logσ) time.

• Combining multiary wavelet trees with GMR using a technique called
alphabet partitioning need nH0(S) + o(n(H0(S) + 1)) bits and supports
select in O(1) time, and rank and access O(log logσ) time.

The last two have been implemented and can be better than wavelet trees
for really large alphabets.

Wavelet trees support other queries too, including two-dimensional
orthogonal range queries:

range countS([b..e), [x..y)) = |{i ∈ [b..e) | S[i] ∈ [x..y)}|

129

Compressed Text Indexes

With a text as the data, we are interested in operations on substrings rather
than individual symbols. In particular, text indexes support pattern matching
queries.

Let T [0..n) be a text over an alphabet Σ = [0..σ). Define the following
operations:

extractT(i, j) = T [i..j) for 0 ≤ i ≤ j ≤ n
countT(P) = |{i ∈ [0..n−m) | T [i..i+m) = P}| for P ∈ Σm, m ∈ [1..n)

locateT(P) = {i ∈ [0..n−m) | T [i..i+m) = P} for P ∈ Σm, m ∈ [1..n)

Example 3.10: T = banana$ and P = ana:

countT(P) = 2

locateT(P) = {1,3}

130

FM-Index

FM-index is a text index based on the Burrows–Wheeler transform. Recall:

• The BW-matrix M contains the rotations of the text in lexicographical
order. The last column L is the transform. The first column is called F .

• The suffix array SA, maps the rows into text positions.

• A permutation called LF-mapping can be used for recovering the text in
reverse order:

T [n− i+ 1] = L[LFi(r0)]

where r0 is the row containing T .

Example 3.11: T = banana$, r0 = 4.

SA F L
6 $ b a n a n a
5 a $ b a n a n
3 a n a $ b a n
1 a n a n a $ b
0 b a n a n a $
4 n a $ b a n a
2 n a n a $ b a

a

n

n

b

$

a

a

F
$

a

a

a

b

n

n

L

131

Let us first see, how to implement LF-mapping in compressed form.

• LF-mapping maps the jth occurrence of a symbol a in L into the jth
occurrence of a in F . Thus

LF(i) = selectF(a, rankL(a, i)) where a = accessL(i)

• LF-mapping is also the permutation that stably sorts L. Thus

LF(i) = sumC(a) + rankL(a, i)) where a = accessL(i)

where C[0..σ) contains the symbol counts, i.e, C[a] is the number of
occurrences of a in L (or T or F).

• Since σ is usually fairly small, we can implement sumC as an array
sumC[0..σ) using O(σ logn) bits.

• rankL can be implemented as a wavelet tree. Since L is a permutation
of T , H0(L) = H0(T). Thus the space is close to the zeroth order
entropy of the text.

• The time complexity of computing LF(i) is O(logσ).

132

We can reduce the space for rankL using compression boosting. Recall that∑
w∈Σk

|Lw|H0(Lw) = |T |Hk(T)

where Lw are the k-context blocks of L.

Three ways of achieving compression boosting have been described:

• Optimal compression boosting uses an algorithm to compute an
optimal partitioning of L as described earlier. There is a separate
wavelet tree for each block.

• Fixed block compression boosting is the same except the blocks are not
chosen according to context but have all the same size, which simplifies
implementation.

• When the RRR method is used for implementing the bit vectors,
compression boosting is achieved because of the way RRR divides the
bit vectors into blocks and compresses them. This is called implicit
compression boosting.

All three methods are coarsely optimal, i.e., they use nHk(T) + o(n logσ)
bits for any k = o(logσ n).

133

Let us now describe how the operation extract is implemented.

• To recover T [i..j), we use the LF-mapping as when recovering the
whole text, but now we start at the row T [j..n)T [0..j) and recover only
j − i characters.

• To find the row, we could use the inverse suffix array SA−1, the inverse
permutation of SA, that maps text positions to matrix rows.

Example 3.12: 0 1 2 3 4 5 6
T b a n a n a $

SA−1 4 3 6 2 5 1 0

• However, SA−1 is too large and usually incompressible, so we store only
every hth entry of SA−1. This is called sampling. We need (n/h) logn
bits of space.

• To recover T [i..j), we will in fact recover T [i..k), where k = hdj/he is
the nearest sample position to the right of j. The time complexity is
O((j − i+ h) logσ).

134

Now let us consider the pattern matching operations.

• Each occurrence of a pattern P is a prefix of some rotation, and these
rotations form a consecutive range in the matrix.

• The pattern matching operations are based on identifying that range.

Example 3.13: The BW-matrix of T = banana$ and the occurrences of
patterns ana and na.

F L
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

135

The range of rows for a pattern P can be found using a procedure called
backward search.

• For i ∈ [0..m), let [bi..ei) be the range for the pattern suffix P [m− i..m)
of length i.

• Backward search starts with [b0..e0) = [0..n) and then computes each
[bi+1..ei+1) from [bi..ei).

Example 3.14: Backward search of a pattern P = ana in a text
T = banana$.

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

−→

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

−→

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

−→

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

• Each row j ∈ [bi..ei) corresponds to an occurrence of P [m− i..m). The
symbol preceding that occurrence is L[j]. Thus if L[j] = P [m− i−1], we
have an occurrence of P [m− i− 1..m). The corresponding row is LF (j).

136

• To compute bi+1, we have to find the first row j ∈ [bi..ei) such that
L[j] = a = P [m− i− 1]. That row is j = selectL(a, rankL(a, bi)). Thus

bi+1 = LF(selectL(a, rankL(a, bi)))

= sumC(a) + rankL(a, selectL(a, rankL(a, bi)))

= sumC(a) + rankL(a, bi)

where we used the fact that rankL(a, selectL(a, k)) = k.

• Similarly, ei+1 = sumC(a) + rankL(a, ei).

Here is the final procedure:

BackwardSearch(P [0..m− 1])
(1) b← 0; e← n
(2) for i← m− 1 downto 0 do
(3) a← P [i]
(4) b← sumC(a) + rankL(a, b)
(5) e← sumC(a) + rankL(a, e)
(6) return [b..e)

To implement count, we can simply return the range size e− b. Locate is
more complicated.

137

Backward search returns a range of rows. To implement locate, we have to
turn the row numbers into text positions.

• The suffix array maps rows into text positions, but it is too large, so we
use sampling.

• To find the text position of a row r, we follow LF-mapping until we
reach a row that belongs to the sample. If we obtain the text position i
after ` steps of LF-mapping, the text position for row r is i+ `.

• To ensure that less than h steps of LF-mapping is required, we need to
include every hth text position in the sample. Then we need O(h logσ)
time for each pattern occurrence.

• The set of rows in the sample is irregular, so we implement the suffix
array as a sparse array with the help of a bit vector as described earlier.

• We need O((n/h) logn) bits for the suffix array values. In uncompressed
form the bit vector needs n+ o(n) bits. A compressed bit vector can be
shown to fit in O((n/h) logh) + o(n) bits.

138

Theorem 3.15: A text T [0..n) over an alphabet [0..σ), can be stored in

nHk(T) + o(n logσ)

bits, for any k = o(logσ n), so that

• countT(P) can be computed in O(|P | logσ) time.

With an additional O((n/h) logn) bits, for any h ≥ 1,

• extractT(i..j) can be computed in O((j − i+ h) logσ) time

• locateT(P) can be computed in O(|P |+ hq) logσ) time, where q is the
number of occurrences of P in T .

Setting h = ω(logσ n) makes this a coarsely optimal compression method.

The logσ factor in the times can be reduced using multiary wavelet trees or
alphabet partitioning instead of standard wavelet trees.

139

Other notable types of compressed text indexes include:

• Compressed suffix arrays (CSAs) are based on a compressed
representation of LF−1 (often called Ψ), the inverse permutation of LF.
CSAs are quite similar to FM indexes, but the search procedures based
on LF−1 differ from those based on LF.

• Lempel-Ziv (LZ) indexes are based on Lempel-Ziv compression of the
text. The data structures and algorithms involved are quite different
from FM indexes, as are their properties. LZ indexes are often slow on
counting but fast on locating and extracting.

• Compressed suffix trees are often based on CSAs but add more data
structures to simulate suffix trees, which are powerful text indexes
supporting many operations besides pattern matching (see the course
String Processing Algorithms, for example).

There are many variants on these text indexes, both theoretical and
practical. The area is still under active research.

140

