
Burrows–Wheeler Transform

The Burrows–Wheeler transform (BWT) is a transformation of the text
that makes it easier to compress. It can be defined as follows:

• Let T [0..n) be a text. For any i ∈ [0..n), T [i..n)T [0..i) is a rotation of T .
Let M be the n× n matrix, where the rows are all the rotations of T in
lexicographical order.

• All columns of M are permutations of T . In particular:
– The first column F contains the text symbols in order.
– The last column L is the BWT of T .

Example 2.14: The BWT of T = banana$ is L = annb$aa.

F L
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

88

Surprisingly, BWT is invertible, i.e., T can be reconstructed from the
BWT L. We will later see how.

The compressibility of the BWT is based on sorting by context:

• Consider a symbol s that is followed by a string w in the text. (The
text is considered to be cyclic.) The string w is called a right context of
s. In the matrix M, there is a row beginning with w and ending with s.

• Because the rows are sorted, all symbols with the right context w
appear consecutively in the BWT. This part of the BWT sharing the
context w is called a w-context block and is denoted by Lw.

• Context blocks are often highly compressible as they consist of symbols
occurring in the same context.

Example 2.15: In Example 2.14, Ln = aa.

Here we have right contexts while earlier with higher order compression we
considered left contexts. This makes no essential difference. Furthermore,
the text is often reversed before computing the BWT, which turns left
contexts into right contexts and vice versa.

89

Example 2.16: The context block Lht for a reversed English text, which
corresponds to left context th in unreversed text.

oreeereoeeieeeeaooeeeeeaereeeeeeeeeeeeereeeeeeeeeeaaeeaeeeeeeee
eaeeeeeeeeaeieeeeeeeeereeeeeeeeeeeeeeeeeeeeeeeeaeeieeeeeeaaieee
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeieeeeeeeeeeeeeeeeeeeeeeeeeeeeaee
eeeeeeeeeeeeeeeeeeereeeeeeeeeeeieaeeeeieeeeaeeeeeeeeeieeeeeeeee
eeeieeeeeeeeioaaeeaoereeeeeeeeeeaaeaaeeeeieeeeeeeieeeeeeeeaeeee
eeaeeeeeereeeaeeeeeieeeeeeeeiieee. e eeeeiiiiii e ,
i o oo e eiiiiee,er , , , . iii

Some of those symbols in (unreversed) context:

t raise themselves, and the hunter, thankful and r
ery night it flew round the glass mountain keeping
agon, but as soon as he threw an apple at it the b
f animals, were resting themselves. "Halloa, comr
ple below to life. All those who have perished on
that the czar gave him the beautiful Princess Mil

ng of guns was heard in the distance. The czar an
cked magician put me in this jar, sealed it with t
o acted as messenger in the golden castle flew pas
u have only to say, ’Go there, I know not where; b

90

The context blocks are closely related to empirical entropies.

Theorem 2.17: For any text T and any k,∑
w∈Σk

|Lw|H0(Lw) = |T |Hk(T).

Proof. Let us first note that the equation for the kth order entropy proven
in Exercise 3.4 is symmetric. Thus it does not matter whether we talk
about the text or its reversal, or about the left or the right context.

Recall that nw is the number of occurrences of w in the text. Then
nw = |Lw| and

H0(Lw) = −
∑
s∈σ

nsw

nw
log

nsw

nw
= −

∑
s∈σ

nws

nw
log

nws

nw
.

The strings Lw, w ∈ Σk, are distinct, i.e, they form a partitioning of the
BWT into σk blocks (some of which may be empty). Furthermore,∑

w∈Σk

|Lw|H0(Lw) = −
∑
w∈Σk

nw
∑
s∈σ

nws

nw
log

nws

nw
= nHk(T).

�

91

According to the theorem, zeroth order compression of the context blocks
achieves kth order compression of the text. This is known as compression
boosting.

As we noted earlier, using a single value of k everywhere is not optimal in
general. There exists a linear time algorithm for finding a sequence of
variable length contexts w1, w2, . . . , wh such that Lw1Lw2 . . . Lwh

= L and the
total compressed size is minimized. This is called optimal compression
boosting.

For the best compression, we may need to take multiple context lengths
into account. With BWT this is fairly easy using adaptive methods:

• For most symbols s in the BWT, the nearest preceding symbols share a
long context with s, symbols that are a little further away share a short
context with s, and symbols far away share no context at all.

• Thus adaptive methods that forget, i.e., give higher weight to the
nearest preceding symbols are often good compressors of the BWT.

• Such methods can be context oblivious: They achieve good
compression for all contexts without any knowledge about context
blocks or context lengths.

92

Run-length encoding

An extreme form of forgetting is run-length encoding (RLE). RLE encodes
a run sk of k consecutive occurrences of a symbol s by the pair 〈s, k〉.
Nothing beyond the run has an effect on the encoding.

Example 2.18: The run-length encoding of Lht from Example 2.16 begins:
〈o,1〉 〈r,1〉 〈e,3〉 〈r,1〉 〈e,1〉 〈o,1〉 〈e,2〉 〈i,1〉 〈e,4〉 〈a,1〉 〈o,2〉 〈e,5〉.

RLE can be wastful when there are many runs of length one. A simple
optimization is to encode the (remaining) run-length only after two same
symbols in a row. This could be called lazy RLE.

Example 2.19: The lazy RLE of Lht from Example 2.16 begins:
oree1reoee0iee2aoo0ee3.

RLE alone does not compress the BWT very well in general but can be
useful when combined with other methods.

93

Move-to-front

Move-to-front (MTF) encoding works like this:

• Maintain a list of all symbols of the alphabet. A symbol is encoded by
its position on the list. Note that the size of the alphabet stays the
same.

• When a symbol occurs, it is moved to the front of the list. Frequent
symbols tend to stay near the front of the list and are therefore
encoded with small values.

After an MTF encoding of the BWT, the smallest values tend to be the
most frequent ones throughout the sequence. Thus a single global model
can achieve a good compression. This is what makes MTF encoding
context oblivious.

Example 2.20: The MTF encoding
of L = annb$aa is 0202330.

list next symbol code
abn$ a 0
abn$ n 2
nab$ n 0
nab$ b 2
bna$ $ 3
$bna a 3
a$bn a 0

94

There are also other techniques that transform the BWT into a sequence of
numbers.

Whatever the final sequence is — the plain BWT, an RLE encoded BWT,
an MTF encoded BWT, or something else — it needs to be compressed
using an entropy encoder to achieve the best compression. However, the
model needed is much simpler than what would be needed for direct
encoding of the text. For example:

• The plain BWT can be compressed well using a single zeroth order
adaptive model. For a similar compression rate, the text needs to be
encoded using a complex higher order model.

• The MTF encoded BWT can be compressed well using a single zeroth
order semiadaptive model. An equivalent direct text compression would
need a higher order semiadaptive model.

95

Computing and inverting BWT

Let us assume that the last symbol of the text T [n− 1] = $ does not appear
anywhere else in the text and is smaller than any other symbol. This
simplifies the algorithms.

To compute the BWT, we need to sort the rotations. With the extra
symbol at the end, sorting rotations is equivalent to sorting suffixes. The
sorted array of all suffixes is called the suffix array (SA).

F L
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

SA
6 $
5 a $
3 a n a $
1 a n a n a $
0 b a n a n a $
4 n a $
2 n a n a $

There are linear time algorithms for suffix sorting. The best ones are
complicated but fairly fast in practice. We will not described them here, but
they are covered on the course String Processing Algorithms.

96

We will take a closer look at inverting the BWT, i.e., recovering the text T
given its BWT.

Let M′ be the matrix obtained by rotating M one step to the right.

Example 2.21:

M
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

rotate−→

M′

a $ b a n a n
n a $ b a n a
n a n a $ b a
b a n a n a $
$ b a n a n a
a n a $ b a n
a n a n a $ b

• The rows of M′ are the rotations of T in a different order.

• In M′ without the first column, the rows are sorted lexicographically. If
we sort the rows of M′ stably by the first column, we obtain M.

This cycle M rotate−→ M′ sort−→M is the key to inverse BWT.

97

• In the cycle, each column moves one step to the right and is permuted.
The permutation is fully determined by the last column of M, i.e., the
BWT.

• By repeating the cycle, we can reconstruct M from the BWT.

• To reconstruct T , we do not need to compute the whole matrix just
one row.

Example 2.22:

- - - - - - a
- - - - - - n
- - - - - - n
- - - - - - b
- - - - - - $
- - - - - - a
- - - - - - a

rotate−→

a - - - - - -
n - - - - - -
n - - - - - -
b - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -

sort−→

$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a

rotate−→

a $ - - - - -
n a - - - - -
n a - - - - -
b a - - - - -
$ b - - - - -
a n - - - - -
a n - - - - -

sort−→

$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a

rotate
& sort−→

$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a

rotate
& sort−→

$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a

rotate
& sort−→

$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a

rotate
& sort−→

$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

98

The permutation that transforms M′ into M is called the LF-mapping.

• LF-mapping is the permutation that stably sorts the BWT L, i.e.,
F [LF [i]] = L[i]. Thus it is easy to compute from L.

• Given the LF-mapping, we can easily follow a row through the
permutations.

Example 2.23:

a

n

n

b

$

a

a

F
$

a

a

a

b

n

n

L

99

Here is the algorithm.

Algorithm 2.24: Inverse BWT
Input: BWT L[0..n]
Output: text T [0..n]
Compute LF-mapping:

(1) for i← 0 to n do R[i] = (L[i], i)
(2) sort R (stably by first element)
(3) for i← 0 to n do
(4) (·, j)← R[i]; LF [j]← i

Reconstruct text:
(5) j ← position of $ in L
(6) for i← n downto 0 do
(7) T [i]← L[j]
(8) j ← LF [j]
(9) return T

The time complexity is linear if we sort R using counting sort.

100

