
There are many variations and extension of the edit distance, for example:

• Hamming distance allows only the subtitution operation.

• Damerau–Levenshtein distance adds an edit operation:

T Transposition swaps two adjacent characters.

• With weighted edit distance, each operation has a cost or weight,
which can be other than one.

• Allow insertions and deletions (indels) of factors at a cost that is lower
than the sum of character indels.

We will focus on the basic Levenshtein distance.

93



Computing Edit Distance

Given two strings A[1..m] and B[1..n], define the values dij with the
recurrence:

d00 = 0,

di0 = i, 1 ≤ i ≤ m,
d0j = j, 1 ≤ j ≤ n, and

dij = min


di−1,j−1 + δ(A[i], B[j])

di−1,j + 1

di,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n,

where

δ(A[i], B[j]) =

{
1 if A[i] 6= B[j]
0 if A[i] = B[j]

Theorem 4.2: dij = ed(A[1..i], B[1..j]) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n.
In particular, dmn = ed(A,B).

94



Example 4.3: A = ballad, B = handball

d h a n d b a l l

0 1 2 3 4 5 6 7 8
b 1 1 2 3 4 4 5 6 7
a 2 2 1 2 3 4 4 5 6
l 3 3 2 2 3 4 5 4 5
l 4 4 3 3 3 4 5 5 4
a 5 5 4 4 4 4 4 5 5
d 6 6 5 5 4 5 5 5 6

ed(A,B) = dmn = d6,8 = 6.

95



Proof of Theorem 4.2. We use induction with respect to i+ j. For
brevity, write Ai = A[1..i] and Bj = B[1..j].

Basis:
d00 = 0 = ed(ε, ε)

di0 = i = ed(Ai, ε) (i deletions)

d0j = j = ed(ε, Bj) (j insertions)

Induction step: We show that the claim holds for dij, 1 ≤ i ≤ m,1 ≤ j ≤ n.
By induction assumption, dpq = ed(Ap, Bq) when p+ q < i+ j.

The value ed(Ai, Bj) is based on an optimal edit sequence. We have three
cases depending on what the last edit operation is:

N or S: ed(Ai, Bj) = ed(Ai−1, Bj−1)+δ(A[i], B[j]) = di−1,j−1 +δ(A[i], B[j]).

I: ed(Ai, Bj) = ed(Ai, Bj−1) + 1 = di,j−1 + 1.

D: ed(Ai, Bj) = ed(Ai−1, Bj) + 1 = di−1,j + 1.

Since the edit sequence is optimal, the correct value is the minimum of the
three cases, which agrees with the definition of dij. �

96



The recurrence gives directly a dynamic programming algorithm for
computing the edit distance.

Algorithm 4.4: Edit distance
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do di0 ← i
(2) for j ← 1 to n do d0j ← j
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) dij ← min{di−1,j−1 + δ(A[i], B[j]), di−1,j + 1, di,j−1 + 1}
(6) return dmn

The time and space complexity is O(mn).

97



The space complexity can be reduced by noticing that each column of the
matrix (dij) depends only on the previous column. We do not need to store
older columns.

A more careful look reveals that, when computing dij, we only need to store
the bottom part of column j − 1 and the already computed top part of
column j. We store these in an array C[0..m] and variables c and d as shown
below:

d0,j−1

dm,j−1

di−1,j

d0,j

dm,j

di−1,j

d0,j

di−1,j−1

c

di,j di,j−1di,j−1

dm,j−1

di,j

ddi−1,j−1

C[0..m]

98



Algorithm 4.5: Edit distance in O(m) space
Input: strings A[1..m] and B[1..n]
Output: ed(A,B)

(1) for i← 0 to m do C[i]← i
(2) for j ← 1 to n do
(3) c← C[0]; C[0]← j
(4) for i← 1 to m do
(5) d← min{c+ δ(A[i], B[j]), C[i− 1] + 1, C[i] + 1}
(6) c← C[i]
(7) C[i]← d
(8) return C[m]

• Note that because ed(A,B) = ed(B,A) (exercise), we can assume that
m ≤ n.

99



It is also possible to find optimal edit sequences and alignments from the
matrix dij.

An edit graph is a directed graph, where the nodes are the cells of the edit
distance matrix, and the edges are as follows:

• If A[i] = B[j] and dij = di−1,j−1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with N.

• If A[i] 6= B[j] and dij = di−1,j−1 + 1, there is an edge (i− 1, j − 1)→ (i, j)
labelled with S.

• If dij = di,j−1 + 1, there is an edge (i, j − 1)→ (i, j) labelled with I.

• If dij = di−1,j + 1, there is an edge (i− 1, j)→ (i, j) labelled with D.

Any path from (0,0) to (m,n) is labelled with an optimal edit sequence.

100



Example 4.6: A = ballad, B = handball

d h a n d b a l l

0 ⇒ 1 ⇒ 2 ⇒ 3 ⇒ 4 → 5 → 6 → 7 → 8
b

→ ⇒ → → → ⇒
1 1 → 2 → 3 → 4 4 → 5 → 6 → 7

a

→ → → ⇒ ⇒
2 2 1 ⇒ 2 → 3 → 4 4 → 5 → 6

l

→ → → → ⇒ ⇒ → → → ⇒ →
3 3 2 2 ⇒ 3 → 4 → 5 4 → 5

l

→ → → → → → ⇒ ⇒ → → → ⇒
4 4 3 3 3 ⇒ 4 → 5 5 4

a

→ → → → → → → → → → ⇒ ⇒

5 5 4 4 4 4 4 ⇒ 5 5
d

→ → → → → → → → → → → ⇒ ⇒ ⇒

6 6 5 5 4 → 5 5 5 ⇒ 6

There are 7 paths from (0,0) to (6,8) corresponding to, for example, the
following edit sequences and alignments:

IIIINNNNDD SNISSNIS SNSSINSI
----ballad ba-lla-d ball-ad-
handball-- handball handball

101



Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 4.7: Given a text T [1..n], a pattern P [1..m] and an integer k ≥ 0,
report all positions j ∈ [1..m] such that ed(P, T (j − `...j]) ≤ k for some ` ≥ 0.

The factor T (j − `...j] is called an approximate occurrence of P .

There can be multiple occurrences of different lengths ending at the same
position j, but usually it is enough to report just the end positions.
We ask for the end position rather than the start position because that is
more natural for the algorithms.

102



Define the values gij with the recurrence:

g0j = 0, 0 ≤ j ≤ n,
gi0 = i, 1 ≤ i ≤ m, and

gij = min


gi−1,j−1 + δ(P [i], T [j])

gi−1,j + 1

gi,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n.

Theorem 4.8: For all 0 ≤ i ≤ m, 0 ≤ j ≤ n:

gij = min{ed(P [1..i], T (j − `...j]) | 0 ≤ ` ≤ j} .
In particular, j is an ending position of an approximate occurrence if and
only if gmj ≤ k.

103



Proof. We use induction with respect to i+ j.

Basis:
g00 = 0 = ed(ε, ε)

g0j = 0 = ed(ε, ε) = ed(ε, T (j − 0..j]) (min at ` = 0)

gi0 = i = ed(P [1..i], ε) = ed(P [1..i], T (0− 0..0]) (0 ≤ ` ≤ j = 0)

Induction step: Essentially the same as in the proof of Theorem 4.2.

104



Example 4.9: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m ⇒
1 1 1 0 1 1 1 1 1 1

a ⇒
2 2 2 1 0 1 2 2 2 2

t

⇒

3 3 3 2 1 1 2 3 3 3
c ⇒

4 4 4 3 2 1 2 3 4 4
h ⇒

5 5 5 4 3 2 1 2 3 4

One occurrence ending at position 6.

105



Algorithm 4.10: Approximate string matching
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(6) if qmj ≤ k then output j

• Time and space complexity is O(mn).

• The space complexity can be reduced to O(m) by storing only one
column as in Algorithm 4.5.

106



Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gij):

A diagonal d, −m ≤ d ≤ n, consists of the cells gij with j − i = d.
Every diagonal in (gij) is monotonically increasing.

Example 4.11: Diagonals -3 and 2.

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m –

1 1 1 0 1 1 1 1 1 1
a –

2 2 2 1 0 1 2 2 2 2
t –

3 3 3 2 1 1 2 3 3 3
c – –

4 4 4 3 2 1 2 3 4 4
h – –

5 5 5 4 3 2 1 2 3 4

107



More specifically, we have the following property.

Lemma 4.12: For every i ∈ [1..m] and every j ∈ [1..n],
gij = gi−1,j−1 or gij = gi−1,j−1 + 1.

Proof. By definition, gij ≤ gi−1,j−1 + δ(P [i], T [j]) ≤ gi−1,j−1 + 1. We show
that gij ≥ gi−1,j−1 by induction on i+ j.

The induction assumption is that gpq ≥ gp−1,q−1 when p ∈ [1..m], q ∈ [1..n] and
p+ q < i+ j. At least one of the following holds:

1. gij = gi−1,j−1 + δ(P [i], T [j]). Then gij ≥ gi−1,j−1.

2. gij = gi−1,j + 1 and i > 1. Then

gij = gi−1,j + 1
ind. assump.

≥ gi−2,j−1 + 1
definition
≥ gi−1,j−1

3. gij = gi,j−1 + 1 and j > 1. Then

gij = gi,j−1 + 1
ind. assump.

≥ gi−1,j−2 + 1
definition
≥ gi−1,j−1

4. i = 1. Then gij ≥ 0 = gi−1,j−1.

gij = gi,j−1 + 1 and j = 1 is not possible because gi,1 ≤ gi−1,0 + 1 < gi,0 + 1. �

108


