
Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 2.7: Given a text T [1..n], a pattern P [1..m] and an integer k ≥ 0,
report all positions j ∈ [1..m] such that ed(P, T (j − `...j]) ≤ k for some ` ≥ 0.

The factor T (j − `...j] is called an approximate occurrence of P .

There can be multiple occurrences of different lengths ending at the same
position j, but usually it is enough to report just the end positions.
We ask for the end position rather than the start position because that is
more natural for the algorithms.
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Define the values gij with the recurrence:

g0j = 0, 0 ≤ j ≤ n,
gi0 = i, 1 ≤ i ≤ m, and

gij = min


gi−1,j−1 + δ(P [i], T [j])

gi−1,j + 1

gi,j−1 + 1

1 ≤ i ≤ m,1 ≤ j ≤ n.

Theorem 2.8: For all 0 ≤ i ≤ m, 0 ≤ j ≤ n:

gij = min{ed(P [1..i], T (j − `...j]) | 0 ≤ ` ≤ j} .
In particular, j is an ending position of an approximate occurrence if and
only if gmj ≤ k.
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Proof. We use induction with respect to i+ j.

Basis:
g00 = 0 = ed(ε, ε)

g0j = 0 = ed(ε, ε) = ed(ε, T (j − 0..j]) (min at ` = 0)

gi0 = i = ed(P [1..i], ε) = ed(P [1..i], T (0− 0..0]) (0 ≤ ` ≤ j = 0)

Induction step: Essentially the same as in the proof of Theorem 2.2.
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Example 2.9: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m ⇒
1 1 1 0 1 1 1 1 1 1

a ⇒
2 2 2 1 0 1 2 2 2 2

t

⇒

3 3 3 2 1 1 2 3 3 3
c ⇒

4 4 4 3 2 1 2 3 4 4
h ⇒

5 5 5 4 3 2 1 2 3 4

One occurrence ending at position 6.
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Algorithm 2.10: Approximate string matching
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) for j ← 1 to n do
(4) for i← 1 to m do
(5) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(6) if qmj ≤ k then output j

• Time and space complexity is O(mn).

• The space complexity can be reduced to O(m) by storing only one
column as in Algorithm 2.5.
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Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gij):

A diagonal d, −m ≤ d ≤ n, consists of the cells gij with j − i = d.
Every diagonal in (gij) is monotonically increasing.

Example 2.11: Diagonals -3 and 2.

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m –

1 1 1 0 1 1 1 1 1 1
a –

2 2 2 1 0 1 2 2 2 2
t –

3 3 3 2 1 1 2 3 3 3
c – –

4 4 4 3 2 1 2 3 4 4
h – –

5 5 5 4 3 2 1 2 3 4
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More specifically, we have the following property.

Lemma 2.12: For every i ∈ [1..m] and every j ∈ [1..n],
gij = gi−1,j−1 or gij = gi−1,j−1 + 1.

Proof. By definition, gij ≤ gi−1,j−1 + δ(P [i], T [j]) ≤ gi−1,j−1 + 1. We show
that gij ≥ gi−1,j−1 by induction on i+ j.

The induction assumption is that gpq ≥ gp−1,q−1 when p ∈ [1..m], q ∈ [1..n] and
p+ q < i+ j. At least one of the following holds:

1. gij = gi−1,j−1 + δ(P [i], T [j]). Then gij ≥ gi−1,j−1.

2. gij = gi−1,j + 1 and i > 1. Then

gij = gi−1,j + 1
ind. assump.

≥ gi−2,j−1 + 1
definition
≥ gi−1,j−1

3. gij = gi,j−1 + 1 and j > 1. Then

gij = gi,j−1 + 1
ind. assump.

≥ gi−1,j−2 + 1
definition
≥ gi−1,j−1

4. i = 1. Then gij ≥ 0 = gi−1,j−1.

gij = gi,j−1 + 1 and j = 1 is not possible because gi,1 ≤ gi−1,0 + 1 < gi,0 + 1. �
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We can reduce computation using diagonal monotonicity:

• Whenever the value on a column d grows larger than k, we can discard
d from consideration, because we are only interested in values at most k
on the row m.

• We keep track of the smallest undiscarded diagonal d. Each column is
computed only up to diagonal d.

Example 2.13: P = match, T = remachine, k = 1

g r e m a c h i n e
0 0 0 0 0 0 0 0 0 0

m
1 1 1 0 1 1 1 1 1 1

a
2 2 2 1 0 1 2 2 2 2

t
1 1 2 3

c
1 2 3

h
1 2
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The position of the smallest undiscarded diagonal on the current column is
kept in a variable top.

Algorithm 2.14: Ukkonen’s cut-off algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for i← 0 to m do gi0 ← i
(2) for j ← 1 to n do g0j ← 0
(3) top← min(k + 1,m)
(4) for j ← 1 to n do
(5) for i← 1 to top do
(6) gij ← min{gi−1,j−1 + δ(A[i], B[j]), gi−1,j + 1, gi,j−1 + 1}
(7) while gtop,j > k do top← top− 1
(8) if top = m then output j
(9) else top← top+ 1
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The time complexity is proportional to the computed area in the
matrix (gij).

• The worst case time complexity is still O(mn).

• The average case time complexity is O(kn). The proof is not trivial.

There are many other algorithms based on diagonal monotonicity. Some of
them achieve O(kn) worst case time complexity.
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Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix (gij), we store differences between adjacent cells:

Vertical delta: ∆vij = gij − gi−1,j

Horizontal delta: ∆hij = gij − gi,j−1

Diagonal delta: ∆dij = gij − gi−1,j

Because gi0 = i ja g0j = 0,

gij = ∆v1j + ∆v2j + · · ·+ ∆vij

= i+ ∆hi1 + ∆hi2 + · · ·+ ∆hij

Because of diagonal monotonicity, ∆dij ∈ {0,1} and it can be stored in one
bit. By the following result, ∆hij and ∆vij can be stored in two bits.

Lemma 2.15: ∆hij,∆vij ∈ {−1,0,1} for every i, j that they are defined for.

The proof is left as an exercise.
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Example 2.16: ‘–’ means −1, ‘=’ means 0 and ‘+’ means +1

r e m a c h i n e
0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

m + + + + + = = + + + + + + + + + + + +
1 = 1 = 1 – 0 + 1 = 1 = 1 = 1 = 1 = 1

a + + + + + = + = – = = + + + + + + + +
2 = 2 = 2 – 1 – 0 + 1 + 2 = 2 = 2 = 2

t + + + + + = + = + + = + = + + + + + +
3 = 3 = 3 – 2 – 1 = 1 + 2 + 3 = 3 = 3

c + + + + + = + = + = = + = + = + + + +
4 = 4 = 4 – 3 – 2 – 1 + 2 + 3 + 4 = 4

h + + + + + = + = + = + = – = – = – = =
5 = 5 = 5 – 4 – 3 – 2 – 1 + 2 + 3 + 4
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In the standard computation of a cell:

• Input is gi−1,j, gi−1,j−1, gi,j−1 and δ(P [i], T [j]).

• Output is gij.

In the corresponding bitparallel computation:

• Input is ∆vin = ∆vi,j−1, ∆hin = ∆hi,j−1 and Eqij = 1− δ(P [i], T [j]).

• Output is ∆vout = ∆vi,j and ∆hout = ∆hi,j.

gi−1,j−1
∆hin

−−−−−−−−→ gi−1,j

∆vin

y
y∆vout

gi,j−1 −−−−−−−−−→
∆hout

gij
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The computation rule is defined by the following result.

Lemma 2.17: If Eq = 1 or ∆vin = −1 or ∆hin = −1,
then ∆d = 0, ∆vout = −∆hin and ∆hout = −∆vin.
Otherwise ∆d = 1, ∆vout = 1−∆hin and ∆hout = 1−∆vin.

Proof. We can write the recurrence for gij as

gij = min{gi−1,j−1 + δ(P [i], T [j]), gi,j−1 + 1, gi−1,j + 1}
= gi−1,j−1 + min{1− Eq,∆vin + 1,∆hin + 1}.

Then ∆d = gij − gi−1,j−1 = min{1− Eq,∆vin + 1,∆hin + 1}
which is 0 if Eq = 1 or ∆vin = −1 or ∆hin = −1 and 1 otherwise.

Clearly ∆d = ∆vin + ∆hout = ∆hin + ∆vout.
Thus ∆vout = ∆d−∆hin and ∆hout = ∆d−∆vin. �
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To enable bitparallel operation, we need two changes:

• The ∆v and ∆h values are “trits” not bits. We encode each of them
with two bits as follows:

Pv =

{
1 if ∆v = +1
0 otherwise

Mv =

{
1 if ∆v = −1
0 otherwise

Ph =

{
1 if ∆h = +1
0 otherwise

Mh =

{
1 if ∆h = −1
0 otherwise

Then

∆v = Pv −Mv

∆h = Ph−Mh

• We replace arithmetic operations (+, −, min) with logical operations
(∧, ∨, ¬).
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Now the computation rules can be expressed as follows.

Lemma 2.18: Pvout = Mhin ∨ ¬(Xv ∨ Phin) Mvout = Phin ∧Xv
Phout = Mvin ∨ ¬(Xh ∨ Pvin) Mhout = Pvin ∧Xh

where Xv = Eq ∨Mvin and Xh = Eq ∨Mhin.

Proof. We show the claim for Pv and Mv only. Ph and Mh are symmetrical.

By Lemma 2.17,

Pvout = (¬∆d ∧Mhin) ∨ (∆d ∧ ¬Phin)

Mvout = (¬∆d ∧ Phin) ∨ (∆d ∧ 0) = ¬∆d ∧ Phin

Because ∆d = ¬(Eq ∨Mvin ∨Mhin) = ¬(Xv ∨Mhin) = ¬Xv ∧ ¬Mhin,

Pvout = ((Xv ∨Mhin) ∧Mhin) ∨ (¬Xv ∧ ¬Mhin ∧ ¬Phin)

= Mhin ∨ ¬(Xv ∨Mhin ∨ Phin)

= Mhin ∨ ¬(Xv ∨ Phin)

Mvout = (Xv ∨Mhin) ∧ Phin = Xv ∧ Phin

In the last step, we used the fact that Mhin and Phin cannot be 1
simultaneously. �
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According to Lemma 2.18, the bit representation of the matrix can be
computed as follows.

for i← 1 to m do
Pvi0 ← 1; Mvi0 ← 0

for j ← 1 to n do
Ph0j ← 0; Mh0j ← 0
for i← 1 to m do

Xhij ← Eqij ∨Mhi−1,j

Phij ←Mvi,j−1 ∨ ¬(Xhij ∨ Pvi,j−1)
Mhij ← Pvi,j−1 ∧Xhij

for i← 1 to m do
Xvij ← Eqij ∨Mvi,j−1

Pvij ←Mhi−1,j ∨ ¬(Xvij ∨ Phi−1,j)
Mvij ← Phi−1,j ∧Xvij

This is not yet bitparallel though.
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To obtain a bitparallel algorithm, the columns Pv∗j, Mv∗j, Xv∗j, Ph∗j, Mh∗j,
Xh∗j and Eq∗j are stored in bitvectors.

Now the second inner loop can be replaced with the code

Xv∗j ← Eq∗j ∨Mv∗,j−1

Pv∗j ← (Mh∗,j << 1) ∨ ¬(Xv∗j ∨ (Ph∗j << 1))
Mv∗j ← (Ph∗j << 1) ∧Xv∗j

A similar attempt with the for first inner loop leads to a problem:

Xh∗j ← Eq∗j ∨ (Mh∗j << 1)
Ph∗j ←Mv∗,j−1 ∨ ¬(Xh∗j ∨ Pv∗,j−1)
Mh∗j ← Pv∗,j−1 ∧Xh∗j

Now the vector Mh∗j is used in computing Xh∗j before Mh∗j itself is
computed! Changing the order does not help, because Xh∗j is needed to
compute Mh∗j.

To get out of this dependency loop, we compute Xh∗j without Mh∗j using
only Eq∗j and Pv∗,j−1 which are already available when we compute Xh∗j.
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Lemma 2.19: Xhij = ∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1).

Proof. We use induction on i.

Basis i = 1: The right-hand side reduces to Eq1j, because ` = 1. By
Lemma 2.18, Xh1j = Eq1j ∨Mh0j, which is Eq1j because Mh0j = 0 for all j.

Induction step: The induction assumption is that Xhi−1,j is as claimed. Now
we have

∃` ∈ [1, i] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 1] : Pvx,j−1)

= Eqij ∨ (Pvi−1,j−1 ∧ ∃` ∈ [1, i− 1] : Eq`j ∧ (∀x ∈ [`, i− 2] : Pvx,j−1))

= Eqij ∨ (Pvi−1,j−1 ∧Xhi−1,j) (ind. assump.)

= Eqij ∨Mhi−1,j (Lemma 2.18)

= Xhij (Lemma 2.18)

�
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At first sight, we cannot use Lemma 2.19 to compute even a single bit in
constant time, not to mention a whole vector Xh∗j. However, it can be
done, but we need more bit operations:

• Let Y denote the xor-operation: 0 Y 1 = 1 Y 0 = 1 and 0 Y 0 = 1 Y 1 = 0.

• A bitvector is interpreted as an integer and we use addition as a bit
operation. The carry mechanism in addition plays a key role. For
example 0001 + 0111 = 1000.

In the following, for a bitvector B, we will write

B = B[1..m] = B[m]B[m− 1] . . . B[1]

The reverse order of the bits reflects the interpretation as an integer.
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Lemma 2.20: Denote X = Xh∗j, E = Eq∗j, P = Pv∗,j−1 ja olkoon
Y = (((E ∧ P ) + P ) Y P ) ∨ E. Then X = Y .

Proof. By Lemma 2.19, X[i] = 1 iff and only if

a) E[i] = 1 or

b) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] = 11 · · ·1.

and X[i] = 0 iff and only if

c) E1...i = 00 · · ·0 or

d) ∃` ∈ [1, i] : E[` . . . i] = 00 · · ·01 ∧ P [` . . . i− 1] 6= 11 · · ·1.

We prove that Y [i] = X[i] in all of these cases:

a) The definition of Y ends with “∨E” which ensures that Y [i] = 1 in this
case.
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b) The following calculation shows that Y [i] = 1 in this case:

i `

E[` . . . i] =00...01

P [` . . . i] =b1...11

(E ∧ P )[` . . . i] =00...01

((E ∧ P ) + P )[` . . . i] =b̄0...0c

(((E ∧ P ) + P ) Y P )[` . . . i] =11...1c̄

Y = ((((E ∧ P ) + P ) Y P ) ∨ E)[` . . . i] =11...11

where b is the unknown bit P [i], c is the possible carry bit coming from
the summation of bits 1 . . . , `− 1, and b̄ and c̄ are their negations.

c) Because for all bitvectors B, 0 ∧B = 0 ja 0 +B = B, we get
Y = (((0 ∧ P ) + P ) Y P ) ∨ 0 = (P Y P ) ∨ 0 = 0.

d) Consider the calculation in case b). A key point there is that the carry
bit in the summation travels from position ` to i and produces b̄ to
position i. The difference in this case is that at least one bit P [k],
` ≤ k < i, is zero, which stops the carry at position k. Thus
((E ∧ P ) + P )[i] = b and Y [i] = 0.

�
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As a final detail, we compute the bottom row values gmj using the equalities
gm0 = m ja gmj = gm,j−1 + ∆hmj.

Algorithm 2.21: Myers’ bitparallel algorithm
Input: text T [1..n], pattern P [1..m], and integer k
Output: end positions of all approximate occurrences of P

(1) for c ∈ Σ do B[c]← 0m

(2) for i← 1 to m do B[P [i]][i] = 1
(3) Pv ← 1m; Mv ← 0; g ← m
(4) for j ← 1 to n do
(5) Eq ← B[T [j]]
(6) Xh← (((Eq ∧ Pv) + Pv) Y Pv) ∨ Eq;
(7) Ph←Mv ∨ ¬(Xh ∨ Pv)
(8) Mh← Pv ∧Xh;
(9) Xv ← Eq ∨Mv

(10) Pv ← (Mh << 1) ∨ ¬(Xv ∨ (Ph << 1))
(11) Mv ← (Ph << 1) ∧Xv
(12) g ← g + Ph[m]−Mh[m]
(13) if g ≤ k then output j
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