Approximate String Matching

Now we are ready to tackle the main problem of this part: approximate
string matching.

Problem 2.7: Given a text T[1..n], a pattern P[1..m] and an integer k£ > O,
report all positions j € [1..m] such that ed(P,T(j —¢...j]) < k for some £ >0
The factor T'(j — £...5] is called an approximate occurrence of P.

There can be multiple occurrences of different lengths ending at the same
position 5, but usually it is enough to report just the end positions.

We ask for the end position rather than the start position because that is
more natural for the algorithms.

51

Define the values g;; with the recurrence:
goj =0, 0 <j=<mn,
gio =1, 1 <i<m, and

gi-1,—-1 + 6(P[i], T'[5])
gij = min gi-1,; +1 1<i<m,1<j5<n.

Theorem 2.8: Forall0<:1<m, 0<j5<n:

In particular, 5 is an ending position of an approximate occurrence if and
only if gmj < k.

52

Proof. We use induction with respect to : 4 j.

Basis:
goo = 0 = ed(e, €)

goj = 0 = ed(e,€) = ed(e,T(j — 0.4]) (min at £=0)
gio = i = ed(P[1..4],¢) = ed(P[1..i],T(0—0..0]) (0<£¢<j=0)

Induction step: Essentially the same as in the proof of Theorem 2.2.

53

Example 2.9:

P=match, T=remachine, k=1

gl r e m a ¢ h 1 n e
0O O 0
m X
1 1 1
a Xy
2 2 0
T Y
3 3 1
X
4 4 2
h N
5 5 3

One occurrence ending at position 6.

54

Algorithm 2.10: Approximate string matching

Input: text T[1..n], pattern P[1..m], and integer k

Output: end positions of all approximate occurrences of P
(1) for i<+ 0 to m do g0 < ¢
(2) for j <1 ton do go; O
(3) for j«+ 1 ton do

(4) for i < 1 to m do
(5) gij < min{gi—1,;-1 + 6(A[:], B[5]), 9i-1,; + 1, 9ij-1 + 1}
(6) if gm; < k then output j

e Time and space complexity is O(mn).

e The space complexity can be reduced to O(m) by storing only one

column as in Algorithm 2.5,

55

Ukkonen’s Cut-off Heuristic

We can speed up the algorithm using the diagonal monotonicity of the
matrix (gi;):

A diagonal d, —m < d < n, consists of the cells g;; with j —¢ =d.
Every diagonal in (g;;) is monotonically increasing.

Example 2.11: Diagonals -3 and 2.
g r e m a ¢ h 1 n e

m N

)
/

+
/

-y
/
/

56

More specifically, we have the following property.

Lemma 2.12: For every i € [1..m] and every j € [1..n],
9ij = 9i-1,-1 OF gij = gi-1-1 1 1.

Proof. By definition, g;; < gi—1,j—1 + (P[], T[j]) < gi—1,;-1 + 1. We show
that g;; > gi—1,j—1 by induction on ¢ + j.

The induction assumption is that gy, > gp—14-1 When p € [1..m], ¢ € [1..n] and
p+q<i+j. At least one of the following holds:

1. gij = gi-1-1+ (P[], T[j]). Then gi; > gi-1,-1.
2. gij = Gi—1,j + 1 and > 1. Then

ind. assump. definition
9ij —=9i-1,+1 > gi2j-1+1 > gi—1-1

3. gij = Gij—1 + 1 and 3> 1. Then

ind. assump. definition
9ij —=9ij-1+1 > g-1j-2+1 > gi—1-1
4. 1= 1. Then 9ij > 0= gi—1,j-1-

gij = gij—1 + 1 and 3 = 1 is not possible because ¢g;1 <gi-10+1<gio+ 1. U
57

We can reduce computation using diagonal monotonicity:

e \Whenever the value on a column d grows larger than k, we can discard
d from consideration, because we are only interested in values at most k
on the row m.

e We keep track of the smallest undiscarded diagonal d. Each column is
computed only up to diagonal d.

Example 2.13: P=match, T =remachine k=1

gl r e m a ¢ h 1 n e
o o0 o o o o o o o0 o
m
1 1 1 o 1 1 1 1 1 1
a
2 2 2 1 0 1 2 2 2 2
t
1 1 2 3
1 2 3
h
1 2

58

The position of the smallest undiscarded diagonal on the current column is
kept in a variable top.

Algorithm 2.14: Ukkonen’s cut-off algorithm
Input: text T[1..n], pattern P[1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) for i+ 0 to m do g0 < 1
(2) for j«1ton do gg; < O
(3) top < min(k+ 1,m)
(4) for j«+ 1 ton do

(5) for 1 <+~ 1 to top do

(6) giy - min{gi 15 1+ SCAL, BUD g 15 + Lgig 1+ 1}
(7) while giop; > k dO top < top — 1

(8) if top = m then output j

(9) else top + top + 1

59

The time complexity is proportional to the computed area in the
matrix (gi;).

e The worst case time complexity is still O(mn).
e The average case time complexity is O(kn). The proof is not trivial.

There are many other algorithms based on diagonal monotonicity. Some of
them achieve O(kn) worst case time complexity.

60

Myers’ Bitparallel Algorithm

Another way to speed up the computation is bitparallelism.

Instead of the matrix (g;;), we store differences between adjacent cells:

Vertical delta: Av;; = gij — gi—1;
Horizontal delta: Ah;; = gij — gij—1
Diagonal delta: Adi; = gij — gi—1,5

Because gio =% ja go; = O,
A’Ulj —|— A’UQJ' —|— s —|— Afvl‘j
1+ Ahin + Ahip + -+ - + Ahjj

Because of diagonal monotonicity, Ad;; € {0,1} and it can be stored in one
bit. By the following result, Ah;; and Awv;; can be stored in two bits.

Gij

Lemma 2.15: Ah;;, Av;; € {—1,0,1} for every 4,5 that they are defined for.

The proof is left as an exercise.
61

"' means 0 and ‘4+’ means +1

‘~" means —1, °

Example 2.16:

o -tatmtw Il
=+=10+10+10-+1I++
oO4+—-4+NF+N+4+< | ™
+1n+1+I1++1+
o4+—-4+NF+m || M N
N+1n+il++++ 11+
O+ 4+ ||| v
I+ ++++++ 100
O+~ |l = |l = [=4+«
1 I 1 ol ol [O R T
o+~ |l o+—-++m
1 e o | O | IO R T
ollo+—~4++m+<
1 T | | O |
O4+—~4+N+0M+4+< +w0
=10+ 10+ 1+l
O+ +N+®M+< +10
=+ 1+ 10+1-+I1 4l
O+~ +N+®M+< +1w0

8 o + O o

62

In the standard computation of a cell:
e Input is gi—1j, gi-1,j-1, gi,j—1 and 6(P[i], T[j]).
e Output is g;;.
In the corresponding bitparallel computation:
o Input is Av'" = Av;;_1, AR = Ah; ;-1 and Eg; = 1 — §(P[i], T[j]).

e Output is Av°Ut = Aw;; and ARCUt = Ah; ;.

Ahin
gi—1,j—1 7 Gi—1,5
Avin AUO”t
gi"j_l Ahout ’ gw

63

The computation rule is defined by the following result.

Lemma 2.17: If Eg =1 or Av" = -1 or AR" = —1,
then Ad =0, Av°'" = —AL™ and ARt = —A™". |
Otherwise Ad =1, Av°'t =1 — AR" and ARt =1 — Av™.

Proof. We can write the recurrence for g;; as

gi; = min{gi—1,-1 + 6(P[i], T[5]),9,j-1+1,9i-1; + 1}
=gi_1,-1+min{l — Eq, Av" + 1, AM™ + 1},

Then Ad = g;j — gi—1,j-1 = min{l — Eq, Av" 4+ 1, AR 4+ 1}

which is 0 if Eq =1 or Av'" = —1 or AR™ = —1 and 1 otherwise.

Clearly Ad = Av" + ARt = ARIN + ApOUt,
Thus Avo"t = Ad — AR and AR = Ad — Av". O

64

To enable bitparallel operation, we need two changes:

e The Av and Ah values are ‘“trits” not bits. We encode each of them
with two bits as follows:

Py — 1 if Av=+1 Mo — 1 if Av=-1
Y=Y 0 otherwise Y=Y 0 otherwise
(1 ifAR=+1 (1 ifAR=-1
Ph = { 0O otherwise Mh = { 0O otherwise
Then
Av = Pv— Mv
Ah = Ph— Mh
e We replace arithmetic operations (4, —, min) with logical operations
(A, V,).

65

Now the computation rules can be expressed as follows.

Lemma 2.18: pyout = Mp" v +(Xo Vv PR™) Mt = PR A Xo
PhOYt = Mo'" Vv =(XhV Pu'™) MRt = Pyui" A Xh

where Xv = EqV Mv" and Xh = EqV MAh'".

Proof. We show the claim for Pv and Mwv only. Ph and Mh are symmetrical.

By Lemma 2.17,
POt = (=Ad A MR™ v (Ad A -PRM)
Moot = (=Ad A PRV (Ad A O) = -Ad A PR
Because Ad = ~(EqV Mv"V Mh") = -(XvV Mh") = -Xv A-MA'",
PvoUt = ((XvV MA™) A MR™ V (=Xv A =Mh" A =PhR™M)
= M~h"V —(Xv Vv Mh" v PR™)
= Mh" Vv =(XvV Ph")
Mot = (Xv Vv MA™) A PK'" = Xov A PRI"
In the last step, we used the fact that MA™ and Ph'" cannot be 1
simultaneously. [
66

According to Lemma 2.18, the bit representation of the matrix can be

computed as follows.

for 1 <1 to m do
P’Ul'o ~— 1; M’Uz'o +—0
for <1 ton do
Phgj <~ 0; Mhg; <~ 0O
for 1 <1 to m do
Xhij — Eqij V Mhi_l,j
Phij — M’Ui’j_l V —I(Xhij V P’Ui,j_l)
Mhz'j — P’Uz"j_l VAN Xhij
for i <1 to m do
X”Uij — Eqij V M’Ui,j_l
P’Uij — Mhi_l,j V ﬂ(X’Uij V Phi_l,j)
M’Uij — th‘—l,j N X’Uz'j

This is not yet bitparallel though.

67

To obtain a bitparallel algorithm, the columns Puvs;, Mvsj, Xvsj, Phyj, Mhy;,
Xhy; and Egq,; are stored in bitvectors.

Now the second inner loop can be replaced with the code

A similar attempt with the for first inner loop leads to a problem:

Mh*j < P’U*,j_l AN Xh*j

Now the vector Mh,; is used in computing Xh,; before Mh,; itself is
computed! Changing the order does not help, because Xh,; is needed to
compute Mh,;.

To get out of this dependency loop, we compute Xh,; without Mh,; using
only Egq.; and Puv, j_1 which are already available when we compute Xh,;.

63

Lemma 2.19: Xh;; =3¢ € [1,4] : Eqe; A (Ve e [¢,71— 1] : va,j—l)-
Proof. We use induction on 1.

Basis ¢« = 1: The right-hand side reduces to Eq;;, because £ = 1. By
Lemma 2.18, Xhi; = Eq1; V Mhoj, which is Eq;; because Mhg; = 0 for all j.

Induction step: The induction assumption is that Xh;_1; is as claimed. Now
we have

e [1,i] : Eqj AN (Vx € [l,i— 1] : Pvgj—1)
= FEq;; VI € [1,7 — 1] : Eqp; N (Ve € [£,1— 1] : Pvm’j_l)
= Eq;; V (P’Uz'_l,j_l AN e[l,i—1]: Eqe N (Ve € [¢,1— 2] : P’Ux,j_l))
= Eq;; V (Pvi_l,j_l VAN Xhi_l,j) (ind. assump.)
= Eq;; V Mh;_1 (Lemma 2.18)
= Xhyj (Lemma 2.18)
]

69

At first sight, we cannot use Lemma 2.19 to compute even a single bit in
constant time, not to mention a whole vector Xh,;. However, it can be
done, but we need more bit operations:

e Let VY denote the xor-operation: OY1 =1Y0=1and O0O¥Y0=1Y1=0.

e A Dbitvector is interpreted as an integer and we use addition as a bit
operation. The carry mechanism in addition plays a key role. For
example 0001 4+ 0111 = 1000.

In the following, for a bitvector B, we will write
B = B[1..m] = B[m]B[m — 1]... B[1]

The reverse order of the bits reflects the interpretation as an integer.

70

Lemma 2.20: Denote X = Xh,j, &£ = Eq.j, P = Pv,j_1 ja olkoon
Y=((EAP)4+P)YP)VE. Then X =Y.

Proof. By Lemma 2.19, X[i] = 1 iff and only if
a) E[i] =1 or
b) I e(1,i]:E[f...ii=00---0LAP[£...i—1] =11---1.

and X|[i{] = 0 iff and only if
c) E1.,=00---0 or
d) 3¢ e[1,i]:E[f...q] =00---0LAP[f...i—1] #11---1.

We prove that Y[:] = X[:] in all of these cases:

a) The definition of Y ends with “VE" which ensures that Y[i] = 1 in this
case.

71

b) The following calculation shows that Y[i] = 1 in this case:

d)

1

E[¢...i] =00..

Pl[¢...i] =bil..

(EAP)[£...1] =00..

((EANP)+ P)[f...i] =b0..
((EAP)4+P)YP)[L...i] =11..
Y=((EAP)+P)YP)VE)...i]=11..

l

.01
11
.01
.Oc
.1c
11

where b is the unknown bit P[i], c is the possible carry bit coming from
the summation of bits 1 ...,/ — 1, and b and ¢ are their negations.

Because for all bitvectors B, OAB =0 ja 0+ B = B, we get

Y = (((OAP)+P)YP)VO=(PYP)VO=0.

Consider the calculation in case b). A key point there is that the carry
bit in the summation travels from position ¢ to 7 and produces b to
position 7. The difference in this case is that at least one bit P[k],

¢ < k <1, is zero, which stops the carry at position k. Thus

((EAP)+ P)[i] =b and Y[i] = 0.
L]

72

As a final detail, we compute the bottom row values g,,; using the equalities
gmo = m ja 9mji — Gm,j—1 + Ahmj-

Algorithm 2.21: Myers’' bitparallel algorithm
Input: text T'[1..n], pattern P[1..m], and integer k
Output: end positions of all approximate occurrences of P
(1) for ce X do Bjc] « 0™
(2) for i<+ 1 to m do B[PJ[i]][i]] =1
(3) Pv+ 1™, Mv<+0; g+ m
(4) for j+ 1 ton do

(5) Eq + B[T[j]]
(6) Xh <+ (((Eq A\ Pv) + Pv) Y Pv) V Eq;
(7) Ph < MuvV —~(XhV Pv)
(8) Mh < Pv A Xh;
(9) Xv <+ EqV Mv
(10) Pv+ (Mh<<1)V-(XvV (Ph<<1l))
(11) Mv <+ (Ph << 1) A Xv
(12) g « g+ Phlm] — Mh[m]
(13) if ¢ <k then output j

73

