
582670 Algorithms for Bioinformatics

Lecture 6: Distance based clustering and phylogeny

3.10.2013

Adapted from slides by Leena Salmena and Veli Mäkinen, which are partly from http:
//bix.ucsd.edu/bioalgorithms/slides.php.

http://bix.ucsd.edu/bioalgorithms/slides.php
http://bix.ucsd.edu/bioalgorithms/slides.php

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

About the exam

2 / 41

Phylogenetic tree: Bears

3 / 41

Phylogeny by distance method pipeline

For all pairs of
species, find
the homolo-
gous genes

Compute the
rearrangement
distance for all
pairs of species

Build the phy-
logenetic tree
from the dis-
tances

genome se-
quences of
the species

permutations
representing
the homologs

D(A,B) for all
species A and B

4 / 41

Clustering

I Clustering can be loosely stated as the problem of grouping objects
into sets called clusters, where the members of the cluster are similar
in some sense.

I Hierarchical clustering:
I Iteratively join two closest clusters

forming a tree hierarchy
(agglomerative... also divisive
version exists)

I Distance between clusters can be
e.g. max pair-wise distance
(complete linkage), min (single
linkage), UPGMA (average
linkage), neighbor joining

I Partitional clustering:
I k-means

5 / 41

Distances in a phylogenetic tree

I Distance matrix D = (dij) gives
pairwise distances for leaves of the
phylogenetic tree

I In addition, the phylogenetic tree
will now specify distances between
internal nodes

I Denote these with dij as well

1 2 3 4 5

6
7

8

Distance dij states how far
apart species i and j are
evolutionary.

6 / 41

Distances in evolutionary context

I Distance dij in evolutionary context satisfy the following conditions:
I Positivity: dij ≥ 0
I Identity: dij = 0 if and only if i = j
I Symmetry: dij = dji for each i , j
I Triangle inequality: dij ≤ dik + dkj for each i , j , k

I Distance satisfying these conditions is called metric
I In addition, evolutionary mechanisms may impose additional

constraints on the distances
I additive and ultrametric distances

7 / 41

Additive trees

I Suppose that every edge in a tree is labeled with a distance dij
I A tree is called additive if for every pair of leaves the distance

between the leaves is the sum of the edge distances on the path
between the leaves.

I Example:

A B C D

A 0 2 4 4
B 2 0 4 4
C 4 4 0 2
D 4 4 2 0

A C

B D

1

1

2 1

1

8 / 41

Ultrametric trees

I A rooted additive tree is called an ultrametric tree if the distances
between any two leaves i and j and their common ancestor k are equal

dik = djk

I dij/2 corresponds to the time elapsed since divergence of i and j from
the common parent

I In other words, edge lengths are measured by a molecular clock with a
constant rate

9 / 41

Identifying ultrametric data

I We can identify distances to be ultrametric by the three-point
condition:

I D corresponds to an ultrametric tree if and only if for any three
species we can label them i , j , and k such that the distances satisfy:

dik = djk ≥ dij

I If we find out that the data is ultrametric, we can utilise a simple
algorithm to find the corresponding tree

10 / 41

Ultrametric trees

I Only vertical segments of
the tree have correspondence
to some distance dij

I Horizontal segments act as
connectors

I dik = djk for any two leaves
i , j and any ancestor k of i
and j

T
im

e
5 4 3 12

6

7

8

9

Observation time

d8,9

11 / 41

UPGMA algorithm

I UPGMA (unweighted pair group method using arithmetic averages)
constructs a phylogenetic tree via clustering

I The algorithm works by at the same time
I Merging two clusters
I Creating a new node on the tree

I The tree is built from leaves towards the root

I UPGMA produces a ultrametric tree

12 / 41

Cluster distances

I Let distance dij between clusters Ci and Cj be

dij =
1

|Ci ||Cj |
∑

p∈Ci ,q∈Cj

dpq,

that is, the average distance between points (species) in the cluster.

13 / 41

UPGMA algorithm

I Initialisation
I Assign each point i to its own cluster Ci

I Define one leaf for each point and place it at height zero

I Iteration
I Find clusters i and j for which dij is minimal
I Define new cluster k by Ck = Ci ∪ Cj and compute dk` for all `
I Add a node k with children i and j to the tree. Place k at height dij/2
I Remove clusters i and j

I Termination
I When only two clusters i and j remain, place root at height dij/2

14 / 41

UPGMA example

3

4

5

1 42 35

1 2

6,82
1 d

9

8

7

6

15 / 41

UPGMA example

3

4

5

1 42 35

1 2

6

6,82
1 d

9

8

7

d1
2 1,2

16 / 41

UPGMA example

3

4

5

1 42 35

1 2

6

7

6,82
1 d

9

8

d1
2 4,5

17 / 41

UPGMA example

3

4

5

1 42 35

1 2

6

7

8 6,82
1 d

9

d1
2 3,7

18 / 41

UPGMA example

3

4

5

1 42 35

1 2

6

7

8

9

d1
2 6,8

19 / 41

UPGMA implementation

I In naive implementation, each iteration takes O(n2) time with n
initial points =⇒ algorithm takes O(n3) time

I The algorithm can be implemented to take only O(n2) time (see
Gronau & Moran, 2006, for a survey)

20 / 41

Problem solved?

I We now have a simple algorithm which finds an ultrametric tree
I If the data is ultrametric, then there is exactly one ultrametric tree

corresponding to the data
I The tree found is then the “correct” solution to the phylogeny problem

if the assumptions hold

I Unfortunately, the data is not ultrametric in practice
I Measurement errors distort distances
I Basic assumption of a molecular clock does not hold usually very well

21 / 41

Incorrect reconstruction of non-ultrametric data by
UPGMA

1

2

3

4

Tree which corresponds to
non-ultrametric distances

1 4 2 3

Incorrect ultrametric
reconstruction by UPGMA
algorithm

22 / 41

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

About the exam

23 / 41

Checking for additivity

I Recall: a tree is additive if for every pair of leaves the distance
between the leaves is the sum of the edge distances on the path
between the leaves.

I How can we check that the data is additive?

I Let i , j , k , and ` be four distinct species
I Compute three sums

I dij + dk`
I dik + dj`
I di` + djk

j

i
k

l
j

i
k

l
j

i
k

l

d d

d

d

d

d

ij
kl

ik

jl

il

jk

24 / 41

Four-point condition

j

i
k

l
j

i
k

l
j

i
k

l

d d

d

d

d

d

ij
kl

ik

jl

il

jk

I Sums represented by the middle and right figures cover all edges

I Sum represented by the left figure does not cover all edges

I Four-point condition: i , j , k , and ` satisfy the four-point condition if
two of the sums dij + dk`, dik + dj`, and di` + djk are equal and the
third one is smaller than these two.

I An n × n matrix D is additive if and only if the four-point condition
holds for every 4 elements 1 ≤ i , j , k , ` ≤ n.

25 / 41

Checking for additivity: Example

A B C D

A 0 6 7 5
B 0 11 9
C 0 6
D 0

I dAB + dCD = 6 + 6 = 12

I dAC + dBD = 7 + 9 = 16

I dAD + dBC = 5 + 11 = 16

I Two of the sums are equal and the third is smaller
=⇒ Four-point condition holds
=⇒ Matrix is additive

26 / 41

Finding an additive phylogenetic tree

I Additive trees can be found for example by the neighbor joining
method (Saitou & Nei, 1987)

I However, in real data, even additivity usually does not hold very well

27 / 41

Neighbor joining algorithm

I Neighbor joining works in a similar fashion to UPGMA
I Find clusters C1 and C2 that minimize a function f (C1,C2)
I Join the two clusters C1 and C2 into a new cluster C
I Add a node to the tree corresponding to C
I Assign distances to new branches

I Differences in
I The choice of function f (C1,C2)
I How to assign the distances

28 / 41

Neighbor joining algorithm: Separation of a cluster

I Let u(Ci) be the separation of cluster Ci from other clusters defined as

u(Ci) =
1

n − 2

∑
Cj

dij

where n is the number of clusters.

29 / 41

Neighbor joining algorithm

I Neighbor joining at the same time
I Minimizes the distance between clusters Ci and Cj to be joined
I Maximizes the separation of both Ci and Cj from other clusters

I Recall that UPGMA only minimizes the distance between the clusters
Ci and Cj

30 / 41

Neighbor joining algorithm

I Initialization as in UPGMA
I Iteration

I Find clusters Ci and Cj for which dij − u(Ci)− u(Cj) is minimum
I Define a new cluster Ck = Ci ∪ Cj and compute dk` for all `:

dk` =
1

2
(di` + dj` − dij)

I Remove clusters Ci and Cj

I Define a node k with edges to i and j
I Assign length 1

2 (dij + u(Ci)− u(Cj)) to the edge i → k
I Assign length 1

2 (dij + u(Cj)− u(Ci)) to the edge j → k

I Termination
I When two clusters i and j remain, add an edge between them with

weight dij .

31 / 41

Neighbor joining algorithm: Example

A B C D

A 0 6 7 5
B 0 11 9
C 0 6
D 0

i u(Ci)

A (6 + 7 + 5)/2 = 9
B (6 + 11 + 9)/2 = 13
C (7 + 11 + 6)/2 = 12
D (5 + 9 + 6)/2 = 10

i , j dij−u(Ci)− u(Cj)

A,B 6 − 9 − 13 = −16
A,C 7 − 9 − 12 = −14
A,D 5 − 9 − 10 = −14
B,C 11− 13 − 12 = −14
B,D 9 − 13 − 10 = −14

C,D 6 − 12 − 10 = −16

Choose either one of the red
pairs to join

32 / 41

Neighbor joining algorithm: Example

A B C D

A 0 6 7 5
B 0 11 9
C 0 6
D 0

i u(Ci)

A (6 + 7 + 5)/2 = 9
B (6 + 11 + 9)/2 = 13
C (7 + 11 + 6)/2 = 12
D (5 + 9 + 6)/2 = 10

i , j dij−u(Ci)− u(Cj)

A,B 6 − 9 − 13 = −16
A,C 7 − 9 − 12 = −14
A,D 5 − 9 − 10 = −14
B,C 11− 13 − 12 = −14
B,D 9 − 13 − 10 = −14
C,D 6 − 12 − 10 = −16

E

B

A

DC

1

5

dAE = 1
26 + 1

2(9− 13) = 1
dBE = 1

26 + 1
2(13− 9) = 5

This is only the first step!

32 / 41

Neighbor joining algorithm: Correctness

I Theorem: If D is an additive matrix, neighbor joining algorithm
correctly constructs the corresponding additive tree.

I Proof (sketch): By contradiction. Assume i and j with minimum
Dij = dij − u(Ci)− u(Cj) are not neighbors in the additive tree. Show
that there are two neighbors m and n with Dmn < Dij (see Durbin et
al. Biological Sequence Analysis, pp. 190-191 for details). Then the
theorem follows by induction.

33 / 41

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

About the exam

34 / 41

Study Group 1: Those who did not get any material at
lecture

I Read pages 179–181 from Sung: Algorithms in Bioinformatics, CRC
Press, 2010

I The 4-point condition for additive trees.
I Copies distributed at lecture.

I At study group, explain the proof of Theorem 7.1 (Buneman’s 4-point
condition).

I The last part of the proof is very condensed:
I Why does the path length between a and b in T equal

Mab + Mbc −Mcd? (recall that T ′ and T ′′ are additive trees)
I The 4-point condition can be applied because Mad +Mbc ≥ Mac +Mbd .

Why is this true? (Recall how c and d were chosen)

35 / 41

Study Group 2: Random allocation at lecture

I Read pages 184–187 from Sung: Algorithms in Bioinformatics, CRC
Press, 2010 (Especially Lemma 7.13).

I Correctness of UPGMA algorithm
I Copies distributed at lecture.

I At study group, summarize the proof for the correctness of UPGMA.

36 / 41

Study Group 3: Random allocation at lecture

I Read pages 190–191 from Durbin et al.: Biological Sequence
Analysis, Cambridge University Press, 1998.

I Correctness of neighbor joining.
I Note that their notation of Dij equals our dij − u(Ci)− u(Cj).
I Copies distributed at lecture.

I At study group, summarize the proof for correctness of neighbor
joining.

37 / 41

Outline

Distance-based clustering, UPGMA

Neighbor joining

Study group assignments

About the exam

38 / 41

Practicalities

I The course exam is on Wed 16.10. at 16:00 in hall A111
I 2.5 hours time
I You can leave at earliest half an hour after the start of the exam

I The first separate exam is on Tue 26.11. at 16:00 in hall B123
I This can also be taken as renewal exam where points from exercises are

still valid!
I 3.5 hours time
I this will probably be graded in a month’s time

I No own papers.

I You will need student id card (or some other proof of identity)!

I You can answer in English or Finnish.

39 / 41

What to study for the exam?

I Material covered at the lectures!
I Take a look at some subjects studied in the study groups. If there are

questions regarding subjects in the study groups, you will have a
choice so that you can answer to a question about a subject you have
studied yourself.

I Example: Choose one of the (non-trivial) problems studied during the
course (in study groups, lectures, or/and exercises) not related to the
previous assignments above. Define the problem (input, output),
explain how the problem is motivated by molecular biology, and
describe an algorithm for the problem either simulating an example or
by giving its pseudocode.

40 / 41

What kind of questions?

I In course exam four questions, some might include subquestions (i.e.
several questions that all require short answers)

I In separate exams five questions.
I Short answers:

I Example: Explain in one or two sentences what is the shortest
superstring problem.

I Essay type questions:
I Example: Define the Motif Finding and Median String problems and

explain why they are actually the same problem. Describe briefly the
idea of the branch-and-bound solution for solving the problem.

I Simulate an algorithm on a given input.

I Solve an exercise.

41 / 41

	Distance-based clustering, UPGMA
	Neighbor joining
	Study group assignments
	About the exam

