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Abstract. Representing and reasoning about preferences is a fun-
damental task in artificial intelligence. Various logic-based languages
for representing preferences have been proposed. However, develop-
ing practical algorithms for reasoning in such logic-based languages
remains a challenge due to high computational complexity. In this
work, we develop practical algorithms based on Boolean satisfiabil-
ity (SAT) for computing preferred models and for deciding preferred
model entailment in qualitative and conjunctive choice logics QCL
and CCL under the so-called minmax, lexicographic, and inclusion-
based preference semantics. For each of the problem variants, we de-
tail an algorithm which adheres to the computational complexity of
the reasoning task, based on either maximum satisfiability (MaxSAT)
or SAT with preferences (PrefSAT) solvers. We empirically evaluate
our implementation of the algorithms, and show that our approach
scales significantly better than a recently proposed answer set pro-
gramming approach to computing preferred models.

1 Introduction
Preferences are intrinsic to human endeavours and decision mak-
ing in various real-world settings. As such, representing and rea-
soning about preferences is a fundamental task in artificial intelli-
gence [20, 31]. Various logic-based languages for representing pref-
erences have been proposed. These include qualitative [14] and con-
junctive choice logics [13] QCL and CCL, motivated by various ap-
plication settings [5, 28, 34]. Extending propositional logic with spe-
cific choice connectives, the semantics of QCL and CCL are based
on preferred models, defined via the notion of the satisfaction degree
of a formula, as opposed to treating all models of a propositional
formula equally.

Integration of preferences often has a significant impact on the
complexity of reasoning, as is the case for QCL and CCL [9]. While
deciding satisfiability of a given propositional formula (i.e., the SAT
problem [12]) is NP-complete, reasoning problems concerned with
preferred models in QCL and CCL are even harder. Analogously,
while deciding propositional entailment is “merely” coNP-complete,
its natural generalization, preferred model entailment—defined over
choice logic theories composed of multiple choice logic formulas—
is significantly harder [9]. The exact complexity of preferred model
entailment depends on the choice of preferred model semantics, pre-
scribing what are preferred models. Examples studied in the litera-
ture include minmax semantics [9] (minimizing the maximum satis-
faction degree over formulas in a choice logic theory), lexicographic
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semantics [14] (prescribing a notion of lexicographically preferred
models based on the number of formulas satisfied to as low a de-
gree as possible) and inclusion-based semantics [14] (based on set
inclusion of formulas satisfied to as low a degree as possible). Pre-
ferred model entailment has been shown to be Θp

2-complete under
minmax semantics, ∆p

2-complete under lexicographic semantics, and
Πp

2-complete under inclusion-based semantics [9], in each case sur-
passing the complexity of classical propositional entailment.

While QCL and CCL have been studied from various more theo-
retical perspectives (see, e.g., [7, 21, 22, 23, 10, 16]), the complex-
ity of computing preferred models and especially preferred model
entailment [9] poses significant challenges to developing practical
algorithms for reasoning in these logics. Recently an approach to
computing preferred models in QCL and CCL based on encoding
the problems to answer set programming (ASP) was developed [8].
However, the approach has not been extended to the problem of de-
ciding preferred model entailment, nor has its scalability been thor-
oughly evaluated, to the best of our knowledge.

In this work, we develop novel approaches to computing preferred
models in QCCL (the combination of QCL and CCL) [9] and for
preferred model entailment in QCCL covering each of minmax, lex-
icographic, and inclusion-based preference semantics. We base our
approach on Boolean satisfiability (SAT) solvers [12] and their ex-
tensions. A SAT-based approach is motivated both by the signifi-
cant success of SAT solvers as a key technology for efficiently solv-
ing NP-hard problems, and by the fact that QCL and CCL extend
propositional formulas and their semantics (through the introduc-
tion of non-classical choice connectives). For each of the reason-
ing problems we detail an algorithm which adheres to the compu-
tational complexity of the problem: (i) a direct maximum satisfia-
bility (MaxSAT) [3] encoding which captures preferred models in
QCCL, allowing for computing preferred models using state-of-the-
art MaxSAT solvers, as well as e.g. equivalence checking of QCCL
formulas; and approaches to preferred model entailment based on
(ii) a combination of one MaxSAT solver and one SAT solver call
for minmax semantics, (iii) an iterative MaxSAT-based lexicographic
optimization approach [1, 29] for lexicographic semantics, and (iv) a
counterexample-guided abstraction refinement [17, 18] style iterative
approach based on a SAT with preferences (PrefSAT) [33, 32, 19]
solver for inclusion-based semantics. We provide an open-source
implementation of the algorithms and empirically evaluate our ap-
proach. The evaluation shows promising scalability, and our ap-
proach significantly outperforms the recent ASP-based approach
where applicable, i.e., for computing preferred models.



2 Choice logics
We focus on QCL [14] and CCL [13] as prominent choice logic
instantiations [9]. The algorithms presented in this work cover
QCCL [9] as a combination of QCL and CCL, and hence are ap-
plicable individually to both QCL and CCL as well.

Let U be a (countably infinite) set of propositional variables. A
choice logic L extends classical propositional formulas by includ-
ing (in addition to classical connectives ¬, ∧, ∨) a set CL of choice
connectives which enable expressing preferences among a set of al-
ternatives. Different choices of CL for choice connectives give rise to
different choice logics. For a specific choice logic, the set of formulas
FL is defined recursively by

• a ∈ FL for all a ∈ U ,
• if F ∈ FL, then ¬F ∈ FL,
• if F,G ∈ FL, then F ◦G ∈ FL for any ◦ ∈ {∧,∨} ∪ CL.

We denote by Vars(F ) ⊆ U the set of variables occurring in F ∈
FL. An interpretation for F ∈ FL is a function I : Vars(F ) →
{0, 1}. For convenience, we sometimes identify an interpretation
with the set of variables that the interpretation maps to 1 (true).

Central to defining semantics for specific choice logics are the no-
tions of satisfaction degree and optionality. Generally, for a given
formula F ∈ FL and an interpretation I for F , the satisfaction de-
gree of F under I is either a positive integer (if I satisfies F in the
classical sense), or infinite (if I does not satisfy F ). The lower the
satisfaction degree, the more preferred I is.

Qualitative choice logic (QCL) [14] extends classical proposi-
tional formulas with the connective ×⃗ called ordered disjunction, i.e.
CQCL = {×⃗}. Conjunctive choice logic (CCL) [13] (we follow the
definition of [9]) on the other hand extends propositional formulas
with the connective ⊙⃗ called ordered conjunction, i.e., CCCL = {⊙⃗}.
Intuitively, F ×⃗G states that at least F or G must hold and it is most
preferred for F to hold, while F ⊙⃗G requires F to hold and prefers
G to hold as well. QCCL [9] combines QCL and CCL directly by
incorporating both connectives, i.e. CQCCL = {×⃗, ⊙⃗}. The semantics
of QCCL are defined through the following definitions of optionality
and satisfaction degrees. The optionality of a formula is the max-
imum finite satisfaction degree to which it can be satisfied by any
interpretation.

Definition 1. The optionality of a formula F ∈ FQCCL is given by a
function opt(F ) 7→ Z+ defined recursively as

• opt(a) = 1 for all a ∈ U ,
• opt(¬F ) = 1 for all F ∈ FQCCL,
• opt(F ∧G) = max(opt(F ), opt(G)) for all F,G ∈ FQCCL,
• opt(F ∨G) = max(opt(F ), opt(G)) for all F,G ∈ FQCCL,
• opt(F ×⃗G) = opt(F ) + opt(G) for all F,G ∈ FQCCL,
• opt(F ⊙⃗G) = opt(F ) + opt(G) for all F,G ∈ FQCCL.

In other words, the optionality of a variable and a negated for-
mula is exactly one. For the classical conjunction and disjunction,
the optionality of a formula is the maximum of the optionalities of
its subformulas. For ordered conjunction and disjunction, however,
the optionality of a formula is the sum of the optionalities of its sub-
formulas. This is because a satisfied disjunction or conjunction has a
degree of at most the maximum of the degrees of its members, while
ordered conjunction and disjunction can have a degree up to the sum
of its optionalities, as is formalized next.

Definition 2. The satisfaction degree of a formula F ∈ FQCCL under
interpretation I is given by a function deg(I, F ) 7→ Z+ ∪ {∞}

defined recursively as follows. For subformulas F,G ∈ FQCCL and
an interpretation I, we denote oF = opt(F ), oG = opt(G), dF =
deg(I, F ), and dG = deg(I, G). Now, for a ∈ U and F,G ∈ FQCCL,

• deg(I, a) =

{
1 if I(a) = 1,

∞ otherwise;

• deg(I,¬F ) =

{
1 if dF =∞,

∞ otherwise;
• deg(I, F ∧G) = max(dF , dG);
• deg(I, F ∨G) = min(dF , dG);

• deg(I, F ×⃗G) =


dF if dF <∞,

dG + oF if dF =∞ and dG <∞,

∞ otherwise;

• deg(I, F ⊙⃗G) =


dG if dF = 1 and dG <∞,

dF + oG if dF <∞ and
(dF > 1 or dG =∞),

∞ otherwise.

If deg(I, F ) = k with k <∞, we say that I satisfies F to degree
k, and I is a model of F . If deg(I, F ) =∞, then I does not satisfy
F . We denote the set of all models of F by Mod(F ). Note that if
I ∈ Mod(F ), then deg(I, F ) ≤ opt(F ).

For intuition on ordered disjunction, the satisfaction degree of
F ×⃗G under interpretation I is finite if at least one of F and G is sat-
isfied by I (to a finite degree). In this case, the degree is deg(I, F )
if I ∈ Mod(F ), and otherwise (i.e., when I ∈ Mod(G)) the degree
is deg(I, G) + opt(F ). In other words, not satisfying F is penalized
by the optionality of F in addition to the degree of G.

Considering ordered conjunction, the satisfaction degree of F ⊙⃗G
under interpretation I is finite if F is satisfied by I (to a finite
degree). In this case, the degree is deg(I, G) if deg(I, F ) = 1
and I ∈ Mod(G), and otherwise (i.e., when deg(I, F ) > 1 or
I ̸∈ Mod(G)) the degree is deg(I, F ) + opt(G). In other words,
both not satisfying F to the smallest degree and not satisfying G at
all are penalized by an additive term given by the optionality of G.

Finally, a model I ∈ Mod(F ) is a preferred model of F if its satis-
faction degree is the smallest possible over all interpretations, that is,
for all interpretations I′ of F it holds that deg(I, F ) ≤ deg(I′, F ).
We denote the set of all preferred models of F by Prf(F ).

Example 1. Consider the QCCL formulas F1 = (a×⃗b), F2 =
(a⊙⃗b), F1 ∧ F2 and F1 ∨ F2. The satisfaction degree of F1 un-
der the interpretations {a, b} and {a} is 1, i.e., deg({a, b}, F1) =
deg({a}, F1) = 1. Further, deg({b}, F1) = 2 and deg(∅, F1) =
∞. For F2, deg({a, b}, F2) = 1, deg({a}, F2) = 2, and
deg({b}, F2) = deg(∅, F2) = ∞. The degree of a conjunction is
the maximum of the conjuncts, so deg({a, b}, F1 ∧ F2) = 1 while
deg({a}, F1∧F2) = 2 and deg({b}, F1∧F2) = deg(∅, F1∧F2) =
∞. For disjunction, the degree is the minimum of the disjuncts:
deg({a, b}, F1 ∨ F2) = deg({a}, F1 ∨ F2) = 1, deg({b}, F1 ∨
F2) = 2, and deg(∅, F1 ∨ F2) = ∞. Thus the preferred models of
these formulas are Prf(F1) = {{a, b}, {a}}, Prf(F2) = {{a, b}},
Prf(F1 ∧ F2) = {{a, b}}, and Prf(F1 ∨ F2) = {{a, b}, {a}}.

3 Preferred models as MaxSAT
We detail a MaxSAT encoding for QCCL such that preferred models
of QCCL formulas correspond to optimal solutions to the MaxSAT
encoding. The encoding also forms the basis for our algorithms for
preferred model entailment.



For background on SAT and MaxSAT [12, 3], recall that for a
Boolean variable x, there are two literals, x and ¬x. A clause C is
a disjunction (∨) of literals. A conjunctive normal form (CNF) for-
mula F is a conjunction (∧) of clauses. We may view clauses as sets
of literals and formulas as sets of clauses. We denote by Vars(F )
and Lits(F ) the set of variables and literals of F , respectively. A
truth assignment τ : Vars(F ) → {0, 1} maps each variable to 0
(false) or 1 (true), and extends to literals via τ(¬x) = 1 − τ(x),
to clauses via τ(C) = max{τ(l) | l ∈ C}, and to formulas via
τ(F ) = min{τ(C) | C ∈ F} (in words, a clause is true iff one of
its literals is true and a formula is true iff all of its clauses are true).
We denote by τ [V ] the restriction of a truth assignment τ to variables
V . Given a CNF formula F , the Boolean satisfiability problem (SAT)
asks whether there is an assignment τ with τ(F ) = 1. If there is, F
is satisfiable, and otherwise F is unsatisfiable. In the (partial) maxi-
mum satisfiability problem (MaxSAT in short) [3], the input consists
of “hard” clauses Fhard and “soft” clauses Fsoft. The task is to find
a truth assignment τ which satisfies Fhard and minimizes the cost
c(τ) =

∑
C∈Fsoft

(1 − τ(C)) incurred by not satisfying individual
soft clauses.

Towards our MaxSAT encoding for QCCL, we recall the standard
“Tseitin” encoding [35] of a given propositional formula F to CNF.
Take for each non-atomic subformula S of F a Boolean variable xS

with τ(xS) = 1 iff S is satisfied by τ , and express locally as clauses
the equivalence of xS and its immediate subformula(s) S1 (and S2)
depending on the connective of S: xS ↔ ¬xS1 for ¬, xS ↔ xS1 ∨
xS2 for ∨, and xS ↔ xS1 ∧ xS2 for ∧, using the original variables
for atomic formulas, to obtain the CNF formula TSEITIN(F ). The
CNF formula TSEITIN(F ) ∧ xF is satisfiable iff F is satisfiable.

Let F be an input QCCL formula. Our goal is to express preferred
models of F as optimal solutions of a MaxSAT instance. To be able
to reason about satisfaction degrees, we modify the Tseitin encoding
to additionally consider the satisfaction degrees of each subformula.
For each subformula S of F , in addition to variable xS indicating
whether S is satisfied, for each k = 1, . . . , opt(S) + 1, we declare a
Boolean variable dSk which is true iff deg(τ, S) ≥ k (or equivalently,
is false iff deg(τ, S) < k).1 Intuitively, the set of variables {dSk | k =
1, . . . , opt(S)+ 1} is an order encoding of the satisfaction degree of
S (with dSk = 1 for each k = 1, . . . , opt(S) + 1 interpreted as
satisfaction degree∞). We define ENCODE(S) as follows.

• If S = a for a ∈ U , then ENCODE(S) is
(xS ↔ a) ∧ (dS1 ) ∧ (dS2 ↔ ¬a),
stating that S is satisfied iff a is true, the satisfaction degree is at
least one, and greater than one iff a is not true.

• If S = ¬F , ENCODE(S) is
(xS ↔ ¬xF ) ∧ (dS1 ) ∧ (dS2 ↔ xF ),
stating that S is satisfied iff F is falsified, the satisfaction degree
is at least one, and greater than one iff F is satisfied.

• If S = F ∧G (with opt(F ) ≥ opt(G) wlog), ENCODE(S) is

(xS ↔ (xF ∧ xG)) ∧
opt(G)+1∧

i=1

(dSi ↔ (dFi ∨ dGi ))

∧
opt(F )+1∧

i=opt(G)+2

(dSi ↔ (¬xG ∨ dFi )).

Here we state that S is satisfied iff F and G are both satisfied,

1 For each subformula S of F , the variable dS1 is redundant, as it is always
true. It also holds that xS ↔ ¬dSopt(S)+1

and thus xS and dSopt(S)+1
can

be replaced with each other. We keep both for clarity of presentation.

and encode the satisfaction degree by taking the bitwise maximum
with the following intuition. Up to opt(G) + 1, the satisfaction
degree of S is at least i iff the satisfaction degree of either F or G
is at least i. Starting from opt(G) + 2, the satisfaction degree of
S is at least i iff either G is falsified (i.e., has infinite satisfaction
degree) or the satisfaction degree of F is at least i.

• If S = F ∨G (with opt(F ) ≥ opt(G) wlog), ENCODE(S) is

(xS ↔ (xF ∨ xG)) ∧
opt(G)+1∧

i=1

(dSi ↔ (dFi ∧ dGi ))

∧
opt(F )+1∧

i=opt(G)+2

(dSi ↔ (¬xG ∧ dFi )).

Analogously to the above, we state that S is satisfied iff F or G is,
and encode the satisfaction degree by taking the bitwise minimum:
up to opt(G) + 1, the satisfaction degree of S is at least i iff the
satisfaction degree of both F and G is at least i; starting from
opt(G)+2, the satisfaction degree of S is at least i iff G is falsified
and the satisfaction degree of F is at least i.

• If S = (F ×⃗G), ENCODE(S) is

(xS ↔ (xF ∨ xG))

∧

xF →

opt(F )∧
i=1

(dSi ↔ dFi ) ∧
opt(S)+1∧

i=opt(F )+1

¬dSi


∧

¬xF →

opt(F )∧
i=1

dSi ∧
opt(G)+1∧

i=1

(dSopt(F )+i ↔ dGi )

 .

Here we state that S is satisfied iff F or G is, similarly to the pre-
vious case. The satisfaction degree of S, following the definition
of ×⃗, is encoded as follows. If F is satisfied, copy the satisfaction
degree of F bit by bit. If F is falsified, encode addition by set-
ting the first opt(F ) bits to true and the next bits according to the
satisfaction degree of G.

• If S = (F ⊙⃗G), ENCODE(S) is

(xS ↔ xF )

∧ (xG ∧ ¬dF2 )→

opt(G)∧
i=1

(dSi ↔ dGi ) ∧
opt(S)+1∧

i=opt(G)+i

¬dSi


∧ (¬xG ∨ dF2 )→

opt(G)∧
i=1

dSi ∧
opt(F )+1∧

i=1

(dSopt(G)+i ↔ dFi )

 .

Similarly as above, but now we state that S is satisfied iff F is. The
satisfaction degree according to the definition of ⊙⃗ is encoded as
follows. If F is satisfied to the smallest degree (i.e., the degree
is at most one) and G is satisfied, copy the satisfaction degree of
G bit by bit. If F is satisfied to a degree of at least two or G is
falsified, add opt(G) to the satisfaction degree of F .

Now, for a given QCCL formula F , let SF be the set
of all subformulas of F . We define QCCLTOCNF(F ) =∧

S∈SF

(
ENCODE(S) ∧

∧opt(S)
k=1

(
dSk+1 → dSk

))
. This encoding en-

forces that if the satisfaction degree of S is at least k + 1, it is also
at least k. Note that QCCLTOCNF(F ) can be locally converted to a
CNF formula.

The following properties of QCCLTOCNF follow from Defini-
tions 1–2 and the previous discussion.



Proposition 1. Let F be a QCCL formula and k =
1, . . . , opt(F ) a satisfaction degree. Each satisfying truth assignment
of QCCLTOCNF(F ) ∧ ¬dFk+1, when projected to Vars(F ), corre-
sponds to a model I ∈ Mod(F ) with deg(I, F ) ≤ k. Vice versa,
each I ∈ Mod(F ) with deg(I, F ) ≤ k uniquely extends to a satis-
fying truth assignment of QCCLTOCNF(F ) ∧ ¬dFk+1.

Corollary 2. Let F be a QCCL formula. Consider the MaxSAT
instance with FPrf

hard = QCCLTOCNF(F ) ∧ xF and FPrf
soft =∧opt(F )

k=1 ¬d
F
k . Each optimal MaxSAT solution of (FPrf

hard , F
Prf
soft ), when

projected to Vars(F ), corresponds to a preferred model I ∈ Prf(F )
and the optimal MaxSAT cost is exactly deg(I, F ). Vice versa, each
I ∈ Prf(F ) uniquely extends to an optimal MaxSAT solution of
(FPrf

hard , F
Prf
soft ).

By Proposition 1, for a given QCCL formula F and for any
k = 1, . . . , opt(F ), we can obtain an interpretation I ∈ Mod(F )
with deg(I, F ) ≤ k if one exists (solving the NP-complete DE-
GREESAT problem [9]) by calling a SAT solver on the formula
QCCLTOCNF(F ) ∧ ¬dFk+1. If the formula is satisfiable, a satisfy-
ing truth assignment τ directly corresponds to such an interpretation
I = τ [Vars(F )]. Hence, to extract a preferred model I ∈ Prf(F ), it
suffices to search for the smallest k for which QCCLTOCNF(F ) ∧
¬dFk+1 is satisfiable. By Corollary 2, this is achieved by calling
a MaxSAT solver on the formula QCCLTOCNF(F ) ∧ xF (en-
forcing that F is satisfied in the classical sense) with soft clauses∧opt(F )

k=1 ¬d
F
k (to minimize satisfaction degree). Any optimal solution

τ corresponds to a preferred model I = τ [Vars(F )].
We note that this approach extends naturally to solving the follow-

ing central NP-hard decision problems in QCCL [9].
PMCHECKING (coNP-complete): Given a QCCL formula F and an
interpretation I, decide whether I ∈ Prf(F ).
PMCONTAINMENT (Θp

2-complete): Given a QCCL formula F and
a variable a ∈ U , decide whether there is an interpretation I ∈
Prf(F ) such that I(a) = 1.
DEGREEEQUIV (coNP-complete): Given QCCL formulas A and B,
decide whether deg(I, A) = deg(I, B) holds for all interpretations
I.

To solve PMCHECKING, first determine deg(I, F ). If
deg(I, F ) = ∞, I ̸∈ Mod(F ) and hence I ̸∈ Prf(F ). If
deg(I, F ) = 1, I ∈ Prf(F ). Otherwise, call a SAT solver on
the formula QCCLTOCNF(F ) ∧ (¬dFdeg(I,F )). By Proposition 1,
any satisfying truth assignment corresponds to an interpretation
that satisfies F to degree less than deg(I, F ). If the formula is
unsatisfiable, we have I ∈ Prf(F ). Otherwise I ̸∈ Prf(F ) and the
obtained satisfying truth assignment is a counterexample to I being
a preferred model.

For PMCONTAINMENT, by Corollary 2, a preferred model of
F ∧ a can be extracted by calling a MaxSAT solver on the hard
clauses QCCLTOCNF(F ) ∧ xF ∧ a and soft clauses

∧opt(F )
i=1 ¬dFi .

If there is no solution, there is no I ∈ Mod(F ) ⊇ Prf(F ) with
I(a) = 1. Otherwise any optimal MaxSAT solution τ is a pre-
ferred model of F ∧ a, and c(τ) is the optimal satisfaction degree
of F ∧a. By Proposition 1, this is a preferred model of F if and only
if QCCLTOCNF(F ) ∧ (¬dFc(τ)) is unsatisfiable.

To decide DEGREEEQUIV, assume wlog that opt(A) ≥ opt(B).
Consider the formula

Fd(A,B) = QCCLTOCNF(A) ∧ xA ∧ QCCLTOCNF(B) ∧ xB

∧

opt(B)+1∨
k=1

(dAk ⊕ dBk ) ∨
opt(A)+1∨

k=opt(B)+2

(dAk ⊕ ¬xB)

 ,

where ⊕ is the exclusive-or connective, encoding that both A and
B are satisfied and that their satisfaction degrees are different, i.e.,
there exists k so that dAk and dBk take on different truth values (where
dBk is replaced by ¬xB for k > opt(B) + 1). Now Fd(A,B) is
unsatisfiable if and only if A and B are degree-equivalent. A satis-
fying truth assignment to Fd(A,B) is a counterexample to degree
equivalence. This can be extended to deciding full equivalence by
first checking whether opt(A) = opt(B); if not A and B are not
fully equivalent; otherwise A and B are fully equivalent iff they are
degree-equivalent [9].

4 Algorithms for preferred model entailment in
choice logic theories

A choice logic theory T is a finite set of choice logic formulas. In
this work, we consider QCCL theories consisting of QCCL formu-
las. An interpretation I is a model of T , denoted by I ∈ Mod(T ),
if I ∈ Mod(F ) for each F ∈ T . The notion of optionality ex-
tends to theories via opt(T ) = max{opt(F ) | F ∈ T}. For
k = 1, . . . , opt(T ), we denote by T opt

k = {F ∈ T | opt(F ) ≥ k}
the set of formulas with optionality at least k. We focus on the min-
max [9] (mm), lexicographic [14] (lex) and inclusion-based [14] (inc)
semantics for preferred models of choice logic theories [9]. For se-
mantics σ ∈ {mm, lex, inc}, we denote the σ-preferred models of a
QCCL theory T by Prfσ(T ). Given a QCCL theory T and a clas-
sical formula Q, the preferred model entailment problem [9] is to
decide whether I ∈ Prfσ(T ) implies I |= Q in the classical sense.
In words, a theory T entails a formula Q under a semantics σ iff all
σ-preferred models of T are (classical) models of Q.

4.1 Minmax preferred model entailment

Let T be a QCCL theory. Minmax preferred models minimize the
maximum satisfaction degree over all formulas in T [9], viewing a
theory as a conjunction of its formulas.

Definition 3. A model I ∈ Mod(T ) is a minmax preferred model of
T , denoted by I ∈ Prfmm(T ), if for all interpretations I′ ∈ Mod(T ),
I′ ̸= I we have max{deg(I, F ) | F ∈ T} ≤ max{deg(I′, F ) |
F ∈ T}.

Deciding minmax preferred model entailment is Θp
2-complete [9].

Example 2. Consider the QCCL theory T =
{(a×⃗c), (b×⃗c), (¬b×⃗¬a)}. The satisfaction degree of at least
one formula of T must be greater than 1 in a model of T and thus
any classical model of T is in this case a minmax preferred model:
Prfmm(T ) = {{a, c}, {b, c}, {c}}. Clearly c, and no other literal, is
minmax entailed by T .

To express the maximum satisfaction degree over all formulas F ∈
T , we use auxiliary variables sk for each k = 1, . . . , opt(T ). We
define the formula Fmm(T ) as

∧
F∈T

(
QCCLTOCNF(F ) ∧ xF

)
∧

( opt(T )∧
k=1

(
sk →

∧
F∈T

opt
k

¬dFk+1

))

encoding that if sk is true, the maximum satisfaction degree is at
most k. The optimal MaxSAT solutions of Fmm(T ) with soft clauses∧opt(T )

k=1 sk are the minmax preferred models of T .



Proposition 3. Let T be a QCCL theory. Consider the MaxSAT in-
stance with Fmm

hard = Fmm(T ) and Fmm
soft =

∧opt(T )
k=1 sk. Each optimal

MaxSAT solution of (Fmm
hard, F

mm
soft ), when projected to Vars(T ), cor-

responds to a minmax preferred model I ∈ Prfmm(T ). Moreover,
the optimal MaxSAT cost is minI∈Mod(T ) maxF∈T deg(I, F ) − 1.
Vice versa, each minmax preferred model I ∈ Prfmm(T ) uniquely
extends to an optimal MaxSAT solution of (Fmm

hard, F
mm
soft ).

To decide entailment under minmax semantics, note that T triv-
ially entails Q if

∧
F∈T F ∧¬Q is unsatisfiable. Otherwise, we com-

pute a minmax preferred model of T and obtain its maximum satis-
faction degree via a MaxSAT solver call by Proposition 3. Finally, we
check whether there is a minmax preferred model of T (enforcing a
satisfaction degree at most the degree obtained via MaxSAT) which
falsifies Q with a SAT solver call: T entails Q under the minmax
semantics iff this is not the case.

Proposition 4. Let T be a QCCL theory and Q a classical formula.
If
∧

F∈T F ∧¬Q is unsatisfiable, T entails Q under minmax seman-
tics. Otherwise, let τ be an optimal solution to the MaxSAT instance
with hard clauses Fmm(T ) and soft clauses

∧opt(T )
k=1 sk. The formula

Fmm(T ) ∧ TSEITIN(Q)∧ (¬xQ)∧ sc(τ) is unsatisfiable if and only if
T entails Q under minmax semantics.

4.2 Lexicographically preferred model entailment

The lexicographic semantics [14] is concerned with the satisfaction
degree of each individual formula in a theory. For an interpretation I
and k ∈ Z+, let T deg

k (I) = {F ∈ T | deg(I, F ) = k} denote the
set of formulas in T satisfied by I to degree k.

Definition 4. Let T be a QCCL theory. A model I ∈ Mod(T ) is a
lexicographically preferred model of T , denoted by I ∈ Prf lex(T ), if
there is no I′ ∈ Mod(T ), I′ ̸= I such that |T deg

k (I)| < |T deg
k (I′)|

for some k ∈ Z+, and |T deg
m (I)| = |T deg

m (I′)| for all m < k.

In words, preferred models under lexicographic semantics are in-
terpretations which satisfy a greatest number of formulas with small-
est possible satisfaction degrees, in a lexicographic sense.

Example 3. Consider the QCCL theory from Example 2: T =
{(a×⃗c), (b×⃗c), (¬b×⃗¬a)}. The only lexicographically preferred
model is {a, c}: two formulas of T are satisfied with degree 1, and
one with degree 2, while the other models satisfy one formula with
degree 1 and two with degree 2. Thus, e.g. a, c, and a ∧ c are lexico-
graphically entailed by T .

Deciding lexicographic preferred model entailment is ∆p
2-

complete [9]. In line with this, we detail an algorithm for
MaxSAT-based lexicographic optimization [1, 29], as Algo-
rithm 1. We begin by initializing a set of hard clauses Fhard as∧

F∈T (QCCLTOCNF(F ) ∧ xF ) (line 1), stating that each F ∈ T
must be satisfied (to a finite degree). We continue by iterating through
every possible degree k = 1, . . . , opt(T ) (lines 2–7), and define a
set of soft clauses Fsoft as

∧
F∈T

opt
k

(¬dFk+1) (line 3). Via a MaxSAT
solver call with instance (Fhard, Fsoft) (line 4) we obtain an optimal
solution τ with cost c which maximizes |T deg

k (τ)|, i.e., the number
of formulas satisfied to degree k. If there is no satisfying truth as-
signment (line 5), all F ∈ T cannot be satisfied, meaning that Q is
trivially entailed as a consequence of an inconsistent theory. If, on
the other hand, all formulas are satisfied to degree at most k (line 6),
τ is a preferred model of T , so we exit the loop. Otherwise, we add
a cardinality constraint

∑
F∈T

opt
k

dFk+1 ≤ c to Fhard (line 7), which

Algorithm 1 MaxSAT-based algorithm for deciding preferred model
entailment under lexicographic semantics.
Input: QCCL theory T and classical formula Q
Output: YES if T entails Q, NO otherwise

1: Fhard ←
∧

F∈T (QCCLTOCNF(F ) ∧ xF )
2: for k = 1, . . . , opt(T ) do
3: Fsoft ←

∧
F∈T

opt
k

(¬dFk+1)

4: (c, τ)← MAXSAT(Fhard, Fsoft)
5: if c =∞ return YES
6: if c = 0 break
7: Fhard ← Fhard ∧ (

∑
F∈T

opt
k

dFk+1 ≤ c)

8: if SAT(Fhard ∧ TSEITIN(Q) ∧ (¬xQ)) return NO
9: else return YES

enforces that the number of formulas satisfied to degree at most k
must be at least |T deg

k (τ)| = |T | − c. In other words, the cardinal-
ity constraints ensure that when considering degrees higher than k
on successive iterations, the number of formulas satisfied to degree
k does not decrease. Note that various CNF encodings of cardinal-
ity constraints have been developed (see e.g [4, 2]) and are readily
available [25]. After exiting the loop, the hard clauses Fhard encode
lexicographically preferred models of T .

Proposition 5. For k = 1, . . . , opt(T ), let ck be the
optimal cost of a MaxSAT instance with hard clauses
QCCLTOCNF(F ) ∧ xF ∧

∧k−1
m=1

(∑
F∈Tm

dFm+1 ≤ cm
)

and soft

clauses
∧

F∈T
opt
k

(¬dFk+1), and Flex(T ) = QCCLTOCNF(F ) ∧

xF ∧
∧opt(T )

k=1

(∑
F∈T

opt
k

dFk+1 ≤ ck
)

. Each satisfying truth as-

signment of Flex(T ), when projected to Vars(T ), corresponds to a
lexicographically preferred model I ∈ Prf lex(T ). Vice versa, each
I ∈ Prf lex(T ) uniquely extends to a satisfying truth assignment of
Flex(T ).

It remains to check whether there is a preferred model which fal-
sifies Q. This is achieved using a SAT solver call on input Fhard ∧
TSEITIN(Q)∧ (¬xQ) (line 9): Q is entailed by T in a lexicographic
sense iff this formula is unsatisfiable.

Proposition 6. Let T be a QCCL theory and Q a classical formula.
With input T and Q, Algorithm 1 returns YES if and only if T entails
Q under lexicographic semantics.

4.3 Inclusion-based preferred model entailment

The inclusion-based semantics [14] refines lexicographic semantics.

Definition 5. Let T be a QCCL theory. A model I ∈ Mod(T ) is an
inclusion-based preferred model of T , denoted by I ∈ Prf inc(T ), if
there is no I′ ∈ Mod(T ), I′ ̸= I such that T deg

k (I) ⊊ T deg
k (I′)

for some k ∈ Z+ and T deg
m (I) = T deg

m (I′) for all m < k.

Deciding inclusion-based entailment is Πp
2-complete [9].

Example 4. Consider again the QCCL theory T =
{(a×⃗c), (b×⃗c), (¬b×⃗¬a)}. Both {a, c} and {b, c} are inclusion-
based preferred models. The latter is preferred because it satisfies
(b×⃗c) with degree 1, unlike other interpretations. The literal c is
inclusion-based entailed.

Inclusion-based entailment requires reasoning about subsets of
formulas entailed to a specific degree. Due to this, we develop an



Algorithm 2 PrefSAT-based algorithm for deciding preferred model
entailment under inclusion-based semantics.
Input: QCCL theory T and classical formula Q
Output: YES if T entails Q, NO otherwise

1: F ←
∧

F∈T (QCCLTOCNF(F ) ∧ xF ) ∧ TSEITIN(Q)

2: w ← {¬dFk+1 7→ opt(T )− k+1 | F ∈ T, k = 1, . . . , opt(F )}
3: while true do
4: (result, τ)← PREFSAT(F ∧ (¬xQ), w)
5: if result = unsat then return YES
6: I ← τ [Vars(T )]
7: (result, _)← PREFSAT(F ∧MOREPREF(I, T ), w)
8: if result = unsat then return NO
9: F ← F ∧ REFINE(I, T )

approach based on SAT with preferences (PrefSAT) [33, 32, 19].
In PrefSAT, the input is a CNF formula F with a weight function
w : Lits(F ) → Z+. For a satisfying truth assignment τ to F and an
integer k, let Λk(τ) = {l ∈ Lits(F ) | τ(l) = 1, w(l) = k}. A truth
assignment τ is preferred to another truth assignment τ ′, if there is a
k > 0 with Λk(τ) ⊋ Λk(τ

′) and Λi(τ) = Λi(τ
′) for all i > k. The

task is to find a most preferred satisfying assignment τ to F .
The Πp

2-completeness of the entailment problem suggests a
counterexample-guided abstraction refinement (CEGAR) [17, 18]
approach. In CEGAR [17], an abstraction as an overapproximation
of the set of solutions is iteratively solved to obtain candidate solu-
tions. In each iteration it is checked whether the obtained candidate is
an actual solution by searching for counterexamples. If there are no
counterexamples, the candidate is an actual solution to the problem.
Otherwise, the abstraction is refined to exclude at least the candidate.

We initialize the abstraction F as
∧

F∈T (QCCLTOCNF(F ) ∧
xF ) ∧ TSEITIN(Q) (line 1) enforcing that each formula in T must
be satisfied to a finite degree, and introducing the auxiliary variable
xQ which is true iff the classical formula Q is satisfied. We assign
the PrefSAT weights w to map each literal ¬dFk+1 to opt(T )− k+1
(line 2), stating the higher preference to satisfy a formula the lower
the satisfaction degree of the formula is. Now PrefSAT solutions to
(F,w) correspond to inclusion-based preferred models.

Proposition 7. Let T be a QCCL theory. Consider the formula
Finc(T ) =

∧
F∈T (QCCLTOCNF(F ) ∧ xF ), and the weight func-

tion winc(T ) which, for each F ∈ T and k = 1, . . . , opt(F ), maps
literal ¬dFk+1 to opt(T ) − k + 1. Each PrefSAT solution of Finc(T )
with weights winc(T ), when projected to Vars(T ), corresponds to an
inclusion-based preferred model I ∈ Prf inc(T ). Vice versa, each
I ∈ Prf inc(T ) uniquely extends to a PrefSAT solution of Finc(T )
with weights winc(T ).

For a satisfaction degree k = 2, . . . , opt(T ) and I ∈ Mod(T ) let

NHDk(I) =
∧

F∈T
opt
k

deg(I,F )<k

¬dFk , ELDk(I) =
∨

F∈T
opt
k

deg(I,F )≥k

¬dFk .

NHDk(I) (short for No Higher Degree) encodes that all formulas
F ∈ T with satisfaction degree less than k under I still have satis-
faction degree less than k. ELDk(I) (short for Exists Lower De-
gree) encodes that at least one formula F ∈ T with satisfaction
degree at least k under I has satisfaction degree less than k. Let
EQ2(I) = NHD2(I) ∧ ¬ELD2(I), and EQk(I) = EQk−1(I) ∧
NHDk(I) ∧ ¬ELDk(I) for each k = 3, . . . , opt(T ). EQk(I) en-
codes that up to satisfaction degree k, formulas have the same satis-
faction degrees as in I.

In the CEGAR loop of Algorithm 2 (lines 3–9), we iteratively call
a PrefSAT solver on formula F ∧ (¬xQ) with weights w (line 4).
If no solution exists (line 5), T entails Q. Otherwise, by Propo-
sition 7, a PrefSAT solution τ corresponds to an inclusion-based
preferred model I of T under the constraint that Q is falsified
(line 6). We continue by checking for a counterexample, i.e., an
inclusion-based preferred model of T which is more preferred than
I. A PrefSAT solver call on the formula F ∧ MOREPREF(I, T )
and weights w (line 7), where MOREPREF(I, T ) = (NHD2(I) ∧
ELD2(I)) ∨

∨opt(T )
k=3 (NHDk(I) ∧ ELDk(I) ∧ EQk−1(I)) checks

this. If no such models exist (line 8), I is a lexicographically pre-
ferred model of T and falsifies Q, and hence T does not entail Q.
Otherwise, we refine the abstraction by conjoining to the abstrac-
tion REFINE(I, T ) (line 9), where REFINE(I, T ) = (NHD2(I) ∨
ELD2(I))∧

∧opt(T )−1
k=3 (EQk−1(I)→ (NHDk(I) ∨ ELDk(I)))∧(

EQopt(T )−1(I)→ ELDopt(T )(I)
)

enforces that for all possible sat-
isfaction degrees k, if formulas are satisfied with the same satisfac-
tion degree up to degree k−1, then it is not possible to satisfy a strict
subset of formulas satisfied on level k.

Proposition 8. Let T be a QCCL theory and Q a classical formula.
With input T and Q, Algorithm 2 returns YES if and only if T entails
Q under inclusion-based semantics.

5 Empirical Evaluation

We present results on the empirical runtime performance of the
implementation, named CHOICESAT, of our approach of the SAT-
based approaches detailed in Sections 3 and 4. The implementa-
tion, available in open source [27], uses the PYSAT Python li-
brary (1.8.dev12) [25], RC2 [26] as the MaxSAT solver, CADICAL
(1.9.5) [11] as the SAT solver, and MINIPREF [19] as the PrefSAT
solver. For computing a preferred model, we compare CHOICESAT
to the recent ASP-based approach [8] referred to here as QCCL-
ASP, using CLINGO (5.4.0) [24] as the ASP solver. To the best of
our knowledge, QCCL-ASP is the only existing implementation for

#solved (mean runtime over solved (s))

QCCL-ASP

#F QCL CCL QCCL

30 5 (294.7) 5 (139.0) 5 (570.9)
>30 0 — 0 — 0 —

CHOICESAT

#F QCL CCL QCCL

30 5 (0.1) 5 (0.1) 5 (0.1)
60 5 (0.2) 5 (0.1) 5 (0.2)
90 5 (0.3) 5 (0.3) 5 (0.2)
120 5 (0.7) 5 (0.6) 5 (0.3)
150 5 (5.4) 5 (4.0) 5 (0.4)
180 5 (15.2) 5 (12.3) 5 (0.4)
210 5 (112.2) 5 (25.0) 5 (0.5)
240 5 (261.5) 4 (178.4) 5 (0.7)
270 0 — 1 (189.7) 5 (0.6)
300 0 — 1 (425.3) 5 (0.9)
330 0 — 0 — 5 (1.0)
360 0 — 0 — 5 (1.2)
390 0 — 0 — 5 (1.2)
420 0 — 0 — 5 (1.3)

Table 1. CHOICESAT vs QCCL-ASP on computing a preferred model.



#solved (mean runtime over solved (s))

Minmax Lexicographic Inclusion-based

#F QCL CCL QCCL QCL CCL QCCL QCL CCL QCCL

30 5 (0.1) 5 (0.1) 5 (0.1) 5 (0.3) 5 (0.2) 5 (1.1) 5 (0.2) 5 (0.2) 5 (0.3)
60 5 (0.2) 5 (0.2) 5 (0.2) 5 (0.8) 5 (0.4) 5 (3.7) 5 (0.4) 5 (0.4) 5 (0.4)
90 5 (0.4) 5 (0.3) 5 (0.3) 5 (2.8) 5 (1.0) 5 (54.1) 5 (4.6) 5 (2.1) 5 (0.6)
120 5 (1.0) 5 (0.9) 5 (0.4) 5 (20.4) 5 (1.6) 2 (361.8) 5 (39.3) 5 (11.5) 5 (0.8)
150 5 (6.7) 5 (3.3) 5 (0.4) 5 (81.4) 5 (6.0) 0 — 0 — 5 (22.8) 5 (0.9)
180 5 (18.8) 5 (11.6) 5 (0.5) 0 — 5 (23.0) 0 — 1 (521.5) 5 (39.2) 5 (1.1)
210 5 (96.4) 2 (90.7) 5 (0.6) 0 — 5 (28.1) 0 — 0 — 5 (88.3) 5 (1.4)
240 5 (305.8) 5 (127.7) 5 (1.0) 0 — 5 (116.8) 0 — 0 — 4 (164.9) 5 (1.5)
270 0 — 2 (159.3) 5 (0.7) 0 — 2 (486.5) 0 — 0 — 2 (262.1) 5 (1.7)
300 0 — 1 (576.8) 5 (1.2) 0 — 2 (432.5) 0 — 0 — 1 (19.6) 5 (2.3)
330 0 — 0 — 5 (1.1) 0 — 0 — 0 — 0 — 0 — 5 (2.5)
360 0 — 0 — 5 (1.5) 0 — 0 — 0 — 0 — 0 — 5 (2.3)

Table 2. Runtime performance of CHOICESAT on preferred model entailment.

computing preferred models in QCCL and no previous implementa-
tions exist for preferred model entailment. The experiments were run
on 2.40-GHz Intel Xeon Gold 6148 CPUs under a per-instance time
limit of 600 seconds and memory limit of 32 GB.

Lacking a standard benchmark library for choice logics, we base
our benchmarks on a model for non-clausal negation normal form
propositional formulas viewed as balanced trees with alternative lev-
els of ∨ and ∧ nodes [30]. The model exhibits a phase transition be-
havior [30], where (depending on chosen number of levels/formula
depth) at a specific ratio r∗ of immediate subformulas to variables
a sharp peak in empirical hardness occurs for deciding satisfiability.
At r∗, there is a sharp change from almost all formulas being satisfi-
able to almost all being unsatisfiable, in analogy to phase transitions
in random k-SAT. We used the model to generate depth-5 formu-
las with ∨ in the root and binary connectives. The empirical phase
transition ratio for formulas that are the conjunction of a set of such
so-called ⟨2, 2, 2, 2, 2⟩-shape formulas is r = 5.42 [30]. To con-
struct expectedly challenging satisfiable formulas, we set r = 5 and
generated instances with a varying number of subformulas, namely
#F = 30..450 of ⟨2, 2, 2, 2, 2⟩-shape subformulas in increments of
30. The number of variables is thus |Vars| = #F/5. Hard but sat-
isfiable instances are desirable for evaluating algorithms for choice
logics, since unsatisfiable instances are uninteresting from the point
of view of preferences. To obtain QCL, CCL, and QCCL formulas,
we replaced in the obtained propositional formulas each ∨ (resp. ∧)
by ×⃗ (resp. ⊙⃗) with a fixed probability, using combinations of prob-
abilities (0, 0.5) (resulting in QCL formulas), (0.5, 0) (CCL) and
(0.5, 0.5) (QCCL). We generated five QCL, CCL and QCCL for-
mulas for each value of #F . For preferred model entailment, we
interpreted each constructed QCCL formula as the choice logic the-
ory T consisting of its immediate subformulas (i.e. the ⟨2, 2, 2, 2, 2⟩-
formulas), and selected a random literal l to obtain the instance for
deciding if l is entailed from T under minmax, lexicographic or
inclusion-based semantics.

A comparison between CHOICESAT and QCCL-ASP on the
problem of computing a preferred model in terms of number of in-
stances solved (out of 5) and mean runtime over solved instances for
each value of #F is shown in Table 1. QCCL-ASP could not solve
any instances beyond #F = 30. In contrast, CHOICESAT scales
significantly further, solving all instances up to #F = 120 in less
than one second on average. Scalability depends to an extent on the
choice connective(s) in the formulas. On the QCL instances, which
can be observed to be the hardest ones to solve, CHOICESAT scales

up to #F = 240. The better scalability on instances with ordered
conjunction may be due to fact that the ordered conjunction is intu-
itively a relaxed variant of classical conjunction, and hence replacing
conjunction with ordered conjunction moves the underlying formu-
las further away from the phase transition threshold towards more
easy-to-solve satisfiable instances.

Turning to preferred model entailment, results for CHOICESAT
under the three different semantics are shown in Table 2. CHOICE-
SAT exhibits good scalability even for these computationally harder
problems. Under minmax semantics the performance on entailment
is similar to computing a preferred model, which is explained by
the fact that our minmax algorithm performs only a single additional
SAT solver call after computing a preferred model. The relative run-
times under the three semantics are in line with the relative complex-
ity of the problems (Θp

2 for minmax, ∆p
2 for lexicographic, and Πp

2

for inclusion-based), with the exception of large QCCL instances be-
ing easier to solve under inclusion-based than lexicographic seman-
tics. We suspect that this due to the fact that adding more ordered
connectives increases the optionality of formulas, increasing the iter-
ations required to find a lexicographically preferred model. Addition-
ally, at times the algorithm for inclusion-based entailment might be
able to quickly find a counterexample, while the lexicographic algo-
rithm always needs to perform multiple MaxSAT calls up to the level
where each formula is satisfied to degree at most this level. Over-
all, the results for CHOICESAT are encouraging, and CHOICESAT
considerably outperform the recent QCCL-ASP approach.

6 Conclusions
We developed SAT-based approaches for computing preferred mod-
els and for preferred model entailment for QCCL, the combination of
QCL and CCL. We captured preferred models via MaxSAT, forming
the basis of algorithms for preferred model entailment and related
problems such as equivalence checking of QCCL formulas. For pre-
ferred model entailment, we detailed iterative procedures that per-
tain to the known complexity of the entailment problems, capturing
minmax semantics via MaxSAT and SAT, lexicographic semantics
via MaxSAT-based lexicographic optimization, and inclusion-based
semantics by PrefSAT-based CEGAR. Empirically, our implementa-
tion of the approaches scales significantly better than a recent ap-
proach proposed for computing preferred models, and allows for
deciding entailment for reasonably-sized choice logic theories with
hundreds of formulas. This motivates studying the potential of devel-
oping SAT-based approaches to further related choice logics [6, 15].
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