
ICCMA 2023: 5th International Competition on Computational Models
of Argumentation

Matti Järvisaloa, Tuomo Lehtonena,b, Andreas Niskanena

aDepartment of Computer Science, University of Helsinki, Finland
bDepartment of Computer Science, Aalto University, Finland

Abstract

The study of computational models of argumentation and the development of practical auto-
mated approaches to reasoning over the models has developed into a vibrant area of artificial
intelligence research in recent years. The series of International Competitions on Compu-
tational Models of Argumentation (ICCMA) aims at nurturing research and development of
practical reasoning algorithms for models of argumentation. Organized biennially, the ICCMA
competitions provide a snapshot of the current state of the art in algorithm implementations
for central fundamental reasoning tasks over models of argumentation. The year 2023 marked
the 5th instantiation of International Competitions on Computational Models of Argumenta-
tion, ICCMA 2023. We provide a comprehensive overview of ICCMA 2023, including details
on the various new developments introduced in 2023, overview of the participating solvers,
extensive details on the competition benchmarks and results, as well as lessons learned.

Keywords: algorithm competitions, formal argumentation, abstract argumentation,
structured argumentation, empirical evaluation

1. Introduction1

The study of computational aspects of argumentation is a topical and vibrant area of2

artificial intelligence research, aiming to capture rational reasoning when faced with conflict-3

ing claims [1, 2, 3, 4]. Motivated by a range of practical settings, including legal reason-4

ing [5, 6, 7, 8, 9, 10, 11], medical diagnostics [12, 13, 14, 15, 16, 17, 18] and other decision5

support scenarios [19, 20, 21, 22], as well as multi-agent systems [23, 24, 25, 26] and explain-6

ability [27, 28, 29, 30, 31], various formal models have been proposed for representing different7

argumentative scenarios. The types of formal models are traditionally divided into abstract8

formalisms [32, 33, 34] and structured formalisms [35, 36, 37, 38]. In abstract argumentation,9

where Dung’s abstract argumentation frameworks [32] constitute arguably the most central10

formalism, arguments and conflicts between arguments are assumed as given, and acceptance11

statuses of arguments are identified solely based on an attack relation between arguments. In12

contrast, structured argumentation formalisms allow for a more fine-grained modeling of ar-13

gumentative settings by representing the underlying rules and premises supporting claims as14

fundamental building blocks for deriving arguments, conflict information between arguments,15

and conclusions on the acceptance of claims. The development of practical algorithmic tech-16

niques for reasoning over formal models of argumentation—through central reasoning tasks,17

including credulous and skeptical acceptance of claims—has been identified as an important18

research direction [39].19

By providing further incentives for the research community at large to invest resources to-20

wards developing increasingly efficient practical system implementations of algorithms for21

reasoning over formal models of argumentation, the series of International Competitions22

on Computational Models of Argumentation (ICCMA, http://argumentationcompetition.23

org) was first established in 2015 [40] and subsequently organized in 2017 [41], 2019 [42, 43],24

2021 [44, 43], and most recently—as described in this article—in 2023. Organized biennially,25

the ICCMA competitions provide a timely snapshot of the current state of the art in algorithm26

implementations for central reasoning tasks—a great majority of which are computationally27

difficult, namely, NP/coNP-hard [45]—over formal models of argumentation. At the same28

time, the competitions provide standard benchmark sets for the use of researchers working29

on systems implementations and new algorithmic approaches to reasoning over models of30

argumentation.31

The ICCMA competitions invite via open calls for participation the research community32

at large to submit both (i) system implementations (or solvers, for short) for participating33

in the competition and (ii) interesting new benchmark instances and generators on which34

the empirical runtime performance of the submitted solvers are to be evaluated. In terms35

of models of argumentation, the competition series has focused mainly on abstract argumen-36

tation frameworks (AFs) and on key acceptance and related reasoning problems over AFs.37

Recently—as also detailed in this article—the scope of the competition has widened to cover38

reasoning over both dynamically changing AFs and structured argumentation.39

The year 2023 marked the fifth instantiation of the International Competitions on Com-40

putational Models of Argumentation, ICCMA 2023 (https://iccma2023.github.io). The41

main aim of this article is to provide a comprehensive overview of ICCMA 2023. Interestingly,42

ICCMA 2023 brought on several new developments. These include bringing to fruition for43

the first time a competition track for system implementations developed for reasoning about44

acceptance in the structured formalism of assumption-based argumentation (ABA) [46, 38];45

changes in the input formats towards more clean and simplistic representation of instances;46

a new API for developing both benchmarks and solvers developed for reasoning over dynam-47

ically changing AFs [47, 48, 49, 50, 51, 52]; as well as witness checking for positive answers48

reported by competing solvers. All in all, ICCMA 2023 included four tracks: one “Main49

track” on classical reasoning problems over AFs; one for approximate solvers for some of the50

Main track problems (the “Approximate track”); one on reasoning over dynamically changing51

AFs (the “Dynamic track”), and one for reasoning in ABA (the “ABA track”). Our main52

motivations in this article are to provide a historical record, a detailed account of the various53

design choices made and the results obtained, and lessons learned from organizing the 202354

instantiation of ICCMA.55

For completeness, we start with background on the argumentation formalisms considered56

in ICCMA 2023 (Section 2). We then proceed with an overview of ICCMA 2023, including57

detailed descriptions of the competition tracks (Section 3), and rules of the competition and58

the computing environment the competition was executed on (Section 4). After the overview,59

we describe the input-output specification (Section 5), the competition benchmarks and wit-60

ness verification (Section 6), and provide a high-level overview of the solvers submitted to61

the competition (Section 7). The competition results are provided in Section 8, with fur-62

2

a b c

d

e

Figure 1: An abstract argumentation framework.

ther details on the empirical data obtained presented in Section 9. Before conclusions, we63

discuss lessons learned from the competition with a selection of recommendations for future64

instantiations of ICCMA in Section 10.65

2. Argumentation Formalisms in ICCMA 202366

In this section we recall abstract argumentation frameworks (AFs) [32, 33] and assumption-67

based argumentation frameworks [46, 38], their semantics, and the computational problems68

focused on in ICCMA 2023.69

2.1. Abstract Argumentation70

Definition 1. An argumentation framework (AF for short) is a pair F = (A,R), where A is71

a set of arguments and R ⊆ A × A is an attack relation. If (a, b) ∈ R, argument a attacks72

argument b. An argument a ∈ A is defended by a set S ⊆ A if, for every (b, a) ∈ R, we have73

(c, b) ∈ R for some c ∈ S.74

Example 1. The AF F = (A,R) with A = {a, b, c, d, e} and R = {(a, b), (b, a), (b, c), (c, d),75

(e, c), (e, e)} is illustrated as a directed graph in Figure 1. Each argument is represented76

as a node, and each attack as a directed edge between the associated arguments. In F , the77

argument d is defended by {b} (as well as any S ⊆ A with b ∈ S), as the only attack (c, d) on78

d is countered by the attack (b, c).79

Semantics for AFs are defined as functions mapping an AF to a collection of jointly80

acceptable sets of arguments called extensions [33]. In ICCMA, we consider the widely-81

studied complete [32] (CO), preferred [32] (PR), stable [32] (ST), semi-stable [53] (SST),82

stage [54] (STG), and ideal [55] (ID) semantics.83

Definition 2. Given an AF F = (A,R) and a subset of arguments S ⊆ A, the range of S is84

S⊕
R = S ∪ {a ∈ A | (b, a) ∈ R, b ∈ S}. A set S ⊆ A is conflict-free (S ∈ CF(F)) if there is85

no (a, b) ∈ R with a, b ∈ S, and admissible (S ∈ AD(F)) if S ∈ CF(F) and every a ∈ S is86

defended by S. Now, S ∈ CF(F) is an extension under87

• complete semantics (S ∈ CO(F)) if S ∈ AD(F) and every a ∈ A defended by S is88

included in S;89

• preferred semantics (S ∈ PR(F)) if S ∈ AD(F) and there is no T ∈ AD(F) with90

S ⊂ T ;91

• stable semantics (S ∈ ST(F)) if S ∈ CF(F) and S⊕
R = A;92

3

• semi-stable semantics (S ∈ SST(F)) if S ∈ AD(F) and there is no T ∈ AD(F) with93

S⊕
R ⊂ T⊕

R ;94

• stage semantics (S ∈ STG(F)) if S ∈ CF(F) and there is no T ∈ CF(F) with S⊕
R ⊂ T⊕

R ;95

• ideal semantics (S ∈ ID(F)) if S ∈ AD(F), S ⊆
⋂

PR(F), and there is no T ∈ AD(F),96

T ⊆
⋂

PR(F), with S ⊂ T .97

Example 2. For the AF F in Example 1 we have98

CO(F) = {∅, {a}, {b, d}},
PR(F) = {{a}, {b, d}},
ST(F) = ∅,

SST(F) = {{b, d}},
STG(F) = {{b, d}, {a, c}}, and

ID(F) = {∅}.

Deciding whether a given argument is credulously or skeptically accepted in a given AF99

constitute two central reasoning problems in abstract argumentation [45].100

Definition 3. Let F = (A,R) be an AF and σ ∈ {CO,PR,ST,SST,STG, ID} a semantics.101

A query argument a ∈ A is (i) credulously accepted under σ in F if a ∈ E for some E ∈ σ(F)102

with a ∈ E; (ii) skeptically accepted under σ in F if a ∈ E for all E ∈ σ(F).103

Example 3. Consider the AF F in Example 1 and its extensions (see Example 2). The104

arguments a, b, and d are credulously accepted under CO and PR. Since there is no stable105

extension, no argument is credulously accepted under ST, while all arguments are skeptically106

accepted under ST. Arguments b and d are both credulously and skeptically accepted under107

SST. Under STG, the arguments a, b, c, and d are credulously accepted, but no argument is108

skeptically accepted. Finally, since ∅ is the unique ideal extension, no argument is credulously109

or skeptically accepted under ID.110

The reasoning problems over abstract argumentation frameworks considered in ICCMA111

2023 were credulous acceptance, skeptical acceptance, and the problem of finding a single112

extension under a given semantics.113

Definition 4. Consider an AF F = (A,R) and semantics σ = {CO,PR,ST,SST,STG, ID}.114

• DC-σ: Is a given query argument a ∈ A contained in a σ-extension of F?115

• DS-σ: Is a given query argument a ∈ A contained in all σ-extensions of F?116

• SE-σ: Return a σ-extension of F or report that one does not exist.117

The computational complexity of the decision problems DC and DS is well-established for118

the various argumentation semantics [45, 56, 57, 58]: DS-CO is in P; DC-CO, DC-PR, DC-ST119

are NP-complete [56]; DS-ST is coNP-complete [56]; DC-ID and DS-ID are ΘP
2 -complete [59];120

DC-SST and DC-STG are ΣP
2 -complete [60, 61]; and DS-PR, DS-SST and DS-STG are ΠP

2 -121

complete [60, 61, 62]. As the ideal extension is unique [55], DC-ID and DS-ID coincide, and122

4

both problems can be decided by computing the ideal extension. Furthermore, since every123

complete extension is contained in a preferred extension, DC-CO coincides with DC-PR.124

Finally, DS-CO and SE-CO are solvable in polynomial time, and are reducible to the problem125

of determining the grounded extension.126

2.2. Assumption-Based Argumentation127

We turn to the structured formalism of assumption-based argumentation (ABA), and128

specifically the logic programming fragment of ABA [46, 38], which is considered in ICCMA129

2023.130

Assume a deductive system (L,R), where L is a set of atomic sentences, and R a set of131

inference rules over L. A rule r ∈ R has the form a0 ← a1, . . . , an with ai ∈ L for 0 ≤ i ≤ n132

and a0 /∈ A. We denote the head of rule r by head(r) = {a0} and the (possibly empty) body133

of r with body(r) = {a1, . . . , an}. An ABA framework consists of a deductive system together134

with a subset of the atoms being specified as assumptions (which can be provisionally assumed135

to hold) and which atoms are contrary to assumptions (inducing a conflict).136

Definition 5. An ABA framework is a tuple F = (L,R,A,), where (L,R) is a deductive137

system, A ⊆ L a non-empty set of assumptions, and a function mapping assumptions A to138

sentences L.139

We assume the sets L, R and A to be finite, and that assumptions do not occur as heads140

of rules.141

Given an ABA framework F = (L,R,A,), the derivability of an atom a ∈ L from a set142

of assumptions X ⊆ A, denoted by X ⊢ a, is defined as follows. It holds that X ⊢ a, if either143

(i) a ∈ X or (ii) there is a sequence of rules (r1, . . . , rn) in R with head(rn) = a such that for144

reach rule ri, each atom in the body of ri either is in X or is the head of a rule earlier in the145

sequence, i.e., body(ri) ⊆ X ∪
⋃

j<i head(rj).146

Attacks in ABA are defined between assumption sets.147

Definition 6. Let F = (L,R,A,) be an ABA framework, and X,Y ⊆ A two sets of148

assumptions. Assumption set X attacks assumption set Y in F if X ⊢ b for some b ∈ Y .149

In words, an assumption set X attacks another assumption set Y if the contrary of an150

assumption in Y can be derived using R and X.151

Example 4. Consider the ABA framework F = (L,R,A,), with152

L = {a, b, c, x, y, z, w},
R = {(x← y, a), (y ← c), (z ← b, c)},
A = {a, b, c}, and
a = z, b = x, c = w.

Here {c} ⊢ y, {a, c} ⊢ y, {a, c} ⊢ x, {b, c} ⊢ z and {b, c} ⊢ z. Since a = z, we have that {b, c}153

attacks {a}. Since b = x, {a, c} attacks {b} and {b, c}.154

The semantics of ABA are based on the notions of conflict-freeness and defense for as-155

sumptions sets.156

5

Definition 7. Let F = (L,R,A,) be an ABA framework. An assumption set X ⊆ A is157

conflict-free if X does not attack itself. The assumption set X defends an assumption set158

Y ⊆ A if X attacks all assumption sets Z ⊆ A that attack Y . Assumption set X ⊆ A is159

admissible if X defends itself.160

We now recall the ABA semantics considered in the ABA track of ICCMA 2023, namely161

the complete, preferred and stable semantics. For simplicity, we call a set of assumptions that162

satisfies a given semantics an extension under the semantics.163

Definition 8. Let F = (L,R,A,) be an ABA framework and X ⊆ A be a conflict-free set164

of assumptions. Then X is an extension under165

• complete semantics (X ∈ CO(F)) if X is admissible and contains every assumption it166

defends;167

• preferred semantics (X ∈ PR(F)) if X is complete and there is no complete set of168

assumptions Y ⊆ L with Y ⊋ X; and169

• stable semantics (X ∈ ST(X)) if each {x} ⊆ A \X is attacked by X.170

Analogously as for AFs, for simplicity we call a set of assumptions X ∈ σ(F) for a given171

semantics σ and ABA framework F an extension of F under σ. Further, in analogy with the172

ICCMA 2023 Main track focusing on abstract argumentation, the problems considered in the173

ICCMA 2023 ABA track were deciding credulous acceptance, deciding skeptical acceptance,174

and the problem of finding a single extension. In ABA, the acceptance problems are defined175

in terms of derivability of atoms from extensions.176

Definition 9. Consider an ABA framework F = (L,R,A,) and semantics σ = {CO,PR,ST}.177

• DC-σ: Is a given atom s ∈ L derivable from a σ-extension of F?178

• DS-σ: Is a given atom s ∈ L derivable from all σ-extensions of F?179

• SE-σ: Return a σ-extension of F or report that one does not exist.180

Example 5. Consider again the ABA framework F from Example 4. The admissible sets181

of F are ∅, {c}, {b, c}, and {a, c}, since {a, c} and {b, c} attack each other and {c} is not182

attacked by any set (as the contrary of c is not derivable). Out of these, ∅ is not complete,183

since it defends but does not include {c}. Finally, {a, c} and {b, c} are stable and preferred,184

as they both attack the remaining assumption (b and a, respectively). Thus, under complete,185

preferred and stable semantics y, x, z, a, b and c are credulously accepted, while only y and c186

are skeptically accepted.187

Similarly as for AFs, the computational complexity of the acceptance problems is well-188

established for ABA [63, 64, 45] and coincides with the complexity of their abstract argu-189

mentation counterpart: DS-CO is in P; DC-CO, DC-PR, DC-ST are NP-complete; DS-ST190

is coNP-complete; and DS-PR is ΠP
2 -complete. Similarly as for AFs, credulous acceptance191

under complete and preferred semantics coincide also in ABA.192

6

3. Competition Tracks193

ICCMA 2023 consisted of four competition tracks: the Main track and the special Ap-194

proximate, Dynamic, and ABA tracks. Each of the tracks is composed of multiple subtracks,195

defined by a combination of a reasoning problem and an argumentation semantics. Solvers196

could be submitted for evaluation into any choice of subtracks. In other words, no require-197

ments were enforced to require that solvers should support, e.g., all semantics for a specific198

reasoning problem, or all reasoning problems for a specific semantics.199

3.1. Main Track200

The Main track concerns solvers for computing extensions and, most centrally, skeptical201

and credulous reasoning in abstract argumentation frameworks. Abstract argumentation is202

a unifying approach to argumentation and non-monotonic reasoning, abstracting away the203

structure of arguments and focusing on the resolution of conflicts between arguments [32].204

Abstract argumentation frameworks form the formal basis for much of modern research in205

computational argumentation [33], underlining the importance of these main reasoning tasks206

the Main track focuses on. Highlighting their importance, solvers for reasoning in abstract207

argumentation constitute core reasoning engines for a wide range of argumentative scenarios;208

see e.g. [8, 9, 10, 11, 16, 19, 23, 27, 28, 29, 30, 65, 66, 67, 68].209

In particular, the focus of the ICCMA 2023 Main track was to evaluate single core ar-210

gumentation reasoning solvers available in open source. Solvers combining different existing211

solvers in portfolio-style techniques, solvers employing parallel computations via the use of212

multiple processor cores, as well as solvers which will not be made available in open source213

were invited to a special No-limits track which consists of the same subtracks as the Main214

track. This distinction was made in order to allow for separately evaluating sequential solvers215

and solvers building on top of sequential solvers. The following combinations of reasoning216

modes and semantics constituted the Main and No-limits subtracks in ICCMA 2023.217

• Subtracks concerning credulous reasoning: DC-CO, DC-ST, DC-SST, DC-STG218

• Subtracks concerning skeptical reasoning: DS-PR, DS-ST, DS-SST, DS-STG219

• Subtracks concerning computing a single extension: SE-PR, SE-ST, SE-SST, SE-STG,220

SE-ID221

Note that DS-CO, SE-CO, DC-PR, DC-ID and DS-ID are not included as subtracks, since222

each of these either coincides with one of the problems included in the track, or is solvable in223

polynomial time (recall Section 2.1).224

3.2. Approximate Track225

Organized since ICCMA 2021, the Approximate track concerns inexact solvers developed226

for abstract argumentation, i.e., solvers which may in some cases provide incorrect YES/NO227

answers to credulous/skeptical acceptance. The main motivation behind the Approximate228

track is to provide incentives to develop practical algorithmic solutions which are more scalable229

than exact solvers in the Main track by relaxing the requirement of correctness to being correct230

as often as possible in terms of providing correct YES/NO answers.231

The subtracks in the Approximate track were the following.232

7

• Subtracks concerning credulous reasoning: DC-CO, DC-ST, DC-SST, DC-STG, DC-ID233

• Subtracks concerning skeptical reasoning: DS-PR, DS-ST, DS-SST, DS-STG234

3.3. Dynamic Track235

Organized for the first time in ICCMA 2019, the Dynamic track concerns solvers for236

answering credulous/skeptical acceptance queries in a dynamically evolving AF as a form of237

argumentation dynamics, motivated by the fact that in various application scenarios such as238

disputes between agents in online social networks [69] the attack relation is subject to temporal239

changes, arising from e.g. the fact that disputes may change (be retracted or added) due to240

new available knowledge [49]. The goal of the Dynamic track is to provide incentives for241

developing argumentation solvers supporting efficient reasoning under such dynamic settings.242

An instance of the Dynamic track consists of an initial AF, as well as a sequence of243

operations corresponding to244

• changes in the structure of the current AF, i.e., additions or deletions of arguments or245

attacks,246

• declarations of query arguments for acceptance tasks, and247

• solve calls, in which case a solver must report either YES or NO according to the task-248

semantics combination corresponding to the subtrack.249

The subtracks in the ICCMA 2023 Dynamic track were DC-CO, DC-ST, and DS-ST, which250

correspond to all NP-complete acceptance problems considered in the Main track. The DS-251

PR subtrack was also included in the call for participation, but as only one solver supported252

it, DS-PR was excluded as a subtrack from the competition.253

The sequence of operations is issued to a participating solver via an API which we detail254

in Section 5.4. Using this API, we developed a simple benchmark application which takes an255

AF and a query argument as input, extracts a subgraph to construct an initial AF, iteratively256

changes the structure of the AF as well as the query arguments for acceptance tasks. We257

detail this application in Section 6.2.258

3.4. ABA Track259

The ABA track, realized for the first time in ICCMA 2023, concerns solvers developed260

for reasoning in the structured argumentation formalism of assumption-based argumentation261

(ABA). The ABA track was originally proposed for ICCMA 2021. However, the track was262

cancelled in 2021 due to lack of solver submissions. For 2023, we opted to re-organize the ABA263

track, building on the well-thought-out plans for an ABA track from 2021. Regarding the264

choice of ABA in particular among the various existing structured argumentation formalisms265

as the focus of a structured argumentation track at ICCMA, we note that there has recently266

been active development of algorithms for reasoning in ABA [70, 71, 72, 73, 74, 75, 76, 77, 78]267

as well as work on applying ABA in application settings [12, 13, 14, 15, 30, 24, 79, 80, 81]268

which suggested that an ABA track might be feasible for 2023.269

The subtracks in the ABA track are DC-CO, DC-ST, DS-PR, DS-ST, SE-PR, and SE-ST.270

Similarly as for the Main track, DS-CO, SE-CO and DC-PR were not considered due to either271

coinciding with one of the organized subtracks or due to being solvable in polynomial time272

(recall Section 2.2).273

8

4. Organizational Details274

We continue with an overview of central organizational details of ICCMA 2023, including275

key rules and requirements, correctness specifications for solvers and solver testing employed276

by the organizers, the schemes used for ranking solvers in the tracks, and the specification of277

the computing cluster used to run ICCMA 2023.278

4.1. Organizers and Steering Committee279

The authors of this article constitute the organizers of ICCMA 2023. The Steering Com-280

mittee of the ICCMA competition series made the decision to invite the organizers. Further-281

more, all central decisions (such as the organized competition tracks and rules) were made282

with the approval of the 2021–2023 ICCMA Steering Committee.1283

4.2. Open Source Requirement284

For all tracks apart from No-Limits, solver source code originating from the authors (in-285

cluding modifications to third-party source code as part of a solver) had to be submitted286

together with a corresponding solver binary. The source code package of each participating287

solver were to be made available at the time when the results of ICCMA 2023 were presented288

at the KR 2023 conference. This rule was enforced to ensure that the research community at289

large would be able to access, make use of, and potentially study ways of further improving290

the state-of-the-art solvers after the competition. In case bug fixes were submitted during291

the evaluation (i.e., if requested by the evaluation organizers), the bug-fixed source package292

had to also be submitted together with a bug-fixed solver binary. Solvers were allowed to293

use external binaries or unmodified third-party libraries. However, if a solver implementation294

used non-standard libraries (beyond STL, Boost, etc.) its identity and usage in the solver295

had to be clearly specified in the solver description.296

4.3. Use of Processor Cores and Eligibility of Portfolio Solvers297

In all tracks except for the No-Limits track, solvers were required to use only a single core298

of the processor on the computing node it was run on. Solvers making use of multiple cores299

would be disqualified. This limitation did not concern the No-Limits track, where parallel300

computations were allowed. Portfolio solvers, which combine several existing argumentation301

solvers were not allowed to participate in the competition apart from the No-Limits track,302

where portfolios were allowed. The organizers reserved the right to may move a solver from303

the Main track to the No-Limits track if a solver was deemed to violate these conditions. As304

a results, one solver was moved from Main to No-Limits track due to multithreading.305

4.4. Correctness Requirements306

We applied the following definition of correct solvers. A solver is correct in a subtrack if307

it fulfills the following requirements for every instance executed during the evaluation. For308

every subtrack, the output of the solver must conform to the I/O requirements (see Section 5).309

No additional output was allowed. If the solver terminates without running out of time or310

memory, it must exit without any errors and fulfill the following requirements.311

1The composition of the 2021–2023 ICCMA Steering Committee was as follows: Sarah A. Gaggl (President),
Johannes P. Wallner (Vice-President), Jean-Guy Mailly (Secretary), Andrea Cohen, Jean-Marie Lagniez,
Matthias Thimm, and Serena Villata.

9

• Main track and No-Limits track:312

– DC-σ: If the query argument is credulously accepted, the solver outputs YES along313

with a certificate, i.e., a σ-extension containing the query. Otherwise, the solver314

outputs NO.315

– DS-σ: If the query argument is not skeptically accepted, the solver outputs NO316

along with a certificate, i.e., a σ-extension not containing the query. Otherwise,317

the solver outputs YES.318

– SE-σ: The solver outputs a σ-extension.319

• Approximate track: The solver must output YES or NO; certificates are not required.320

• Dynamic track: Every function specified in the API (as detailed later on in Section 5)321

employed by the benchmark application is correctly implemented. A benchmark in-322

stance is solved when the benchmark application terminates correctly. If the benchmark323

application issues a sequence of API calls which are not supported by the solver, the324

solver must enter state ERROR. If this state is encountered, the solver will be excluded325

from the corresponding subtrack, but will not be disqualified.326

• Assumption-based Argumentation track: Same requirements as in Main track, but with-327

out the need to produce a certificate.328

A solver would not be immediately disqualified if it outputs a wrong solution during329

the execution of the evaluation. The organizers provided all participants a fair chance of330

submitting bug fixes to their solvers in a timely manner based on feedback from the organizers331

regarding incorrect results. If the bug resulting in incorrect behavior could not be resolved by332

the solver developers, the submitters were still given the option of having the solver’s correct333

results tabulated and reported among the ICCMA 2023 results. However, the results would334

be marked to indicate that the solver also generated some incorrect results.335

4.5. Testing Solvers for Correctness336

To detect bugs in solvers early, the organizers fuzz tested all submitted solvers before the337

evaluation was performed and reported any erroneous results to the submitters. For each338

solver and subtrack, hundreds of random frameworks were generated and tested against a339

track-specific reference solver. Multiple rounds of such feedback were provided to the solver340

developers in case the solver continued to not pass the tests.341

For the Main track, the following fuzz testing procedure was implemented to test342

the correctness of solver outputs, including witnesses. We generated AFs according to a343

random model inspired by [82]. For each AF F = (A,R), we first sampled the number of344

arguments n uniformly at random from an interval [10, 50]. To construct R, for each pair345

of arguments a1, a2 ∈ A we let an attack (a1, a2) exist with probability 0.1. If an attack346

exists, it is symmetric with probability 0.05. Finally, for each a ∈ A, a self-attack (a, a) exists347

with probability 0.02. For acceptance tasks (DC and DS), a query argument was generated348

uniformly at random.349

For each semantics (CO, PR, ST, SST, STG, ID), we called a reference solver to enu-350

merate all extensions to be able to verify witnesses reported by the solvers (in addition to351

YES/NO answers). As a reference solver, we used µ-toksia (ICCMA 2019 version) due to its352

10

success in ICCMA 2019 [43]. For each subtrack supported by a participating solver, we called353

the participating solver to obtain a YES/NO answer and, depending on the task and answer,354

a witness extension. We checked the following properties against the extensions reported by355

the reference solver.356

• DC: If the answer is YES, a witness was reported and the witness is an extension under357

the considered semantics and contains the query argument. If the answer is NO, no358

extension contains the query argument.359

• DS: If the answer is NO, a witness was reported and the witness is an extension under360

the considered semantics and does not contain the query argument. If the answer is361

YES, all extensions contain the query argument.362

• SE: If the answer is NO, no extension exists. Otherwise, a witness exists and is an363

extension under the considered semantics.364

This procedure was repeated for 100 iterations for each participating solver. Using fuzz365

testing, we determined that one solver submitted to the Main track reported incorrect ex-366

tensions for the STG semantics. The corresponding input AFs and tasks were reported to367

the developers of the solver. After obtaining bug fixes from the developers of the solver, all368

solvers submitted to the Main track passed this procedure.369

For the Dynamic track, we employed a similar fuzz testing procedure as for the Main370

track. For every iteration of the procedure (repeated 100 times), we generated an initial371

AF using the same random model as used for fuzzing in the Main track. A task-semantics372

combination (DC-CO, DC-ST, DS-ST) was chosen uniformly at random. A participating373

solver was initialized with the initial AF and the chosen semantics via IPAFAIR. For the374

next 500 iterations, we applied a dynamic change (addition or deletion of an argument or375

attack; chosen uniformly at random from all available combinations) to the current AF, and376

issued the change to the participating solver via IPAFAIR. Then, similarly to the Main track,377

we enumerated all extensions of the AF under the current semantics using a reference solver378

(µ-toksia, ICCMA 2019 version), and verified that the result reported by the participating379

solver agrees with the extensions reported by the reference solver, and that the state of380

the solver is not erroneous. We observed both incorrect results and crashes on two solvers381

submitted to the Dynamic track. These observations were reported to the developers by382

providing the corresponding initial AF and a Python script containing the trace of IPAFAIR383

calls issued during fuzzing. After obtaining bug fixes from the developers, all solvers passed384

the fuzz testing procedure.385

For the ABA track, the following fuzz testing procedure was implemented. We gener-386

ated ABA frameworks with a simplified version of a random model used in [73], with 25 atoms387

and 8 assumptions. Assumptions were randomly assigned a contrary from the set of all atoms.388

For each non-assumption atom, 1–5 rules were generated with 1–5 atoms in the rule body.389

Both values were selected separately and uniformly at random, as were the atoms occurring390

in a given rule body. As a reference solver we used ASPforABA, a mature solver that has391

been publicly available and empirically evaluated prior to the competition [75]. We checked392

that the reference solver and each tested solver agreed on their answer (YES or NO) on the393

acceptance subtracks DC-CO, DC-ST, DS-PR, and DS-ST. When an answer reported by a394

submitted solver differed from the answer given by the reference solver, the framework was395

11

inspected by hand to verify that the error was in the tested solver. Instances on which a solver396

reported an erroneous result were reported to the submitters of the solver. The correctness of397

the solvers in the actual evaluation corresponded to testing: each solver that passed the fuzz398

testing reported only correct answers in the actual evaluation and each solver that did not in399

the end pass the fuzz testing reported some erroneous results in the actual evaluation.400

4.6. Ranking Schemes401

For the Main, Dynamic, and ABA tracks, the score of a solver on a subtrack is the sum402

of the so-called PAR-2 scores [83]—as a standard ranking scheme employed in various other403

solver competitions (see e.g. [84])—of the solver over all instances of a subtrack. The PAR-2404

score assigned to a solver on an individual instance is the CPU time used by the solver on405

the instance if the solver solved the instance within resource limits, and 2× the per-instance406

time limit otherwise. In other words, the PAR-2 score penalizes a solver timeout by double407

the time limit. For the No-limits track, PAR-2 based on wall-clock time, that is, elapsed408

time as measured by the internal clock of the computer, instead of CPU time was used in409

order to account for parallel processing. The winner of a subtrack is the solver with the410

lowest score. For the Approximate track, due to the inexactness of solvers, incorrect solutions411

are discarded, and the solver with the largest number of correctly solved instances wins. If412

needed, cumulative CPU running time over solved instances was used as a tie-breaker.413

4.7. Computing Environment and Resource Limits414

ICCMA 2023 was executed on a computing cluster of the University of Helsinki, Finland,415

with the following homogeneous node specification: 2.60-GHz Intel Xeon E5-2670 CPUs and416

57GB RAM under AlmaLinux 8.4, including GCC 12.2.0, Clang 12.0.1, Boost 1.76.0, GLib417

2.68.2, Rust 1.70.0, Java 17.0.4, and Python 3.9.5. The memory limit of 16 GB per instance418

was enforced in all tracks. The per-instance time limit for all but the Approximate and No-419

limit tracks was set to 1200 seconds CPU time per instance. For the Approximate track, the420

time limit was 60 seconds CPU time per instance, and for the No-limits track 1200 seconds421

wall-clock time per instance. For the Dynamic track, the resource limits were applied to422

each benchmark instance as a whole (including multiple changes to the AF and acceptance423

queries).424

4.8. Further Rules425

Mandatory Solver Descriptions. Each solver entrant to ICCMA 2023 was required to accom-426

panied by a short, 1–2 page written description of the system. The description needed to427

include a list of all authors of the system and their present institutional affiliations, provide428

details of any non-standard algorithmic techniques (e.g., heuristics, simplification/learning429

techniques, etc.) and data structures in the solver, as well as references to relevant literature430

(be they by the authors themselves or by others). The solver descriptions were compiled431

by the organizers into a technical report [85] which was made openly available so that the432

research community can for future purposes refer to the individual solver descriptions.433

Number of Submissions and Withdrawal. As a further rule, a solver could be withdrawn434

from ICCMA 2023 only before the deadline for the submission of the final versions. After435

this deadline no further changes or withdrawals of the solvers are possible. This rule was436

enforced in order to avoid potential late withdrawals of solvers that might have not reached437

12

top positions. The option to withdraw was not in fact used by any participant. The evaluation438

organizers also reserved the right to restrict the number of solver submissions originating from439

the same author(s) based on computation resource limitations. The application of this rule440

did not turn out to be necessary.441

Participation of Organizers. The organizers were allowed to enter their own solvers into the442

evaluation. The steering committee approved this decision. The reason for this decision443

was that the organizers have contributed to various argumentation solvers, and it was not444

considered beneficial for the community to leave out these solvers from the evaluation. That445

said, strict measures were enforced to avoid providing them with advantage over other partici-446

pants. In particular, benchmark selection was done using a random seed—811543731122527—447

concatenated from numbers sent separately to the organizers by each ICCMA steering commit-448

tee member (this procedure also aimed to ensure that no specific steering committee member449

could single-handedly decide the random seed). The seed and benchmark selection scripts450

are openly available on the ICCMA 2023 website. Furthermore, hashes of solver source codes451

(in the form of git commit IDs) originating from the organizers were communicated to the452

steering committee before benchmark selection to confirm that the organizers did not modify453

their solvers after benchmark selection.454

5. I/O Requirements and Processing455

ICCMA 2023 brought on new developments in the ways in which benchmark instances456

are input to the participating argumentation solvers.457

In previous instantiations of ICCMA, two input formats were supported for representing458

abstract argumentation frameworks (see, e.g., [40]): the Trivial Graph Format (TGF, https:459

//en.wikipedia.org/wiki/Trivial_Graph_Format) and the so-called ASPARTIX format.460

TGF is a standard format for representing directed graphs using indices for nodes (argu-461

ments), with directed edges (attacks) listed line-by-line as pairs of indices. The ASPARTIX462

format, named after the answer set programming (ASP) [86, 87] based argumentation solver463

ASPARTIX [88], is an answer set programming style input format, listing the existence of464

arguments (using the predicate arg/1) and attacks (using the predicate att/2) as grounded465

facts. In 2021, an extension of the ASPARTIX format to representing ABA frameworks was466

also proposed (although the then-planned ABA track did not unfortunately come to existence467

due to lack of participants). For the Dynamic track, in 2021 the TGF and ASPARTIX formats468

were used and extended to include information on the initial AF as well as all the changes469

the AF would be subject to in the same file (which means that that solvers in the Dynamic470

track were made aware of all future changes already at the time of reading in the initial AF).471

As detailed next, for ICCMA 2023 a single indexing-based numerical input format for AFs472

was enforced for the Main, Dynamic and Approximate tracks, based on a proposal originating473

from the community2 to move to such an input format We also extended the format for use474

in the ABA track by beginning-of-line identifiers for distinguishing between assumptions,475

rules and contraries. The main motivations were to move from more verbose and non-unique476

formats to a single more compact format which is simple to parse and which directly provides477

2We acknowledge Matthias Thimm for proposing this to the ICCMA 2023 organizers.

13

indexing of the basic elements over which AF and ABA frameworks are defined. A single478

format also avoids possible issues related to diverging inputs when allowing a choice of multiple479

formats, and also makes the execution of solvers in the competition more straightforward.480

5.1. Input Format for Abstract Argumentation Frameworks481

The following AF input file format was used in the Main, No-Limits, Dynamic, and Ap-482

proximate tracks.483

The arguments of an AF with n arguments are indexed consecutively with positive integers484

from 1 to n. The first line of the input file is the unique "p-line" of the form485

p af <n>486

where <n> is the number of arguments n, ending with the newline character. An attack a→ b,487

where a has index i and b has index j, is expressed as the line488

i j489

ending with the newline character. In addition to the p-line and lines expressing attacks,490

lines starting with the character # are allowed. These lines are interpreted as comment lines491

unrelated to the syntax of the input AF, and end with the newline character. No other lines492

are allowed.493

Example 6. Consider the AF in Example 1 over the arguments {a,b,c,d,e} with the attacks494

(a, b), (b, a), (b, c), (c, d), (e, c), (e, e)}. Assuming the indexing a = 1, b = 2, c = 3, d = 4,495

e = 5, this AF is specified as follows.496

p af 5497

this is a comment498

1 2499

2 1500

2 3501

3 4502

5 3503

5 5504

5.2. Input Format for ABA Frameworks505

In the ABA track, the following ABA input file format was used. The atoms of an ABA506

framework with n atoms are indexed consecutively with positive integers from 1 to n. The507

first line of the input file is of the unique "p-line" of the form508

p aba <n>509

where <n> is the number of atoms n, ending with the newline character. Assumptions, rules510

and contraries are specified on individual lines. A line starting with a, followed by an index511

between 1 and n, specifies that the atom with the index is an assumption. A line starting512

with c, followed by two space-separated indices between 1 and n, specified that the atom513

corresponding to the second index is a contrary of the atom corresponding to the first index.514

A line starting with r followed by a space-separated list of indices between 1 and n specify515

a rule whose head is the atom corresponding to the first index in the list and whose body516

14

consists of the atoms corresponding to the subsequent indices in the list. Each line starting517

with a, c or r ends with the newline character. In addition to the p-line and lines starting518

with a, c or r, lines starting with the character # are allowed. These lines are interpreted519

as comment lines unrelated to the syntax of the input ABA framework, and end with the520

newline character. No other lines are allowed.521

Example 7. Consider the ABA framework from Example 4 with rules (p ← q, a), (q ←),522

(r ← b, c), assumptions {a,b,c}, and contraries a = r, b = s,c = t is specified as follows,523

assuming the atom-indexing a = 1, b = 2, c = 3, p = 4, q = 5, r = 6, s = 7, t = 8.524

p aba 8525

this is a comment526

a 1527

a 2528

a 3529

c 1 6530

c 2 7531

c 3 8532

r 4 5 1533

r 5534

r 6 2 3535

5.3. Output Formats536

In all tracks except for the Dynamic track, the solvers were required to output their results537

through standard output in the following format.538

5.3.1. Credulous Reasoning (DC)539

Main and No-Limits tracks. If the query argument is determined to be credulously accepted,540

the solver should output the line “YES” followed by a line specifying a witness, i.e., a σ-541

extension containing the query. For example, if the solver finds the σ-extension {1, 2, 5}542

containing the query argument 1, the solver output should be the following.543

YES544

w 1 2 5545

If the query argument is determined not to be credulously accepted, the solver should output546

the single line “NO”.547

Approximate and ABA tracks. If the query argument is determined to be credulously ac-548

cepted, the solver output should be the single line “YES”. If the query argument is determined549

not to be credulously accepted, the solver should output the single line “NO”.550

5.3.2. Skeptical Reasoning (DS)551

Main and No-Limits tracks. If the query argument is determined not to be skeptically ac-552

cepted, the solver should output the line “NO” followed by a line specifying a counterexample,553

i.e., a σ-extension not containing the query. For example, if the solver finds the σ-extension554

{1,4} not containing the query argument 2, the solver output should be the following.555

15

// Semantics supported by IPAFAIR.
typedef enum { AD, CO, PR, ST, SST , STG, ID } semant ics ;
// Construct a new AF so l v e r and return a po in t e r to i t .
void ∗ i p a f a i r_ i n i t () ;
// Release the so l v e r , i . e . , a l l i t s re sources and a l l o c a t e d memory .
void i p a f a i r_ r e l e a s e (void ∗ s o l v e r) ;
// Set the argumentation semantics f o r the next c a l l s o f ’ i p a f a i r_so l v e ’ .
void ipa fa i r_set_semant i c s (void ∗ so lve r , semant ics sem) ;
// Add the g iven argument to the current argumentation framework .
void ipafair_add_argument (void ∗ so lve r , int32_t arg) ;
// Dele te the g iven argument from the current argumentation framework .
void ipafair_del_argument (void ∗ so lve r , int32_t arg) ;
// Add the g iven a t t a c k (s , t) to the current argumentation framework .
void ipafa ir_add_attack (void ∗ so lve r , int32_t s , int32_t t) ;
// Dele te the g iven a t t a c k (s , t) from the current argumentation framework .
void ipa fa i r_de l_attack (void ∗ so lve r , int32_t s , int32_t t) ;
// Add an assumption fo r the next c a l l o f ’ i p a f a i r_so l v e ’ .
void ipafa i r_assume (void ∗ so lve r , int32_t arg) ;
// So lve the current ins tance in the credu lous reasoning mode .
int32_t ipa fa i r_so lve_cred (void ∗ s o l v e r) ;
// So lve the current ins tance in the s k e p t i c a l reasoning mode .
int32_t ipa fa i r_so lve_skept (void ∗ s o l v e r) ;
// Determine whether the g iven argument i s contained in a s o l u t i on or counterexample .
int32_t ipa f a i r_va l (void ∗ so lve r , int32_t arg) ;

Figure 2: Functions declared in the IPAFAIR header.

NO556

w 1 4557

If the query argument is determined to be skeptically accepted, the solver should output the558

single line “YES”.559

Approximate and ABA tracks. If the query argument is determined to be credulously ac-560

cepted, the solver output should be the single line “YES”. If the query argument is determined561

not to be credulously accepted, the solver output should be the single line “NO”.562

5.3.3. Computing a Single Extension (SE)563

If a σ-extension is identified, the solver should output a line specifying such an extension.564

For example, if the solver finds the σ-extension {3, 7}, the solver should must be the following.565

w 3 7566

If it is determined that there is no σ-extension, the solver output should output the line “NO”.567

5.4. IPAFAIR: API for the Dynamic Track568

In the Dynamic track, I/O is implemented via an API titled IPAFAIR (Re-entrant In-569

cremental Argumentation Framework solver API), an incremental API for reasoning in AFs.570

We designed IPAFAIR in the style of IPASIR [89], a standard API for incremental Boolean571

satisfiability (SAT) [90, 91] solving. IPAFAIR is available in open source under https:572

//bitbucket.org/coreo-group/ipafair, with both C and Python versions available. The573

repository also contains an example C-to-Python wrapper and examples of its usage.574

16

The functions declared in the IPAFAIR header are listed in Figure 2. Using IPAFAIR,575

an external program can initialize a solver with an input AF and semantics, modify a cur-576

rent AF, and make credulous and skeptical acceptance queries. In analogy to IPASIR [89],577

ipafair_init and ipafair_release are used to initialize and release a solver. Specific578

to argumentation solvers, an argumentation semantics (an enum type) can be set using579

ipafair_set_semantics. A current AF is specified using calls to ipafair_add_argument,580

ipafair_del_argument, ipafair_add_attack, and ipafair_del_attack, which add/delete581

arguments/attacks. Note that arguments are simply positive integers (in line with the input582

format of ICCMA 2023). Acceptance queries over arguments defined via ipafair_add_argument583

are defined using ipafair_assume. Note that in contrast to the DC and DS tasks in the Main584

track, IPAFAIR allows for setting multiple query arguments.585

Two function declarations—ipafair_solve_cred and ipafair_solve_skept for the cred-586

ulous and skeptical reasoning modes, respectively—are provided for solving a current instance587

(consisting of a specified AF, semantics and acceptance query/queries). In the credulous588

(resp. skeptical) reasoning mode, the task is to decide whether all arguments assumed via589

ipafair_assume are contained in some extension (resp. all extensions) of the current AF590

under the current semantics. If the answer is YES, the function returns 10, and the state591

is changed to SAT. If the answer is NO, the function returns 20, and the state is changed592

to UNSAT. If the solver does not support the sequence of API calls performed, the function593

returns -1 and the state of the solver is changed to ERROR. To retrieve the witnessing ex-594

tension (in credulous reasoning mode) or counterexample extension (in skeptical reasoning595

mode), given an argument in the current AF, the function ipafair_val returns a positive596

value if the argument is contained in the extension, and a negative value if it is not contained597

in the extension. This function can only be used if ipafair_solve_cred has returned 10, or598

ipafair_solve_skept has returned 20, and the state of the solver has not changed. Note that599

the “single extension” task can be solved without specifying any assumptions in the credulous600

reasoning mode.601

The Python version of IPAFAIR contains similar functions to the C header. As the main602

differences, the AF semantics is specified in the constructor, and the constructor includes an603

input AF filename as an optional argument for specifying the initial AF. Further, assumptions604

are provided as optional arguments to solve_cred and solve_skept as lists of integers.605

Finally, a function extract_witness returns the witness or counterexample extension. For606

the competition, a solver must implement the Python version of the API. Alternatively, an607

example C-to-Python wrapper is provided in the repository, as well as the fuzz testing tool608

developed for the dynamic track (recall Section 4.5).609

5.5. Witness Checking610

For the Main track, all extensions (including witnesses and counterexamples for DC and611

DS tasks) returned by solvers were checked using an external routine. The routine takes the612

input instance—consisting of a reasoning task, an AF, and a query argument (for DC and DS613

tasks)—and the output file returned by a participating solver as command-line arguments.614

First, we check that an extension is contained in the output file (on a “w-line”) in the required615

cases, namely SE (with the exception of stable semantics where a “NO” answer suffices when616

an extension does not exist), DC in the case of a “YES” answer, and DS in the case of a “NO”617

answer. We also check that the query argument is contained in the witness extension in the618

17

credulous case, and that it is not contained in the counterexample extension in the skeptical619

case.620

We implemented the checking of the provided extension by making use of an external621

Boolean satisfiability (SAT) [91] solver and standard encodings for complete and stable se-622

mantics [92]. For a given AF and semantics, the encoding produces a formula in propositional623

logic the satisfying assignments of which correspond to extensions of the AF under the given624

semantics.625

To check a given extension under complete and stable semantics, we assign in the encod-626

ings the truth values of variables that correspond to arguments in the extension (i.e. assign627

variables corresponding to arguments within the extension to true and variables corresponding628

to other arguments to false), and check with a SAT solver that the resulting formula is sat-629

isfiable. For preferred, semi-stable, and stage semantics, we begin by similarly verifying that630

the extension extends to a satisfiable assignment of the encoding corresponding to the base631

semantics: conflict-free for stage, and complete for preferred and semi-stable. For preferred632

semantics, we continue by asking the SAT solver for a complete extension which is a superset633

of the given extension (in the style of [93]), to confirm this call returns “unsatisfiable”. In this634

case the extension reported by the participating solver is preferred. Similarly, for semi-stable635

(resp. stage) semantics, we ask for a complete extension (resp. conflict-free set) whose range636

is a superset of the range of the witness extension, and verify that the result is “unsatisfiable”.637

For further guarantees on correctness, we recorded the proofs of unsatisfiability [94] obtained638

from the SAT solver (Glucose [95] version 4.1 via PySAT [96]) in the DRUP format, and used639

an external proof checker (DRAT-trim [97]) to verify that the proofs were correct.640

Finally, for ideal semantics (the SE-ID task), since the ideal extension is unique, we verified641

that for each input AF instance the extensions reported by all Main and No-limits track solvers642

are the same. This approach is also motivated by the fact that in contrast to other semantics643

considered in ICCMA 2023, under standard complexity-theoretic assumptions verifying an644

ideal extension—a Θp
2-complete task [59, 45]—is not possible using a single NP oracle call.645

All witnesses were successfully verified, apart from the following exceptions. On the SE-646

PR and DS-PR tasks, the verification procedure timed out for a single input instance; the647

corresponding extensions were afterwards successfully verified using a longer time limit. On648

the SE-SST task, two timeouts were observed, and with a longer time limit the procedure ran649

out of memory due to the size of the proof of unsatisfiability under construction. Finally, 14650

additional memory-outs occurred due proof construction: 10 on SE-PR, and 1 on DC-SST,651

DC-STG, DS-SST, and DS-STG.652

6. Benchmarks653

We continue by detailing the construction of the ICCMA 2023 benchmark sets. For AFs,654

we made use of existing benchmark AFs from which the benchmark sets of previous ICCMA655

competitions were sampled from. These benchmark domains are briefly outlined in the follow-656

ing. In addition, a dedicated call for benchmarks was issued in conjunction to a call for solvers,657

where the argumentation community was invited to submit new and challenging AFs and ABA658

frameworks in the specified input format. We also welcomed submissions of benchmark gen-659

erators, that is, software for generating AFs or ABA frameworks together with suggestions for660

suitable parameter values for generating interesting benchmark instances. Especially for the661

Dynamic track, the community was invited to submit Python programs employing IPAFAIR662

18

(see Section 5.4). As a result, we obtained (only) one benchmark submission, namely a new663

benchmark generator for AFs.664

6.1. Main and Approximate Tracks665

For ICCMA 2015 [40], three different graph generators were implemented [98] for gener-666

ating hard AF instances.667

• GroundedGenerator is a generator for AFs with a large grounded extension to test668

whether solvers can exploit reasoning under grounded semantics.669

• SccGenerator is a generator for AFs with many strongly connected components in670

order to test whether solvers can exploit techniques based on decomposing AFs.671

• StableGenerator is a generator for AFs with many stable extensions (and hence, many672

preferred and complete extensions) in order to penalize solvers which decide acceptance673

based on enumerating extensions.674

Since ICCMA 2015 benchmark AFs were also featured in subsequent iterations of ICCMA [41,675

42], for ICCMA 2023 we decided to use a new set of benchmark AFs using these generators [98]676

with similar parameters as in ICCMA 2015 [40, 41], resulting in 100 AFs for each generator.3677

In ICCMA 2017, in addition to benchmark AFs generated with the ICCMA 2015 gen-678

erators, benchmarks from six new benchmark domains were included in the ICCMA 2017679

benchmark set [41].680

• ABA2AF is a set of 426 AFs resulting from a translation of ABA frameworks to681

abstract argumentation [71].682

• AdmBuster is a crafted set of 15 benchmark AFs for strong admissibility [99].683

• Barabasi-Albert is a set of 500 AFs generated using AFBenchGen2 [100] according to684

the Barabasi-Albert graph model [101].685

• Erdös-Rényi is a set of 500 AFs generated using AFBenchGen2 [100] according to the686

Erdős-Rényi graph model [102].687

• Planning2AF is a set of 385 planning instances translated first to a propositional688

formula [103] and then to AFs [104].689

• SemBuster is a crafted set of benchmarks for semi-stable semantics [105], consisting690

of 16 instances.691

• Traffic is a set of 600 AFs obtained from real-world traffic networks.692

• Watts-Strogatz is a set of 400 AFs generated using AFBenchGen2 [100] according to693

the Watts-Strogatz graph model [106].694

3The authors thank Matthias Thimm for generating these AFs.

19

Table 1: Benchmark statistics per domain.

Domain Number of AFs Min. |A| Avg. |A| Max. |A|

ABA2AF 426 8 112 1449
AdmBuster 15 1000 526733 2500000
AFGen 17 100 231 512
Barabasi-Albert 500 21 111 201
crusti_g2io 450 3875 46889 89425
Datalog 134 2 1434 11775
Erdös-Rényi 500 101 301 502
GrdGenerator 100 1034 2240 3801
Planning2AF 385 86 765 5660
SCCGenerator 100 219 4470 9976
SemBuster 16 60 2713 7500
StableGenerator 100 400 942 1497
Traffic 600 2 1562 15605
Watts-Strogatz 400 100 300 500

ICCMA 2023 329 100 29791 2500000

We consider all of the corresponding benchmark AFs for the construction of the ICCMA 2023695

benchmark set.696

In ICCMA 2019, two new benchmark submissions were received and used for the IC-697

CMA 2019 benchmark set [42, 43]. We considered all of the submitted benchmark AFs for698

constructing the ICCMA 2023 benchmark set.699

• AFGen is a benchmark generator based on a random graph model [82]. The benchmark700

set consists of 17 sample AFs.701

• Datalog± is a benchmark set of 134 AFs built from knowledge bases expressed in702

Datalog± [107].703

For this edition of ICCMA, we received a benchmark generator called crusti_g2io based704

on an inner-outer random graph model [108]. In ICCMA 2021, all new benchmark AFs were705

obtained by using a similar generator [43]. Therefore we did not include benchmark AFs from706

ICCMA 2021, and instead generated new AFs using suggested parameter choices (see [85]707

for the parameters) for crusti_g2io. In particular, for each of the nine suggested parameter708

combinations, we generated 50 AFs using the random seed (recall Section 4.8) provided by the709

ICCMA steering committee for benchmark generation and sampling. This procedure resulted710

in a total of 450 AFs.711

The 14 benchmark domains used for constructing the ICCMA 2023, the respective number712

of AFs, as well as statistics on the number of arguments in these AFs, are reported in Table 1.713

We excluded all AFs with less than 100 arguments from consideration. For each domain, we714

sampled 25 benchmark AFs, except for the novel crusti_g2io domain for which we sampled715

25% more (i.e. a total of 32 AFs) If the domain contains less than 25 benchmark AFs (i.e., the716

AdmBuster, AFGen, and SemBuster domains), we included all of the AFs in that domain.717

This procedure resulted in a total of 329 benchmark AFs. For each of the benchmark AFs, a718

20

Algorithm 1 Algorithm used for benchmarks in the Dynamic track of ICCMA 2023.
Input: AF F = (A,R), query q ∈ A, subtrack (DC-CO, DC-ST, DS-ST).
Parameters: pfixed = 0.333, padded = 0.333, niter = 64, nchanges = 32, nqueries = 16

1: Perform breadth-first search starting from q, constructing a mapping depth from argu-
ments to their distance to q.

2: Starting from arguments with lowest depth, mark pfixed · |A| arguments as fixed.
3: Continuing similarly, mark the next padded · |A| arguments as existing.
4: Initialize the set of arguments A′ = {a ∈ A | a is existing} and attacks R′ = {(a, b) ∈ R |

a, b are existing}.
5: Set Q = {q}, and sample nqueries − 1 additional fixed arguments to Q.
6: for i = 1, . . . , niter do
7: for q ∈ Q do
8: Decide acceptance status of q in F ′ = (A′, R′).
9: for k = 1, . . . , nchanges do

10: Set p = number of existing non-fixed arguments/number of non-fixed arguments.
11: With probability p, delete an existing non-fixed argument from A′ along with its

incident attacks from R′.
12: Otherwise (with probability 1− p), add a non-existing argument to A′ along with

its incident attacks to R′.

query argument was sampled uniformly at random from the set of arguments which are not719

self-attacking nor have zero indegree, in order to avoid trivial acceptance queries. This set of720

benchmark AFs and queries was used directly for all subtracks of the Main and Approximate721

tracks.722

6.2. Dynamic Track723

Recall that in the Dynamic track, a benchmark instance consists of a sequence of calls724

issued via IPAFAIR (Section 5.4). As a base for issuing these calls, we used all of the 329725

benchmark AFs and corresponding query arguments of the benchmark set of the Main and726

Approximate tracks. To issue this sequence of IPAFAIR calls, we implemented the following727

procedure, outlined as Algorithm 1. An AF F = (A,R), a query argument q ∈ A, and728

subtrack specification is obtained as input. Starting from the query argument, we label729

pfixed · |A| (with pfixed = 0.333) of the arguments in the AF as fixed, i.e., included in the730

initial AF and not subject to deletion. By continuing the search, we label the next padded · |A|731

(with padded = 0.333) of arguments in the AF as the initial existing arguments in the current732

(first) AF (which are, however, subject to deletion). We sample a total of nqueries = 16 query733

arguments, including the original query argument, from the set of fixed arguments. Then,734

for a total of niter = 64 iterations, first, the acceptance status of each query argument is735

decided using an IPAFAIR call corresponding to the subtrack. In each iteration, we then736

perform nchanges = 32 changes to the current AF, each change being an addition or deletion of737

a non-fixed argument along with its incident attacks from F . The choice between an addition738

or deletion is made at random, using a probability based on the current number of existing739

arguments, so that the number of arguments remains balanced throughout the execution of740

the algorithm.741

21

6.3. ABA Track742

In contrast to the more heterogeneous set of abstract argumentation frameworks employed743

in the Main track, benchmarks for the ABA track were in this first instantiation of the track744

generated with a simple random instance generator. The varying parameters are the number745

of atoms (25, 100, 500, 2000 or 5000), the proportion of atoms that are assumptions (10% or746

30%), the maximum number of rules deriving each non-assumption atom (5 or 10), and the747

maximum size of each rule body (5 or 10). The number of rules deriving any given atom was748

selected uniformly at random from the interval [1, n] for n ∈ {5, 10}, and similarly for the size749

of each rule (i.e., number of atoms in the body of a rule). Additionally, for each assumption, a750

contrary was selected uniformly at random from the set of all atoms. Ten instances with each751

combination of the four parameters were generated for a total of 400 benchmark instances.752

For acceptance problems, the query for each instance was selected at random from the atoms753

for which there the ABA framework at hand includes at least one derivation.754

7. Participants755

We continue with an overview of the solvers submitted to ICCMA 2023. An overview of the756

participating teams and the tracks their solvers participated in is shown in Table 2. In total,757

there were two participants in the Main and No-limits tracks, three in the Dynamic track,758

and five in both the Approximate track and the ABA track. Our overview of the individual759

solvers is based on the system descriptions submitted by the respective solver authors in760

conjunction with their solver. For more details, we refer the reader to the separate technical761

report containing all the solver descriptions [85]. The source codes of all submitted solvers762

are available at https://iccma2023.github.io/solvers.html.763

Many of the submitted solvers share similarities. Out of the 14 solvers, 8 are based on764

the declarative approach, i.e., on translating a given argumentation problem to a constraint765

modelling language, using a constraint solver for the modelling language to obtain a solution766

to the argumentation problem. The eight solver based on the declarative approach are each767

based on either Boolean satisfiability (SAT) [91] or answer set programming (ASP) [86, 87].768

Notably, apart from the Approximate track, only one submitted solver did not use SAT or769

ASP.770

AFGCN v2 [109] (by Lars Malmqvist) is written in Python and employs graph convolutional771

neural networks (utilizing the libraries PyTorch [110] and Deep Graph Library [111]) and772

supports all subtracks of the Approximate track. AFGCN v2 uses a neural network trained773

to approximate acceptance of claims with various graph properties, such as PageRank, in-774

degrees and out-degrees, as input features.775

ARIPOTER-Degrees [112] (by Jérôme Delobelle, Jean-Guy Mailly and Julien Rossit) is776

written in Java and supports all subtracks of the Approximate track. ARIPOTER-Degrees777

computes the grounded extension and accepts the query argument if it either is included in the778

grounded extensions or its out-degree (number of arguments the query attacks) is sufficiently779

high compared to its in-degree (number of arguments that attack the query).780

ARIPOTER-HCAT [112] (by Jérôme Delobelle, Jean-Guy Mailly and Julien Rossit) is781

written in Java and supports all subtracks of the Approximate track. ARIPOTER-HCAT782

accepts arguments primarily based on whether they belong to or are attacked by the grounded783

22

Table 2: Overview of the participating solvers and authors. Solvers participating in the No-limits track are
marked with ✓∗.

Solver Authors Main Approximate Dynamic ABA

AFGCN v2 Lars Malmqvist (University of York) ✓

ARIPOTER-
Degrees

Jérôme Delobelle (Paris Cité University)
Jean-Guy Mailly (Paris Cité University)
Julien Rossit (Paris Cité University)

✓

ARIPOTER-
HCAT

Jérôme Delobelle (Paris Cité University)
Jean-Guy Mailly (Paris Cité University)
Julien Rossit (Paris Cité University)

✓

ASTRA Andrei Popescu (TU Graz)
Johannes P. Wallner (TU Graz)

✓

AcbAr Tuomo Lehtonen (University of Helsinki)
Anna Rapberger (TU Wien)
Markus Ulbricht (Leipzig University)
Johannes P. Wallner (TU Graz)

✓

ASPforABA Tuomo Lehtonen (University of Helsinki)
Matti Järvisalo (University of Helsinki)
Johannes P. Wallner (TU Graz)

✓

Crustabri Jean-Marie Lagniez (University of Artois)
Emmanuel Lonca (University of Artois)
Jean-Guy Mailly (Paris Cité University)

✓ ✓ ✓

fargo-
limited

Matthias Thimm (University of Hagen) ✓

flexAble Martin Diller (TU Dresden)
Sarah Alice Gaggl (TU Dresden)
Piotr Gorczyca (TU Dresden)

✓

Fudge Matthias Thimm (University of Hagen)
Federico Cerutti (University of Brescia)
Mauro Vallati (University of Huddersfield)

✓∗

harper++ Matthias Thimm (University of Hagen) ✓

κ-solutions Christian Pasero (TU Graz)
Johannes P. Wallner (TU Graz)

✓

µ-toksia Andreas Niskanen (University of Helsinki)
Matti Järvisalo (University of Helsinki)

✓ ✓

PORTSAT Sylvain Declercq (Paris Cité University)
Quentin Januel Capellini (Sorbonne University)
Christophe Yang (Paris Cité University)
Jérôme Delobelle (Paris Cité University)
Jean-Guy Mailly (Paris Cité University)

✓∗

extension (accepting in the former and rejecting in the latter case), and secondarily based on784

whether their hcat score, adapted from the h-Categorizer gradual semantic [113], is sufficiently785

high.786

ASTRA [78] (by Andrei Popescu and Johannes P. Wallner) is written in Python and sup-787

ports DC-CO, DC-ST, DS-ST and SE-ST in the ABA track. ASTRA employs D-FLAT [114,788

115], an ASP-based tool for dynamic programming, exploiting tree-decompositions. In this789

23

context, ASTRA uses a tree-decomposition of the graph given by the atoms and rules of an790

ABA framework as nodes and edges.791

AcbAr [70] (by Tuomo Lehtonen, Anna Rapberger, Markus Ulbricht and Johannes P. Wall-792

ner) is written in Python and supports all subtracks of the ABA track. AcbAr implements a793

polynomially-bounded reduction from ABA to AF and employs the AF solver µ-toksia [116]794

on the resulting AF.795

ASPforABA [75, 117] (by Tuomo Lehtonen, Matti Järvisalo and Johannes P. Wallner) is796

written in Python and supports all subtracks of the ABA track. ASPforABA is based on797

answer set programming (ASP), utilizing encodings of ABA semantics in terms of assumption798

sets, without explicit construction of arguments.799

Crustabri (by Jean-Marie Lagniez, Emmanuel Lonca and Jean-Guy Mailly) SAT-based800

solver, supporting all subtracks in the Main track and ABA track, and DC-CO, DC-ST, and801

DS-ST in the Dynamic track. Crustabri is a revised version of CoQuiAAS [118] for ICCMA802

2023, rewritten in Rust and using CaDiCaL [119] as the SAT solver. For the Dynamic track,803

Crustabri uses the SAT solver incrementally [90], activating and deactivating parts of the804

SAT encoding related to attacks and arguments between the SAT solver invocations. For805

ABA, Crustabri generates an AF and uses its own AF reasoning to solve the given task.806

fargo-limited (by Matthias Thimm) is written in C++, supporting all subtracks of the807

Approximate track. fargo-limited implements a depth-bounded depth-first search algo-808

rithm for admissible sets. For credulous acceptance, fargo-limited answers YES if an809

admissible extension containing the query is found, and similarly YES for skeptical accep-810

tance if in addition no attacker of the query is contained in an admissible extension. Thereby,811

each YES answer should be correct, but the solver may report NO incorrectly.812

flexAble [76, 77] (by Martin Diller, Sarah Alice Gaggl, Piotr Gorczyca) is written in813

Scala, supporting DC-CO and DC-ST in the ABA track. flexAble implements specialized814

reasoning algorithms for ABA, namely, flexible dispute derivations constructing dialectical815

(tree-like) justifications for accepted claims.816

Fudge [120] (by Matthias Thimm, Federico Cerutti and Mauro Vallati) is a SAT-based solver817

written in C++, supporting all subtracks of the No-limits track. Beyond direct SAT encod-818

ings, Fudge implements iterative SAT-based approaches for preferred and ideal semantics,819

using CaDiCaL [119] as the SAT solver.820

harper++ (by Matthias Thimm) is written in C++, supporting all subtracks of the Ap-821

proximate track. harper++ is based on approximating acceptance via the grounded exten-822

sion; the solver outputs YES to credulous acceptance if the query argument is contained in823

the grounded extension or not attacked by an argument in the grounded extension, and YES824

to skeptical acceptance if the query argument is contained in the grounded extension.825

κ-solutions (by Christian Pasero and Johannes P. Wallner) is written in Python, support-826

ing for all subtracks of the Dynamic track. κ-solutions implements a SAT-based approach,827

using Z3 [121] as the SAT solver. The solver computes up to k = 3 witnesses (k = 3) with828

several calls to the SAT solver. Upon changes to the AF, κ-solutions first checks if any829

precomputed witness is a witness for the new AF, and only computes new witnesses if this is830

not the case.831

24

DC−CO

DC−SST

DC−ST

DC−STG

DS−PR

DS−SST

DS−ST

DS−STG

SE−ID

SE−PR

SE−SST

SE−ST

SE−STG
portsat
mu−toksia (g)
mu−toksia (cms)
fudge
crustabri

PAR−2 score

ta
sk

0 100 200 300 400 500 600 700

Figure 3: Main and No-limits tracks: PAR-2 scores. Note that PORTSAT and Fudge are No-limits solvers,
while the other solvers competed in the Main track.

µ-toksia [49, 116] (by Andreas Niskanen and Matti Järvisalo) is a SAT-based solver writ-832

ten in C++ with support for all subtracks of the Main and Dynamic tracks. For the Main833

track, two configurations were submitted, one using Glucose [95] and one using Crypto-834

MiniSat [122] as the SAT solver. For the Dynamic track, configurations with and without835

incremental SAT solving were submitted, both using Glucose as the SAT solver. The incre-836

mental configuration uses the SAT solver incrementally, activating and deactivating attacks837

and arguments via assumptions. The static configuration encodes the AF from scratch at838

each iteration.839

PORTSAT (by Sylvain Declercq, Quentin Januel Capellini, Christophe Yang, Jérôme Delo-840

belle and Jean-Guy Mailly) is written in Rust supporting for DC-CO, DC-ST, DS-PR, DS-ST,841

SE-PR, and SE-ST subtracks of the No-limits track. PORTSAT is a SAT-based parallel port-842

folio approach, invoking a set of SAT solvers in parallel (MiniSat [123], ManySAT [124],843

MapleSAT [125], and Glucose [95]).844

As agreed with the ICCMA steering committee, for transparency, access to the implementa-845

tions of all solver submissions involving any of the organizers of ICCMA 2023 was provided to846

the ICCMA steering committee before the submission deadline, before the steering committee847

provided the random seed used for benchmark selection.848

8. Overview of Competition Results849

In this section we provide an overview of the results of ICCMA 2023, as presented in850

Tables 3a–6 and Figures 3–6. Beyond this overview, further analysis of the empirical data is851

provided later in Section 9.852

25

Table 3: Rankings and PAR-2 scores for the Main (white) and No-limits (gray) tracks.

(a) Credulous acceptance (DC) subtrack.

Rank (PAR-2 score)

Solver DC-CO DC-SST DC-ST DC-STG

Crustabri 2 (172.92) 3 (411.80) 1 (139.29) 1 (444.33)
Fudge - (147.31) - (311.79) - (132.86) - (507.53)
µ-toksia (cmsat) 3 (202.88) 2 (268.39) 3 (224.83) 2 (459.92)
µ-toksia (glucose) 1 (143.56) 1 (263.32) 2 (154.56) 3 (504.51)
PORTSAT - (152.20) - - (166.32) -

(b) Skeptical acceptance (DS) subtrack.

Rank (PAR-2 score)

Solver DS-PR DS-SST DS-ST DS-STG

Crustabri 2 (279.27) 1 (357.38) 1 (223.34) 1 (360.12)
Fudge - (435.91) - (501.33) - (236.00) - (429.91)
µ-toksia (cmsat) 3 (325.07) 3 (401.54) 3 (317.58) 2 (438.09)
µ-toksia (glucose) 1 (242.69) 2 (362.83) 2 (271.21) 3 (497.12)
PORTSAT - (1151.41) - - (219.11) -

(c) Single extension (SE) subtrack.

Rank (PAR-2 score)

Solver SE-ID SE-PR SE-SST SE-ST SE-STG

Crustabri 3 (625.59) 1 (215.76) 1 (356.48) 1 (210.83) 1 (335.33)
Fudge - (552.81) - (408.70) - (448.90) - (209.39) - (362.04)
µ-toksia (cmsat) 2 (512.76) 3 (337.43) 3 (399.93) 3 (309.49) 2 (427.59)
µ-toksia (glucose) 1 (398.65) 2 (241.65) 2 (368.52) 2 (264.52) 3 (494.24)
PORTSAT - - (451.73) - - (245.92) -

8.1. Main Track853

Starting with the Main track, the PAR-2 scores of all solvers in each subtrack of the854

Main track, including the No-limits solvers, are shown in Figure 3. The relative rankings of855

the solvers and PAR-2 scores of each solver are listed in Table 3a for the problem of credu-856

lous acceptance (DC), in Table 3b for skeptical acceptance (DS), and Table 3c for finding a857

single extension (SE). Here µ-toksia (cmsat) and µ-toksia (glucose) stand for the ver-858

sions of µ-toksia with CryptoMiniSat and Glucose as the SAT solver, respectively. Overall,859

Crustabri had the lowest PAR-2 score and thus ranked first in most tracks (nine): DC-ST,860

DC-STG, DS-SST, DS-ST, DS-STG, SE-PR, SE-SST, SE-ST, and SE-STG. µ-toksia, using861

Glucose as the SAT solver, ranked first in the remaining four subtrack: DC-CO, DC-SST,862

DS-PR, and SE-ID. In the No-limits track, the PAR-2 score of Fudge (based on wall-clock863

time) was lower than the PAR-2 score (based on CPU time) of the best solver in the subtracks864

DC-ST and SE-ST. However, as No-limits solvers were allowed to utilize multiple CPU cores865

and employ a portfolio of solvers, it may be considered surprising that the No-limits solvers866

Fudge and PORTSAT did not significantly outperform the Main track solvers overall. We867

note here that Fudge was not originally submitted to the No-limits track but was moved868

26

DC−CO

DC−ID

DC−SST

DC−ST

DC−STG

DS−PR

DS−SST

DS−ST

DS−STG

harper++
fargo−limited
ARIPOTER_hcat
ARIPOTER_degrees
AFGCNv2

number of solved instances

ta
sk

0 100 200 300 400

Figure 4: Approximate track: Number of solved instances

there by the organizers in agreements with the solver authors after realizing that the solver869

actually did make at least in cases light use of multithreading (the author of the solver opted870

not to revise the solver to avoid this).871

8.2. Approximate Track872

The results of the Approximate track are summarized in Figure 4, showing the number873

of solved instances by each solver, with the PAR-2 scores and ranks of the solvers shown in874

Table 4a and Table 4b for the problems of credulous acceptance and skeptical acceptance,875

respectively. Note here for the Approximate track “solved instance” means that a solver876

reported the correct answer to the instance at hand. harper++ ranked first most often,877

namely six times. This interestingly includes all skeptical subtracks: DC-ID, DC-STG, PS-878

PR, DS-SST, DS-ST, and DS-STG. fargo-limited ranked first in the other three subtracks,879

DC-CO, DC-SST, and DC-ST. Interestingly, the winning margins to the rank-2 solver were880

particularly high in the individual subtracks in which fargo-limited ranked first in: 283 vs881

220 in DC-CO, 277 vs 208 in DC-SST, and 271 vs 206 solved instances in DC-ST. In the other882

subtracks, the winning margins between the first and second ranking solver was less than 30883

solved instances.884

8.3. Dynamic Track885

Results of the Dynamic track are summarized in Figure 5, showing the PAR-2 scores886

of each participating solver, with the rankings and PAR-2 scores of the solvers also shown887

in Table 5. Crustabri dominated the Dynamic track overall, ranking first in each of the888

subtracks DC-CO, DC-ST, and DS-ST. The winning margins are particularly high in the889

27

Table 4: Rankings and number of solved instances for the Approximate track.

(a) Credulous acceptance (DC) subtrack.

Rank (# solved)

Solver DC-CO DC-ID DC-SST DC-ST DC-STG

AFGCNv2 4 (192) 4 (246) 4 (191) 4 (189) 5 (164)
ARIPOTER (degrees) 5 (177) 3 (251) 5 (181) 3 (190) 2 (232)
ARIPOTER (hcat) 3 (204) 5 (237) 2 (208) 2 (206) 3 (222)
fargo-limited 1 (283) 2 (268) 1 (277) 1 (271) 4 (199)
harper++ 2 (220) 1 (290) 3 (196) 5 (187) 1 (259)

(b) Skeptical acceptance (DS) subtrack.

Rank (# solved)

Solver DS-PR DS-SST DS-ST DS-STG

AFGCNv2 5 (228) 5 (224) 4 (163) 5 (224)
ARIPOTER (degrees) 3 (257) 3 (242) 3 (175) 3 (241)
ARIPOTER (hcat) 4 (241) 4 (231) 5 (155) 4 (231)
fargo-limited 2 (271) 2 (260) 2 (193) 2 (260)
harper++ 1 (300) 1 (274) 1 (196) 1 (275)

DC−CO

DC−ST

DS−ST
mu−toksia (static)
mu−toksia (dynamic)
kappa
crustabri

PAR−2 score

ta
sk

0 500 1000 1500

Figure 5: Dynamic track: PAR-2 scores

Table 5: Dynamic track: Rankings and PAR-2 scores

Rank (PAR-2 score)

Solver DC-CO DC-ST DS-ST

Crustabri 1 (513.37) 1 (384.68) 1 (367.82)
µ-toksia (static) 2 (622.01) 2 (640.56) 2 (684.92)
µ-toksia (dynamic) 3 (793.80) 3 (1066.09) 3 (978.76)
κ-solutions 4 (1921.25) 4 (1531.09) 4 (1519.69)

DC-ST and DS-ST subtracks. In DC-ST, Crustabri scored 384.68 compared to the 640.56890

of the rank-2 solver µ-toksia; for DS-ST, the scores are 367.82 against 684.92.891

8.4. ABA Track892

Finally, results of the ABA track are summarized in Figure 6 in terms of the PAR-2893

scores of each solver, with the rankings and PAR-2 scores also shown in Table 6. In the894

ABA track, Crustabri was disqualified in each subtrack due to producing erroneous output.895

We include it here in gray, with PAR-2 scores computed by treating the instances with erro-896

28

Table 6: ABA track: Rankings and PAR-2 scores. (Crustabri shown in gray due to disqualification.)

Rank (PAR-2 score)

Solver DC-CO DC-ST DS-PR DS-ST SE-PR SE-ST

AcbAr 2 (1087.05) 2 (1060.93) 2 (1120.31) 2 (1053.63) 2 (1104.19) 2 (1067.90)
ASPforABA 1 (120.61) 1 (105.08) 1 (156.52) 1 (118.24) 1 (147.79) 1 (119.11)
ASTRA 4 (2382.00) 4 (2371.69) - 3 (2400.00) - 3 (2400.00)
Crustabri - (1087.65) - (1081.38) - (1081.64) - (1075.51) - (1182.66) - (1105.09)
flexAble 3 (1643.71) 3 (1917.29) - - - -

neous answers as if the resource limits were reached. ASPforABA dominates the ranking,897

ranking first in all of the subtracks DC-CO, DC-ST, DS-PR, DS-ST, SE-PR, and SE-ST.898

The competition between the first and second ranking solver was the tightest in the DS-899

PR subtrack, where the PAR-2 score of ASPforABA was approximately 1/7 of the PAR-2900

score of the second-ranking solver AcbAr (156.52 vs 1120.31). We note that, hypotheti-901

cally, without disqualification (and treating erroneous answers as exceeding resource limits902

instead), Crustabri might have ranked third in all tracks but DS-PR, where it might have903

ranked second—assuming that the error-producing issues in Crustabri would not affect its904

performance on the other benchmark instances.905

9. Further Analysis of the Competition Data906

Before turning to lessons learned from ICCMA 2023, recommendations for future compe-907

titions, and conclusions, we report on further analysis of the competition data.908

9.1. Distribution of Positive and Negative Answers among Solved Benchmarks909

We start by analyzing the balance between YES and NO answers among benchmark910

instances that at least one solver managed to solve. Table 7 show the YES/NO distribution911

for the Main and ABA tracks, together with the number of benchmark instances that were912

not solved by any participating solver. Note that instances in the Dynamic track have a913

sequence of YES and NO answers, and the solutions to instances in the Approximate track914

correspond to those of the Main track. For SE subtracks, “YES” means here that an extension915

was found, and “NO” that the nonexistence of an extension was reported. In DC and DC916

subtracks, the ratio between YES and NO answers was quite balanced, with some exceptions,917

notably DS-PR, DS-SST and DS-STG in the Main track, and DS-ST in the ABA track. In918

all SE subtracks except ST, an extension always exists, so all instances either have YES as919

an answer or are not solved. For SE-ST in the Main track, note that a stable extension exists920

in 206 out of 329 instances; this property can be used as a shortcut for second-level-complete921

SST and STG semantics. In both Main and ABA tracks, there are also more YES instances922

in DS-ST than in DC-ST. This is due to the fact that if a stable extension does not exist, any923

query is skeptically accepted.924

9.2. Virtual Best Solver Performance in the Main and ABA Tracks925

Table 8 (first row) shows how many instances were solved by the virtual best solver (VBS),926

i.e., how many instances were solved by at least one solver in each subtrack of the Main track,927

29

including the No-limits solvers. We observe that for the DC-CO and DC-ST subtracks, almost928

all instances are solved by the VBS (with 314/329 and 315/329 instances solved, respectively).929

Subtracks involving problems complete for the second level of the polynomial hierarchy are930

clearly harder, as witnessed by a lower number of instances solved in the DC-SST, DC-STG,931

DS-SST, DS-STG, SE-ID, SE-SST, and SE-STG tracks, respectively (with 287–297 instances932

solved out of 329, depending on the subtrack).933

We also show the number of contributions of each solver to the VBS for each subtrack934

in Table 8 (after first row), where we define that for an instance in a subtrack, a solver935

contributes to the VBS if its runtime is at most 0.01 seconds less than the runtime of the936

VBS. Interestingly, in all subtracks, µ-toksia (glucose) contributes most to the VBS (160–937

219 instances), followed by the No-limits solver PORTSAT on tasks involving ST semantics938

(137–146 instances), and µ-toksia (cmsat) in the rest of the subtracks (114-153 instances).939

This is in contrast to the PAR-2 ranking of the solvers in the Main track, where Crustabri940

ranked first in nine subtracks (DC-ST, DC-STG, DS-SST, DS-ST, DS-STG, SE-PR, SE-SST,941

SE-ST, and SE-STG).942

The full list of instances not solved in at least one subtrack of the Main track by any943

participating solver, together with the number of arguments and attacks in these instances,944

is provided in Table A.15. Note that while several relatively large crusti_g2io instances (con-945

taining 6975–89425 arguments) were not solved by any solver in the second-level DC-STG,946

DC-SST, DS-STG, DS-SST, SE-SST, and SE-STG subtracks, there were also a number of947

not-solved instances from other domains (namely Erdős-Rényi, Watts-Strogatz, and StbGen-948

erator) which are considerably smaller (containing 301–1489 arguments). Interestingly, for949

the other subtracks, all crusti_g2io instances were solved by at least one solver, but there950

were not-solved instances within the other benchmark domains.951

Table 10 shows the number of instances per subtrack that were solved by at least one solver952

and the contributions of each solver to the VBS in the ABA track4. Analogously to the Main953

track, fewer instances were solved in computationally harder subtracks: 376 and 377 out of954

400 in DS-PR and SE-PR compared to over 380 for the other tracks. In terms of contributions,955

the picture is simple: the overall best-performing solver ASPforABA contributed the most956

to VBS (at least 346 in each subtrack), with some instances contributed by AcbAr (up to957

38) and two by ASTRA. In addition, ASPforABA solved all instances with 25, 100 and958

500 atoms under all semantics and all but three instances with 2000 atoms, but reached the959

resource limits on 118 out of 480 instances with 5000 atoms. Those three instances with 2000960

atoms (an instance with 30% assumptions and rph = rs = 10 in DS-PR and SE-PR, and an961

instance with 30% assumptions and rph = rs = 5 in SE-PR) were also not solved by any of962

the other solvers, and thus they were the smallest instances that none of the solvers were able963

to solve.964

4We include only the solvers that did not report incorrect results.

30

Table 7: Ratio of YES/NO answers and instances that were not solved by any solver for each subtrack of the
Main and ABA tracks.

instance count

Track Subtrack YES NO not solved

Main DC-CO 153 161 15
DC-SST 129 168 32
DC-ST 120 195 14
DC-STG 201 84 44
DS-PR 32 271 26
DS-SST 42 245 42
DS-ST 140 167 22
DS-STG 42 246 41
SE-ID 294 — 35
SE-PR 305 — 24
SE-SST 288 — 41
SE-ST 206 101 22
SE-STG 294 — 35

ABA DC-CO 212 169 19
DC-ST 153 230 17
DS-PR 207 169 24
DS-ST 317 64 19
SE-PR 377 — 23
SE-ST 217 164 19

31

DC−CO

DC−ST

DS−PR

DS−ST

SE−PR

SE−ST

flexable
crustabri
astra
aspforaba
acbar

PAR−2 scores

score

ta
sk

0 500 1000 1500 2000

Figure 6: ABA track: PAR-2 scores. (Crustabri is disqualified due to erroneous output.)

32

T
ab

le
8:

N
um

be
r

of
in

st
an

ce
s

so
lv

ed
by

th
e

vi
rt

ua
l
be

st
so

lv
er

(V
B

S)
an

d
th

e
co

nt
ri

bu
ti

on
of

so
lv

er
s

to
th

e
V

B
S

in
th

e
M

ai
n

tr
ac

k,
in

cl
ud

in
g

N
o-

lim
it

s
so

lv
er

s. S
ol

ve
r

D
C

-C
O

D
C

-S
ST

D
C

-S
T

D
C

-S
T

G
D

S-
P

R
D

S-
SS

T
D

S-
ST

D
S-

ST
G

SE
-I

D
SE

-P
R

SE
-S

ST
SE

-S
T

SE
-S

T
G

V
B

S
31

4
29

7
31

5
28

5
30

3
28

7
30

7
28

8
29

4
30

5
28

8
30

7
29

4

C
ru

st
a
br

i
10

34
11

41
28

50
22

59
32

39
41

19
49

F
u
d
g
e

64
69

59
92

61
67

40
62

58
58

73
35

87
µ
-t

o
k
si
a

(c
)

15
3

13
5

11
4

14
2

12
7

12
2

11
5

12
9

12
0

11
7

11
9

11
8

12
5

µ
-t

o
k
si
a

(g
)

20
3

21
7

16
3

18
5

21
4

20
7

16
0

18
9

21
9

21
2

20
9

17
4

18
9

P
O

R
T

S
A
T

60
–

13
7

–
29

–
14

6
–

–
34

–
14

3
–

T
ab

le
9:

M
ai

n
an

d
N

o-
lim

it
s

tr
ac

ks
:

N
um

be
r

of
in

st
an

ce
s

so
lv

ed
by

ea
ch

so
lv

er
(P

A
R

-2
-b

as
ed

ra
nk

in
pa

re
nt

he
se

s)
.

S
ol

ve
r

D
C

-C
O

D
C

-S
ST

D
C

-S
T

D
C

-S
T

G
D

S-
P

R
D

S-
SS

T
D

S-
ST

D
S-

ST
G

SE
-I

D
SE

-P
R

SE
-S

ST
SE

-S
T

SE
-S

T
G

C
ru

st
a
br

i
31

0
(2

)
27

5
(3

)
31

3
(1

)
27

2
(1

)
29

6
(2

)
28

4
(1

)
30

3
(1

)
28

5
(1

)
24

9
(3

)
30

4
(1

)
28

4
(1

)
30

5
(1

)
28

9
(1

)
F
u
d
g
e

31
2

(-
)

28
9

(-
)

31
4

(-
)

26
4

(-
)

27
6

(-
)

26
3

(-
)

30
1

(-
)

27
6

(-
)

25
7

(-
)

28
0

(-
)

27
0

(-
)

30
5

(-
)

28
5

(-
)

µ
-t

o
k
si
a

(c
)

30
6

(3
)

29
5

(2
)

30
2

(3
)

26
8

(2
)

29
0

(3
)

27
9

(3
)

29
0

(3
)

27
1

(2
)

26
2

(2
)

28
8

(3
)

27
8

(3
)

29
2

(2
)

27
3

(2
)

µ
-t

o
k
si
a

(g
)

31
2

(1
)

29
5

(1
)

31
1

(2
)

26
2

(3
)

29
9

(1
)

28
3

(2
)

29
6

(2
)

26
3

(3
)

28
0

(1
)

29
9

(2
)

28
2

(2
)

29
7

(3
)

26
4

(3
)

P
O

R
T

S
A
T

31
0

(-
)

—
30

9
(-

)
—

17
5

(-
)

—
30

2
(-

)
—

—
27

3
(-

)
—

29
9

(-
)

—

33

Table 10: Number of instances solved by the virtual best solver (VBS) and the contribution of solvers to the
VBS in the ABA track.

Solver DC-CO DC-ST DS-PR DS-ST SE-PR SE-ST

VBS 381 383 376 381 377 381

AcbAr 38 35 25 30 24 24
ASPforABA 346 351 354 355 355 360
ASTRA 2 0 0 0 0 0
flexAble 0 0 0 0 0 0

Table 11: ABA track: Number of instances solved by each solver (PAR-2-based rank in parentheses).

Solver DC-CO DC-ST DS-PR DS-ST SE-PR SE-ST

AcbAr 221 (2) 225 (2) 217 (2) 227 (2) 219 (2) 224 (2)
ASPforABA 381 (1) 383 (1) 376 (1) 381 (1) 377 (1) 381 (1)
ASTRA 3 (4) 5 (4) — 0 (3) — 0 (3)
Crustabri 219 (-) 220 (-) 220 (-) 221 (-) 203 (-) 216 (-)
flexAble 131 (3) 81 (3) — — — —

9.3. Contrasting Number of Solved Instances and PAR-2 based Ranking965

Next, we consider the number of solved instances by solvers in the Main track (including966

No-limits solvers) and the ABA track. In particular we show how the choice of the ranking967

scheme (PAR-2 vs number of solved instances) affects the ranking of the solvers.968

Table 9 shows the number of solved instances by each solver in each Main subtrack,969

together with their PAR-2 based ranking in the competition given in parenthesis. We ob-970

serve that the two ranking schemes would provide very similar rankings, with only a few971

exceptions. In particular, PORTSAT solved one instance less than Crustabri in DS-ST,972

whereas in terms of PAR-2 scores, PORTSAT won the subtrack. In terms of number of973

solved instances, Fudge and µ-toksia (cmsat) are tied in DC-CO; µ-toksia (cmsat)974

and µ-toksia (glucose) are tied in DC-SST; and Crustabri and Fudge are tied in SE-975

ST. PAR-2 scoring breaks these ties in favour of µ-toksia (cmsat) twice and in favour of976

Fudge once. (Note here that Fudge and PORTSAT are in the No-limits track and the977

other mentioned solvers in the Main track.) Table 11 shows the number of solved instances in978

the ABA subtracks with their PAR-2 based ranking in parentheses. Here the relative ranks979

of the solvers are identical to the PAR-2 ranking, with ASPforABA dominating by solving980

more than 375 out of the 400 instances in each subtrack.5981

9.4. Solver Similarity in the Main Track982

Figure 7 visualizes the runtime distribution of solvers in the DC-CO, DS-ST, DS-PR,983

and SE-ID subtracks of the Main track (including the No-limits solvers and the VBS) show-984

ing the number of instances solved (y-axis) within a given time (x-axis). Furthermore, the985

5We note that the number of erroneous results Crustabri produced was 6 in DC-CO, 5 in DC-ST and
DS-PR, 4 in DS-ST, 10 in SE-ST and 16 in SE-PR. These are not included as solved instances in Table 11.
Treating erroneous results as timeouts, Crustabri would, similarly to under PAR-2 scoring, place third in all
subtracks except DS-PR, where it would be second.

34

DC−CO

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
portsat
VBS

DS−ST

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
portsat
VBS

DS−PR

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
portsat
VBS

SE−ID

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
VBS

Figure 7: Number of instances solved by each solver under given a per-instance time limit in the DC-CO,
DS-ST, DS-PR, and SE-ID subtracks of the Main track, including No-limits solvers.

pairwise Pearson correlation coefficients for solver runtimes are visualized in Figure 8. In986

the DC-CO and DS-ST subtracks, the runtime distributions of all solvers are similar, and987

the correlations are significantly high. This can be explained by the fact that all solvers are988

SAT-based, employing similar SAT encoding and solver techniques. Interestingly, in the DS-989

PR and SE-ID subtracks, the runtime distributions of solvers are more different and runtime990

correlations lower. Furthermore, in the SE-ID subtrack the VBS outperforms the winning991

solver by a large margin. Therefore it seems that in these tracks the solvers are internally992

different, which also suggests that investigating these differences and combining the strengths993

of different approaches might lead to further improved solvers. Runtime distributions and994

pairwise correlations for all other subtracks of the Main track are provided in Appendix A,995

Figures A.9 and A.10, respectively.996

9.5. False Positives and Negatives in the Approximate Track997

We move on to analyse the Approximate track data on how often the participating solvers998

provided wrong answers, which is a particular feature of this track. Table 12 provides statistics999

on the frequency of true and false positive and negative answers reported by the participating1000

solver. The same statistics are shown for each subtrack separately in Table 13. Specifically,1001

we report the number of true positive (correct solution is YES and solver reports YES), false1002

positive (correct solution is NO and solver reports YES), true negative (correct solution is1003

35

1

0.95

0.91

0.93

0.79

0.95

1

0.88

0.92

0.84

0.91

0.88

1

0.85

0.72

0.93

0.92

0.85

1

0.83

0.79

0.84

0.72

0.83

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

po
rts

at

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

portsat

DC−CO

1

0.96

0.81

0.92

0.92

0.96

1

0.81

0.96

0.94

0.81

0.81

1

0.84

0.83

0.92

0.96

0.84

1

0.92

0.92

0.94

0.83

0.92

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

po
rts

at

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

portsat

DS−ST

1

0.76

0.84

0.96

0.33

0.76

1

0.81

0.73

0.43

0.84

0.81

1

0.82

0.36

0.96

0.73

0.82

1

0.3

0.33

0.43

0.36

0.3

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

po
rts

at

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

portsat

DS−PR

1

0.57

0.64

0.56

0.57

1

0.93

0.84

0.64

0.93

1

0.86

0.56

0.84

0.86

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

SE−ID

Figure 8: Pairwise Pearson correlation coefficients of solver runtimes in the DC-CO, DS-ST, DS-PR, and
SE-ID subtracks of the Main track, including No-limits solvers.

NO and solver reports NO) and false negative (correct solution is YES and solver reports1004

NO) answers. We refer to these as TP, FP, TN and FN, respectively. We moreover refer1005

to the number of instances for which the solution is known to be YES (respectively, NO) as1006

P (respectively, N). In addition to the raw numbers, we report the rate of correct positive1007

answers over all instances for which the answer is known to be positive (TP/P), and similarly1008

for negative answers (TN/N). These measures reflect how likely a solver is to report the correct1009

answer on an instance, as opposed to either reporting the wrong answer or not reporting an1010

answer. We also report the rate of correct YES answers over the instances that the given1011

solver gave an answer on (TP/(TP+FN)), and similarly for NO answers (TN/(TN+FP)).1012

These reflect the likelihood that an answer output by a solver is correct, given that the solver1013

has output an answer.1014

harper++ is the only solver for which TP+FN equals P and TN+FP equals N, indi-1015

cating that it output an answer for each instance (that any solver in the Main track gave1016

an answer on). This likely had an effect on its success—indeed, harper++ ranked first1017

in most subtracks—as its rate of correct NO answers was relatively low when comparing to1018

TN+FP, but high when comparing to N. Additionally, harper++ has clearly the best true1019

positive rate, with the highest rate on both true positive measures. For all solvers other1020

than harper++, the true positive rates are significantly lower than the true negative rates,1021

indicating a bias towards answering NO.1022

36

Table 12: True positive (TP), false positive (FP), true negative (TN) and false negative (FN), as well as rates
of correct answers over all instances with known correct solutions (N and P) or all instances that the solver
gave an answer on (TP+FN and TN+FP) in Approximate track per solver over all subtracks.

Solver TP/P TP/(TP+FN) TN/N TN/(TN+FP) TP FP TN FN

AFGCN v2 0.53 0.68 0.75 0.91 472 137 1350 221
ARIPOTER-Degrees 0.51 0.60 0.83 0.93 451 108 1495 295
ARIPOTER-HCAT 0.61 0.77 0.77 0.92 542 127 1393 166
fargo-limited 0.73 0.78 0.90 0.98 655 25 1627 180
harper++ 0.84 0.84 0.81 0.81 747 348 1450 145

Table 13: True positive (TP), false positive (FP), true negative (TN) and false negative (FN), as well as rates
of correct answers over all instances with known correct answer (N and P) or all instances that the solver gave
an answer on (TP+FN and TN+FP) in Approximate track per subtrack and solver.

Subtrack Solver TP/P TP/(TP+FN) TN/N TN/(TN+FP) TP FP TN FN

DC-CO AFGCN v2 0.48 0.70 0.74 0.83 73 24 119 32
ARIPOTER-Degrees 0.15 0.20 0.96 1.00 23 0 154 94
ARIPOTER-HCAT 0.41 0.57 0.88 0.97 62 4 142 47
fargo-limited 0.84 0.98 0.96 1.00 129 0 154 3
harper++ 1.00 1.00 0.42 0.42 153 94 67 0

DC-ID AFGCN v2 0.76 0.86 0.85 1.00 25 0 221 4
ARIPOTER-Degrees 0.70 0.85 0.87 1.00 23 0 228 4
ARIPOTER-HCAT 0.70 0.85 0.82 1.00 23 0 214 4
fargo-limited 1.00 1.00 0.90 1.00 33 0 235 0
harper++ 0.88 0.88 1.00 1.00 29 0 261 4

DC-SST AFGCN v2 0.57 0.70 0.70 0.81 73 27 118 31
ARIPOTER-Degrees 0.18 0.21 0.94 1.00 23 0 158 87
ARIPOTER-HCAT 0.48 0.58 0.87 0.97 62 4 146 44
fargo-limited 0.95 0.97 0.92 0.96 123 6 154 4
harper++ 1.00 1.00 0.40 0.40 129 101 67 0

DC-ST AFGCN v2 0.54 0.68 0.64 0.82 65 27 125 31
ARIPOTER-Degrees 0.18 0.21 0.87 0.99 21 2 169 80
ARIPOTER-HCAT 0.48 0.58 0.76 0.94 57 9 149 41
fargo-limited 0.97 0.97 0.79 0.92 116 13 155 3
harper++ 1.00 1.00 0.34 0.34 120 128 67 0

DC-STG AFGCN v2 0.61 0.75 0.50 0.57 122 32 42 41
ARIPOTER-Degrees 0.88 0.99 0.65 0.72 177 21 55 1
ARIPOTER-HCAT 0.83 0.99 0.65 0.72 167 21 55 1
fargo-limited 0.61 0.64 0.90 0.93 123 6 76 70
harper++ 1.00 1.00 0.70 0.70 200 25 59 1

DS-PR AFGCN v2 0.78 0.89 0.75 0.98 25 5 203 3
ARIPOTER-Degrees 0.72 0.88 0.86 1.00 23 0 234 3
ARIPOTER-HCAT 0.72 0.88 0.80 1.00 23 0 218 3
fargo-limited 1.00 1.00 0.88 1.00 32 0 239 0
harper++ 0.91 0.91 1.00 1.00 29 0 271 3

DS-SST AFGCN v2 0.69 0.88 0.80 0.97 29 7 195 4
ARIPOTER-Degrees 0.55 0.68 0.89 1.00 23 0 219 11
ARIPOTER-HCAT 0.55 0.68 0.85 1.00 23 0 208 11
fargo-limited 0.79 0.79 0.93 1.00 33 0 227 9
harper++ 0.69 0.69 1.00 1.00 29 0 245 13

DS-ST AFGCN v2 0.21 0.29 0.80 0.96 30 6 133 72
ARIPOTER-Degrees 0.82 0.97 0.36 0.41 115 85 60 4
ARIPOTER-HCAT 0.73 0.96 0.32 0.37 102 89 53 4
fargo-limited 0.24 0.29 0.96 1.00 33 0 160 82
harper++ 0.21 0.21 1.00 1.00 29 0 167 111

DS-STG AFGCN v2 0.71 0.91 0.79 0.96 30 9 194 3
ARIPOTER-Degrees 0.55 0.68 0.89 1.00 23 0 218 11
ARIPOTER-HCAT 0.55 0.68 0.85 1.00 23 0 208 11
fargo-limited 0.79 0.79 0.92 1.00 33 0 227 9
harper++ 0.69 0.69 1.00 1.00 29 0 246 13

9.6. Impact of Benchmark Parameters on Solver Performance in ABA Track1023

We next consider the impact that parameter values used for generating the ABA track1024

benchmarks had on solver performance. Recall that, in contrast to the more heterogeneous sets1025

37

of abstract argumentation frameworks standardly employed in the Main track, benchmarks for1026

the ABA track were in this first instantiation of the ABA track generated with a simple random1027

instance generator as detailed in Section 6.3. While this makes the ABA track benchmark set1028

less heterogeneous, it on the other hand allows for a more fine-grained investigation into the1029

impact of generator parameter values on the performance of individual solvers.1030

Table 14 provides the PAR-2 scores and numbers of solved instances (in parentheses) for1031

different combinations of the benchmark parameters (i) maximum number of rules per head1032

(rph, i.e. rules per non-assumption atom) and (ii) maximum rule size (rs). The data for the1033

different subtracks turned out to be quite similar, and hence for simplicity we here focus on1034

DC-CO.1035

Interestingly, the solvers behave somewhat differently with respect to their performance1036

on these parameter families. Instances with rph = 10, rs = 5 and rph = 5, rs = 10 are easier1037

to solve for ASPforABA than instances arising from using the other benchmark parame-1038

ter combinations. The combination rph = 5, rs = 10 results in instances that were easier1039

compared to other combinations for all solvers, but instances resulting from the combination1040

rph = 10, rs = 5 turned out to be hard to solve for the other solvers than ASPforABA.1041

Furthermore, we note that a greater proportion of assumptions out of all atoms made1042

instances harder to solve for each of the participating solvers. ASPforABA solved 11911043

of the 1200 instances (across all subtracks) with 10% assumptions, but only 1088 of the1044

instances with 30% assumptions. For Crustabri the corresponding numbers are 827 and1045

472; for flexAble 116 and 96; and for AcbAr 673 and 660. The number of atoms, as can1046

be expected as the primary parameter for scaling the size of the instances, also had a very1047

significant impact on runtimes (recall Section 9.2).1048

10. Further Discussion, Lessons Learned and Recommendations for Future Com-1049

petitions1050

Finally, we discuss some of the lessons learned from organizing ICCMA 2023 and further1051

observations.1052

10.1. New Developments and Potential Ideas for New/Revised Competition Tracks1053

The 2023 instantiation of ICCMA brought on several new developments. One major aspect1054

was the ABA track, which came to fruition for the first time by drawing in a necessary1055

number of solver submissions. Due to several recent developments in practical algorithms for1056

reasoning in structured argumentation formalisms [126, 127, 70, 71, 128, 129, 72, 130, 131,1057

132, 73, 74, 75, 76, 77, 78], we hope that future ICCMA instantiations will also feature a track1058

(or even several tracks) focusing on reasoning in structured formalisms.1059

Another development were changes to the input/output formats, moving to a single,1060

more compact numerical format. As pointed out earlier, the proposal for this change came1061

from the community and was motivated by the fact that essentially all argumentation solvers1062

in any case need to internally indexing the building blocks of argumentation frameworks1063

(arguments, attacks, etc.), and providing this already at input allows solvers to directly employ1064

the input indexing. While such a change might have potentially discouraged submitting1065

already existing solvers to the competition, the organizers viewed this change worthwhile to1066

make as it also only required quite minor changes restricted to the input processing routines1067

of existing solvers. Furthermore, no complaints on making this change were received from1068

38

Table 14: PAR-2 scores and number of solved instances under different parameters in the DC-CO subtrack of
the ABA track.

PAR-2 score (#solved)

Solver Subtrack rph = 10, rs = 10 rph = 10, rs = 5 rph = 5, rs = 10 rph = 5, rs = 5

DC-CO AcbAr 1166.89 (52) 1160.62 (52) 968.20 (60) 1052.48 (57)
ASPforABA 201.00 (92) 4.28 (100) 1.56 (100) 275.61 (89)
ASTRA 2376.00 (1) 2376.00 (1) 2400 (0) 2376.00 (1)
Crustabri 1032.95 (57) 2137.43 (11) 25.03 (99) 1155.20 (52)
flexAble 1686.16 (30) 2026.56 (16) 1137.31 (56) 1724.81 (29)

DC-ST AcbAr 1094.4 (55) 1159.8 (52) 968.4 (60) 1021.0 (58)
ASPforABA 196.4 (92) 2.3 (100) 1.4 (100) 220.3 (91)
ASTRA 2376.0 (1) 2376.0 (1) 2358.8 (2) 2376.0 (1)
Crustabri 1033.2 (57) 2065.3 (14) 25.0 (99) 1202.1 (50)
flexAble 1921.0 (20) 2026.8 (16) 1800.8 (25) 1920.5 (20)

DS-PR AcbAr 1197.4 (51) 1213.1 (51) 968.0 (60) 1102.8 (55)
ASPforABA 270.7 (89) 29.0 (99) 1.5 (100) 324.9 (88)
ASTRA — — — —
Crustabri 1032.8 (57) 2113.5 (12) 25.0 (99) 1155.3 (52)
flexAble — — — —

DS-ST AcbAr 1081.4 (56) 1145.4 (53) 968.4 (60) 1019.4 (58)
ASPforABA 247.1 (90) 2.4 (100) 1.3 (100) 222.1 (91)
ASTRA 2400 (0) 2400 (0) 2400 (0) 2400 (0)
Crustabri 1033.1 (57) 2089.3 (13) 24.9 (99) 1154.7 (52)
flexAble — — — —

SE-PR AcbAr 1186.4 (51) 1176.1 (52) 967.9 (60) 1086.4 (56)
ASPforABA 271.0 (89) 3.3 (100) 1.6 (100) 315.3 (88)
ASTRA — — — —
Crustabri 1128.7 (53) 2184.1 (9) 25.0 (99) 1392.9 (42)
flexAble — — — —

SE-ST AcbAr 1116.9 (54) 1160.9 (52) 968.6 (60) 1025.2 (58)
ASPforABA 247.0 (90) 2.4 (100) 1.4 (100) 225.7 (91)
ASTRA 2400.0 (0) 2400.0 (0) 2400.0 (0) 2400.0 (0)
Crustabri 1033.3 (57) 2137.3 (11) 25.0 (99) 1224.8 (49)
flexAble — — — —

the community. With these considerations, we would recommend keeping the now-introduced1069

numerical format also for forthcoming ICCMA instantiations.1070

A further input/output related change was the introduction of the IPAFAIR interface1071

for the Dynamic track, resulting in adjusting the specification of the track so that changes1072

to the argumentation framework were communicated to the solver iteratively rather than at1073

initialization. It should be noted that the current Dynamic track focuses on a very specific1074

form of dynamics. A wide range of different types of dynamics in argumentation—both in1075

abstract [133, 134, 135, 47, 136, 137, 49, 138, 139, 52] and structured formalisms [140, 141,1076

142, 143, 144, 145, 146]—has recently received considerable attention. For future ICCMA1077

instantiations, it might be interesting to consider other specific types of dynamics also as1078

39

the basis of a Dynamic track in ICCMA, and potentially also in structured argumentations1079

formalisms. More generally, considering new challenging computational tasks, in addition to1080

the more classical skeptical and credulous decision problems, has the potential of keeping1081

ICCMA vibrant and forward-looking.1082

A major development in 2023 was the introduction of witness checking. In particular,1083

all “positive” witnesses (i.e., witnessing extensions reported by solvers for credulous accep-1084

tance, witnessing counterexample-extensions reported by solvers for skeptical acceptance, as1085

will as reported witnesses for the problem of finding a single extension) in the main track were1086

checked. We find this an important development towards ensuring the correctness of imple-1087

mentations of argumentation solvers. For future ICCMA instantiations, we believe witness1088

checking should also be introduced for the ABA (or similar structured argumentation) track1089

as well. For ICCMA 2023, we did not enforce witness checking in the ABA track because1090

our main goal was to realize the track for the first time. A further non-trivial next step1091

in potential future ICCMA competitions would be to introduce ways of checking “negative”1092

answers (NO for credulous acceptance, YES for skeptical acceptance) reported by solvers.1093

By standard complexity assumptions, however, no short witnesses exist in these cases. Thus1094

such an extension would require the development of proof certificates and proof checkers, in1095

analogy to e.g. recent developments in the realm of SAT solving [94].1096

To allow for separately evaluating sequential solvers and solvers building on top of sequen-1097

tial solvers e.g. by combining different existing solvers in portfolio-style techniques, solvers1098

employing parallel computations via the use of multiple processor cores, as well as solvers1099

which will not be made available in open source were invited to a special No-limits track1100

which consists of the same subtracks as the Main track. Only two solvers turned out to1101

fit the No-limits description, due to making use of parallel computations. The performance1102

gains for these solvers when compared to Main track solvers were relatively modest. We1103

believe there may be various reasons for this. It is well-acknowledged e.g. in the realm of1104

parallel SAT solving that it can be surprisingly difficult at times to obtain massive gains1105

from non-trivial parallelization of solvers. Regarding portfolios, it may be the case that the1106

relatively high similarity of current argumentation solvers (as empirically observed and dis-1107

cussed in the article) hinders making large performance gains through portfolios. As a further1108

consideration, to our best understanding there are only relatively few works so far (includ-1109

ing [147, 148, 149, 150, 151, 152]) on developing highly effective parallel or portfolio solvers1110

for argumentation, and there could be further potential that could be harnessed in the future.1111

With this in mind, we would recommend future ICCMA organizers to consider organizing spe-1112

cial tracks specifically for parallel argumentation solvers in order to more clearly encourage1113

pushing the state of the art in parallel approaches to argumentative reasoning forward.1114

10.2. Similarity of Main Track Solvers1115

The use of SAT solvers appears to be—at least currently—the dominating approach to1116

developing systems to reasoning in abstract argumentation. More generally, declarative ap-1117

proaches (based on SAT or ASP) appear to be dominating in all tracks except for the Approx-1118

imate track. On one hand, the identification of the success of the declarative approaches for1119

argumentative reasoning is something to be celebrated. On the other hand, in particular in the1120

Main and Dynamic tracks, the solvers mostly implement very similar ideas, relying on SAT1121

solvers, to the extent that it is not entirely clear whether the somewhat limited performance1122

differences between the AF solvers is more due to the choice of the underlying SAT solver; it1123

40

should be noted that there has already been some work on the impact of the choice of SAT1124

solving techniques of the efficiency of SAT-based argumentation solvers [153, 154]. For future1125

competitions, it would be worthwhile to consider whether a specific SAT solver should be1126

enforced to be used by the competition organizers, potentially via offering an API to interface1127

with a pre-determined SAT solver. This would allow for a more scientific evaluation of the1128

actual algorithmic ideas each AF solver is based on, discounting the impact of the choice of1129

a SAT solver. Naturally, such a decision should be made in discussion with the community.1130

Furthermore, the development of non-SAT-based AF solvers should be encouraged to ensure1131

algorithmic diversity.1132

10.3. Diversity of Competition Benchmarks1133

The number of new benchmarks and benchmark generators submitted to ICCMA 2023 was1134

markedly low. Notably, the ABA track—realized for the first time—received no benchmark1135

submissions and so the benchmarks were generated by a single random generation model1136

implemented by the organizers. Random general models can be considered interesting due1137

to allowing for a tight control over the parameter space of generated benchmark instances.1138

However, we consider it increasingly important for the argumentation community at large1139

to develop, generate and submit benchmarks arising from different real-world use cases of1140

argumentative reasoning to the ICCMA competition, especially benchmarks which would be1141

at the same time challenging for current state-of-the-art argumentation solvers. This would1142

provide an avenue for showcasing the practical importance of developing increasingly capable1143

argumentation solvers and motivate organizing future instantiations of ICCMA. New and1144

diverse benchmark instances are also important both for the ICCMA competitions and for1145

subsequent use in research works, in order to avoid potential overfitting of solver techniques1146

to solve a relatively fixed and limited set of benchmarks.1147

11. Conclusions1148

In this article we provided a comprehensive overview of the 2023 ICCMA competition, the1149

5th instantiation of the series of International Competition on Computational Models of Ar-1150

gumentation. We explained new changes to the competitions, including revised input-output1151

formats, the IPAFAIR API for the Dynamic track, the new structured argumentation track,1152

and witness checking. We gave a description of the generation and selection of benchmarks1153

and an overview of the solvers that participated in the competition. We detailed the results of1154

the competition with additional analysis of the empirical data obtained from the competition.1155

Furthermore, we discussed some of the key lessons learned from organizing ICCMA 2023 with1156

potential considerations for future instantiations of the competition.1157

Acknowledgements1158

This work has been financially supported by Research Council of Finland (under grants1159

347588 and 356046), University of Helsinki Doctoral Programme in Computer Science and1160

Helsinki Institute for Information Technology HIIT. The authors wish to thank the Finnish1161

Computing Competence Infrastructure (FCCI) for supporting this project with computa-1162

tional and data storage resources. Finally, the authors thank everyone who participated in or1163

otherwise contributed to ICCMA 2023, as well as the ICCMA Steering Committee for their1164

support.1165

41

DC−ST

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
portsat
VBS

SE−ST

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
portsat
VBS

SE−PR

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
portsat
VBS

DC−SST

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
VBS

DS−SST

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
VBS

SE−SST

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
VBS

DC−STG

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
VBS

DS−STG

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
VBS

SE−STG

time limit (s)

in
st

an
ce

s
so

lv
ed

0 200 400 600 800 1000 1200

20
0

22
0

24
0

26
0

28
0

30
0

32
0

crustabri
fudge
mu−toksia (cms)
mu−toksia (g)
VBS

Figure A.9: Number of instances solved by a participating solver given a per-instance time limit for DC-ST,
SE-ST, SE-PR, DC-SST, DS-SST, SE-SST, DC-STG, DS-STG, and SE-STG subtracks of the Main and No-
limits tracks.

Appendix A. Additional Empirical Data1166

Figure A.9 visualizes the runtime distributions of solvers in the DC-ST, SE-ST, SE-PR,1167

DC-SST, DS-SST, SE-SST, DC-STG, DS-STG, and SE-STG subtracks of the Main and No-1168

limits tracks. Pairwise correlation coefficients for solver runtimes are visualized in Figure A.10.1169

42

1

0.99

0.83

0.95

0.88

0.99

1

0.82

0.94

0.87

0.83

0.82

1

0.83

0.78

0.95

0.94

0.83

1

0.87

0.88

0.87

0.78

0.87

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

po
rts

at

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

portsat

DC−ST

1

0.95

0.83

0.89

0.86

0.95

1

0.83

0.92

0.88

0.83

0.83

1

0.86

0.77

0.89

0.92

0.86

1

0.89

0.86

0.88

0.77

0.89

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

po
rts

at

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

portsat

SE−ST

1

0.74

0.82

0.93

0.65

0.74

1

0.84

0.71

0.77

0.82

0.84

1

0.82

0.62

0.93

0.71

0.82

1

0.58

0.65

0.77

0.62

0.58

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

po
rts

at

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

portsat

SE−PR

1

0.76

0.78

0.77

0.76

1

0.91

0.92

0.78

0.91

1

0.98

0.77

0.92

0.98

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

DC−SST

1

0.84

0.93

0.98

0.84

1

0.89

0.84

0.93

0.89

1

0.94

0.98

0.84

0.94

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

DS−SST

1

0.87

0.93

0.97

0.87

1

0.92

0.89

0.93

0.92

1

0.9

0.97

0.89

0.9

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

SE−SST

1

0.73

0.92

0.91

0.73

1

0.78

0.76

0.92

0.78

1

0.95

0.91

0.76

0.95

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

DC−STG

1

0.9

0.88

0.86

0.9

1

0.88

0.84

0.88

0.88

1

0.92

0.86

0.84

0.92

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

DS−STG

1

0.9

0.9

0.84

0.9

1

0.88

0.86

0.9

0.88

1

0.92

0.84

0.86

0.92

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
cr

us
ta

br
i

fu
dg

e
m

u−
to

ks
ia

(c
m

s)

m
u−

to
ks

ia
(g

)

crustabri

fudge

mu−toksia (cms)

mu−toksia (g)

SE−STG

Figure A.10: Pairwise Pearson correlation coefficients of solving times for DC-ST, SE-ST, SE-PR, DC-SST,
DS-SST, SE-SST, DC-STG, DS-STG, and SE-STG subtracks of the Main and No-limits tracks.

43

in
st

an
ce

|A
|

|R
|

D
C

-C
O

D
C

-S
S
T

D
C

-S
T

D
C

-S
T

G
D

S
-P

R
D

S
-S

S
T

D
S
-S

T
D

S
-S

T
G

S
E
-I

D
S
E
-P

R
S
E
-S

S
T

S
E
-S

T
S
E
-S

T
G

ER
_3

00
_1

0_
9.

af
30

1
46

92
✗

ER
_3

00
_2

0_
2.

af
30

1
91

96
✗

✗
✗

✗
✗

✗
ER

_4
00

_2
0_

9.
af

40
1

16
49

3
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
ER

_4
00

_3
0_

9.
af

40
1

24
23

6
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
ER

_4
00

_4
0_

7.
af

40
1

32
67

6
✗

✗
✗

✗
✗

✗
WS

_4
00

_2
4_

50
_1

0.
af

40
0

52
00

✗
✗

✗
✗

✗
✗

WS
_4

00
_3

2_
70

_7
0.

af
40

0
68

00
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

WS
_5

00
_1

6_
50

_5
0.

af
50

0
45

00
✗

✗
WS

_5
00

_1
6_

70
_5

0.
af

50
0

45
00

✗
✗

cr
us

ti
_g

2i
o_

17
5_

0.
2_

51
1_

10
.a

f
89

42
5

62
34

73
2

✗
✗

cr
us

ti
_g

2i
o_

17
5_

0.
2_

51
1_

13
.a

f
89

42
5

62
33

13
6

✗
✗

cr
us

ti
_g

2i
o_

17
5_

0.
2_

51
1_

32
.a

f
89

42
5

62
35

61
7

✗
✗

✗
cr

us
ti

_g
2i

o_
17

5_
0.

2_
51

1_
36

.a
f

89
42

5
62

38
76

8
✗

cr
us

ti
_g

2i
o_

17
5_

0.
2_

51
1_

48
.a

f
89

42
5

62
38

58
0

✗
✗

✗
cr

us
ti

_g
2i

o_
20

0_
0.

1_
12

7_
12

.a
f

25
40

0
15

12
88

4
✗

✗
✗

cr
us

ti
_g

2i
o_

20
0_

0.
1_

12
7_

19
.a

f
25

40
0

15
14

48
2

✗
✗

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

20
0_

0.
1_

12
7_

38
.a

f
25

40
0

15
13

68
6

✗
✗

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

20
0_

0.
1_

12
7_

46
.a

f
25

40
0

15
12

94
1

✗
✗

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

20
0_

0.
1_

12
7_

6.
af

25
40

0
15

11
83

9
✗

✗
✗

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

20
0_

0.
1_

12
7_

8.
af

25
40

0
15

14
58

5
✗

✗
✗

✗
✗

✗
cr

us
ti

_g
2i

o_
22

5_
0.

1_
31

_2
5.

af
69

75
45

94
75

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

22
5_

0.
2_

12
7_

41
.a

f
28

57
5

25
53

21
1

✗
✗

cr
us

ti
_g

2i
o_

25
0_

0.
2_

25
5_

12
.a

f
63

75
0

63
53

31
7

✗
✗

✗
✗

✗
cr

us
ti

_g
2i

o_
25

0_
0.

2_
25

5_
15

.a
f

63
75

0
63

47
73

8
✗

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

25
0_

0.
2_

25
5_

18
.a

f
63

75
0

63
50

67
6

✗
✗

✗
cr

us
ti

_g
2i

o_
25

0_
0.

2_
25

5_
31

.a
f

63
75

0
63

50
54

8
✗

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

25
0_

0.
2_

25
5_

43
.a

f
63

75
0

63
49

88
2

✗
✗

✗
cr

us
ti

_g
2i

o_
30

0_
0.

2_
25

5_
11

.a
f

76
50

0
91

43
84

0
✗

✗
✗

✗
✗

✗
cr

us
ti

_g
2i

o_
30

0_
0.

2_
25

5_
17

.a
f

76
50

0
91

46
81

2
✗

✗
✗

✗
✗

✗
✗

cr
us

ti
_g

2i
o_

30
0_

0.
2_

25
5_

26
.a

f
76

50
0

91
43

63
3

✗
✗

✗
✗

✗
✗

✗
cr

us
ti

_g
2i

o_
35

0_
0.

5_
25

5_
40

.a
f

89
25

0
21

80
07

90
✗

✗
✗

✗
st

_1
01

5_
36

_2
7_

34
40

.a
f

10
15

18
72

1
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

03
7_

97
_3

4_
64

7.
af

10
37

49
88

3
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

23
0_

64
_1

6_
37

3.
af

12
30

39
04

3
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

23
4_

99
_2

5_
37

56
.a

f
12

34
59

46
8

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

24
4_

87
_2

8_
36

69
.a

f
12

44
52

97
4

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

27
6_

43
_2

5_
19

38
.a

f
12

76
28

24
8

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

35
0_

55
_3

1_
14

9.
af

13
50

37
67

7
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

35
2_

53
_2

3_
37

37
.a

f
13

52
35

89
1

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_1
39

1_
70

_1
2_

16
74

.a
f

13
91

49
06

9
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_1

40
0_

85
_2

8_
21

13
.a

f
14

00
59

39
2

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_1
41

2_
95

_1
5_

32
63

.a
f

14
12

66
07

2
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_1
48

9_
41

_3
9_

10
70

.a
f

14
89

31
57

5
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_4

96
_7

5_
39

_1
35

4.
af

49
6

18
04

8
✗

st
_5

21
_4

3_
14

_3
15

7.
af

52
1

11
10

4
✗

st
_6

59
_3

7_
25

_6
86

.a
f

65
9

12
49

2
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_7
04

_6
8_

9_
31

83
.a

f
70

4
23

21
6

✗
✗

✗
✗

✗
✗

✗
✗

st
_8

15
_7

4_
9_

28
60

.a
f

81
5

29
43

9
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_8
26

_3
4_

8_
39

10
.a

f
82

6
14

30
6

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_8
83

_2
8_

16
_1

14
4.

af
88

3
13

08
3

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_8
90

_8
6_

9_
57

2.
af

89
0

38
01

5
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

st
_9

02
_6

7_
36

_2
71

1.
af

90
2

29
68

2
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

_9
55

_2
6_

12
_3

94
1.

af
95

5
12

93
8

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
✗

✗
st

an
is

la
us

_c
a_

20
15

-1
2-

02
.g

ml
.2

0.
af

31
9

81
6

✗

T
ab

le
A

.1
5:

In
st

an
ce

s
no

t
so

lv
ed

in
at

le
as

t
on

e
su

bt
ra

ck
of

th
e

M
ai

n
tr

ac
k

by
an

y
so

lv
er

(m
ar

ke
d

by
✗

fo
r

ea
ch

su
bt

ra
ck

),
an

d
th

e
nu

m
be

r
of

ar
gu

m
en

ts
|A

|a
nd

at
ta

ck
s
|R

|i
n

ea
ch

in
st

an
ce

.

44

References1170

[1] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. R. Simari,1171

M. Thimm, S. Villata, Towards artificial argumentation, AI Mag. 38 (3) (2017) 25–36.1172

[2] P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook of Formal1173

Argumentation, College Publications, 2018.1174

[3] H. Prakken, Historical overview of formal argumentation, in: P. Baroni, D. Gabbay,1175

M. Giacomin, L. van der Torre (Eds.), Handbook of Formal Argumentation, College1176

Publications, 2018, Ch. 2, pp. 73–141.1177

[4] T. J. M. Bench-Capon, P. E. Dunne, Argumentation in artificial intelligence, Artif.1178

Intell. 171 (10-15) (2007) 619–641.1179

[5] T. J. M. Bench-Capon, Argument in artificial intelligence and law, Artif. Intell. Law1180

5 (4) (1997) 249–261.1181

[6] D. N. Walton, Argumentation methods for artificial intelligence in law, Springer, 2005.1182

[7] T. J. M. Bench-Capon, H. Prakken, G. Sartor, Argumentation in legal reasoning, in:1183

G. R. Simari, I. Rahwan (Eds.), Argumentation in Artificial Intelligence, Springer, 2009,1184

pp. 363–382.1185

[8] H. Prakken, G. Sartor, Law and logic: A review from an argumentation perspective,1186

Artif. Intell. 227 (2015) 214–245.1187

[9] H. Prakken, A. Z. Wyner, T. J. M. Bench-Capon, K. Atkinson, A formalization of1188

argumentation schemes for legal case-based reasoning in ASPIC+, J. Log. Comput.1189

25 (5) (2015) 1141–1166.1190

[10] T. J. Bench-Capon, Representation of case law as an argumentation framework,1191

Proc. Jurix (2002) 103–112.1192

[11] T. J. M. Bench-Capon, Before and after Dung: Argumentation in AI and law, Argument1193

Comput. 11 (1-2) (2020) 221–238.1194

[12] J. Domínguez, D. Prociuk, B. Marović, K. Čyras, O. Cocarascu, F. Ruiz, E. Mi, E. Mi,1195

C. Ramtale, A. Rago, A. Darzi, F. Toni, V. Curcin, B. Delaney, ROAD2H: Develop-1196

ment and evaluation of an open-source explainable artificial intelligence approach for1197

managing co-morbidity and clinical guidelines, Learn. Health Syst. (2023).1198

[13] R. Craven, F. Toni, C. Cadar, A. Hadad, M. Williams, Efficient argumentation for1199

medical decision-making, in: G. Brewka, T. Eiter, S. A. McIlraith (Eds.), Proc. KR,1200

AAAI Press, 2012, pp. 598–602.1201

[14] K. Cyras, T. Oliveira, A. Karamlou, F. Toni, Assumption-based argumentation with1202

preferences and goals for patient-centric reasoning with interacting clinical guidelines,1203

Argument Comput. 12 (2) (2021) 149–189.1204

45

[15] Z. Zeng, Z. Shen, J. J. Chin, C. Leung, Y. Wang, Y. Chi, C. Miao, Explainable and1205

contextual preferences based decision making with assumption-based argumentation for1206

diagnostics and prognostics of alzheimer’s disease, in: A. E. F. Seghrouchni, G. Suk-1207

thankar, B. An, N. Yorke-Smith (Eds.), Proc. AAMAS, IFAAMAS, 2020, pp. 2071–2073.1208

[16] A. Hunter, M. Williams, Aggregating evidence about the positive and negative effects1209

of treatments, Artif. Intell. Medicine 56 (3) (2012) 173–190.1210

[17] I. Sassoon, N. Kökciyan, S. Modgil, S. Parsons, Argumentation schemes for clinical1211

decision support, Argument Comput. 12 (3) (2021) 329–355.1212

[18] M. Chapman, P. Balatsoukas, M. Ashworth, V. Curcin, N. Kökciyan, K. Essers, I. Sas-1213

soon, S. Modgil, S. Parsons, E. I. Sklar, Computational argumentation-based clinical1214

decision support, in: E. Elkind, M. Veloso, N. Agmon, M. E. Taylor (Eds.), Proc. AA-1215

MAS, IFAAMAS, 2019, pp. 2345–2347.1216

[19] K. Atkinson, T. J. M. Bench-Capon, S. Modgil, Argumentation for decision support, in:1217

S. Bressan, J. Küng, R. R. Wagner (Eds.), Proc. DEXA, Vol. 4080 of LNCS, Springer,1218

2006, pp. 822–831.1219

[20] A. Rago, F. Toni, M. Aurisicchio, P. Baroni, Discontinuity-free decision support with1220

quantitative argumentation debates, in: C. Baral, J. P. Delgrande, F. Wolter (Eds.),1221

Proc. KR, AAAI Press, 2016, pp. 63–73.1222

[21] A. Rago, O. Cocarascu, F. Toni, Argumentation-based recommendations: Fantastic1223

explanations and how to find them, in: J. Lang (Ed.), Proc. IJCAI, ijcai.org, 2018, pp.1224

1949–1955.1225

[22] Q. Zhong, X. Fan, X. Luo, F. Toni, An explainable multi-attribute decision model based1226

on argumentation, Expert Syst. Appl. 117 (2019) 42–61.1227

[23] Á. Carrera, C. A. Iglesias, A systematic review of argumentation techniques for multi-1228

agent systems research, Artif. Intell. Rev. 44 (4) (2015) 509–535.1229

[24] X. Fan, F. Toni, A. Mocanu, M. Williams, Dialogical two-agent decision making with1230

assumption-based argumentation, in: A. L. C. Bazzan, M. N. Huhns, A. Lomuscio,1231

P. Scerri (Eds.), Proc. AAMAS, IFAAMAS/ACM, 2014, pp. 533–540.1232

[25] A. R. Panisson, P. McBurney, R. H. Bordini, A computational model of argumentation1233

schemes for multi-agent systems, Argument Comput. 12 (3) (2021) 357–395.1234

[26] C. da Costa Pereira, B. Liao, A. Malerba, A. Rotolo, A. G. B. Tettamanzi, L. W. N.1235

van der Torre, S. Villata, Handling norms in multi-agent systems by means of formal1236

argumentation, FLAP 4 (9) (2017) 3039–3073.1237

[27] K. Cyras, A. Rago, E. Albini, P. Baroni, F. Toni, Argumentative XAI: A survey, in:1238

Z. Zhou (Ed.), Proc. IJCAI, ijcai.org, 2021, pp. 4392–4399.1239

[28] A. Vassiliades, N. Bassiliades, T. Patkos, Argumentation and explainable artificial in-1240

telligence: a survey, Knowl. Eng. Rev. 36 (2021) e5.1241

46

[29] K. Cyras, A. Karamlou, M. Lee, D. Letsios, R. Misener, F. Toni, AI-assisted schedule1242

explainer for nurse rostering, in: A. E. F. Seghrouchni, G. Sukthankar, B. An, N. Yorke-1243

Smith (Eds.), Proc. AAMAS, IFAAMAS, 2020, pp. 2101–2103.1244

[30] A. Rago, O. Cocarascu, C. Bechlivanidis, D. A. Lagnado, F. Toni, Argumentative ex-1245

planations for interactive recommendations, Artif. Intell. 296 (2021) 103506.1246

[31] N. Potyka, Interpreting neural networks as quantitative argumentation frameworks, in:1247

Proc. AAAI, AAAI Press, 2021, pp. 6463–6470.1248

[32] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmono-1249

tonic reasoning, logic programming and n-person games, Artif. Intell. 77 (2) (1995)1250

321–358.1251

[33] P. Baroni, M. Caminada, M. Giacomin, Abstract argumentation frameworks and their1252

semantics, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook1253

of Formal Argumentation, College Publications, 2018, Ch. 4, pp. 159–236.1254

[34] G. Brewka, S. Woltran, Abstract dialectical frameworks, in: F. Lin, U. Sattler,1255

M. Truszczynski (Eds.), Proc. KR, AAAI Press, 2010, pp. 102–111.1256

[35] P. Besnard, A. J. García, A. Hunter, S. Modgil, H. Prakken, G. R. Simari, F. Toni,1257

Introduction to structured argumentation, Argument Comput. 5 (1) (2014) 1–4.1258

[36] S. Modgil, H. Prakken, Abstract rule-based argumentation, in: P. Baroni, D. Gabbay,1259

M. Giacomin, L. van der Torre (Eds.), Handbook of Formal Argumentation, College1260

Publications, 2018, Ch. 6, pp. 287–364.1261

[37] P. Besnard, A. Hunter, A review of argumentation based on deductive arguments, in:1262

P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook of Formal1263

Argumentation, College Publications, 2018, Ch. 9, pp. 437–484.1264

[38] K. Čyras, X. Fan, C. Schulz, F. Toni, Assumption-based argumentation: Disputes,1265

explanations, preferences, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre1266

(Eds.), Handbook of Formal Argumentation, College Publications, 2018, Ch. 7, pp.1267

365–408.1268

[39] F. Cerutti, S. A. Gaggl, M. Thimm, J. P. Wallner, Foundations of implementations for1269

formal argumentation, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.),1270

Handbook of Formal Argumentation, College Publications, 2018, Ch. 14, pp. 689–767.1271

[40] M. Thimm, S. Villata, The first international competition on computational models of1272

argumentation: Results and analysis, Artif. Intell. 252 (2017) 267–294.1273

[41] S. A. Gaggl, T. Linsbichler, M. Maratea, S. Woltran, Design and results of the second1274

international competition on computational models of argumentation, Artif. Intell. 2791275

(2020).1276

[42] S. Bistarelli, L. Kotthoff, F. Santini, C. Taticchi, Summary report for the third interna-1277

tional competition on computational models of argumentation, AI Mag. 42 (3) (2021)1278

70–73.1279

47

[43] S. Bistarelli, L. Kotthoff, J.-M. Lagniez, E. Lonca, J.-G. Mailly, J. Rossit, F. Santini,1280

C. Taticchi, The third and fourth international competitions on computational models of1281

argumentation: Design, results and analysis, Argument Comput. Pre-press (Pre-press)1282

(2024) 1–73.1283

[44] J. Lagniez, E. Lonca, J. Mailly, J. Rossit, Introducing the fourth international competi-1284

tion on computational models of argumentation, in: S. A. Gaggl, M. Thimm, M. Vallati1285

(Eds.), Proc. SAFA, Vol. 2672 of CEUR Workshop Proceedings, CEUR-WS.org, 2020,1286

pp. 80–85.1287

[45] W. Dvorák, P. E. Dunne, Computational problems in formal argumentation and their1288

complexity, in: P. Baroni, D. Gabbay, M. Giacomin, L. van der Torre (Eds.), Handbook1289

of Formal Argumentation, College Publications, 2018, Ch. 13, pp. 631–687.1290

[46] A. Bondarenko, P. M. Dung, R. A. Kowalski, F. Toni, An abstract, argumentation-1291

theoretic approach to default reasoning, Artif. Intell. 93 (1997) 63–101.1292

[47] G. Alfano, S. Greco, F. Parisi, Efficient computation of extensions for dynamic abstract1293

argumentation frameworks: An incremental approach, in: C. Sierra (Ed.), Proc. IJCAI,1294

ijcai.org, 2017, pp. 49–55.1295

[48] G. Alfano, S. Greco, F. Parisi, An efficient algorithm for skeptical preferred acceptance1296

in dynamic argumentation frameworks, in: S. Kraus (Ed.), Proc. IJCAI, ijcai.org, 2019,1297

pp. 18–24.1298

[49] A. Niskanen, M. Järvisalo, Algorithms for dynamic argumentation frameworks: An1299

incremental SAT-based approach, in: G. D. Giacomo, A. Catalá, B. Dilkina, M. Milano,1300

S. Barro, A. Bugarín, J. Lang (Eds.), Proc. ECAI, Vol. 325 of FAIA, IOS Press, 2020,1301

pp. 849–856.1302

[50] G. Alfano, S. Greco, F. Parisi, Incremental computation in dynamic argumentation1303

frameworks, IEEE Intell. Syst. 36 (6) (2021) 80–86.1304

[51] G. Alfano, S. Greco, Incremental skeptical preferred acceptance in dynamic argumen-1305

tation frameworks, IEEE Intell. Syst. 36 (2) (2021) 6–12.1306

[52] J. Lagniez, E. Lonca, J. Mailly, A sat-based approach for argumentation dynamics, in:1307

M. Dastani, J. S. Sichman, N. Alechina, V. Dignum (Eds.), Proc. AAMAS, ACM, 2024,1308

pp. 2351–2353.1309

[53] M. Caminada, Semi-stable semantics, in: P. E. Dunne, T. J. M. Bench-Capon (Eds.),1310

Proc. COMMA, Vol. 144 of FAIA, IOS Press, 2006, pp. 121–130.1311

[54] B. Verheij, Two approaches to dialectical argumentation: admissible sets and argumen-1312

tation stages, in: J.-J. Meyer, L. van der Gaag (Eds.), Proc. NAIC, Utrecht University,1313

1996, pp. 357–368.1314

[55] P. M. Dung, P. Mancarella, F. Toni, Computing ideal sceptical argumentation, Artif.1315

Intell. 171 (10-15) (2007) 642–674.1316

48

[56] Y. Dimopoulos, A. Torres, Graph theoretical structures in logic programs and default1317

theories, Theor. Comput. Sci. 170 (1-2) (1996) 209–244.1318

[57] P. E. Dunne, M. J. Wooldridge, Complexity of abstract argumentation, in: G. R. Simari,1319

I. Rahwan (Eds.), Argumentation in Artificial Intelligence, Springer, 2009, pp. 85–104.1320

[58] S. Coste-Marquis, C. Devred, P. Marquis, Symmetric argumentation frameworks, in:1321

L. Godo (Ed.), Proc. ECSQARU, Vol. 3571 of LNCS, Springer, 2005, pp. 317–328.1322

[59] P. E. Dunne, The computational complexity of ideal semantics, Artif. Intell. 173 (18)1323

(2009) 1559–1591.1324

[60] W. Dvorák, S. Woltran, Complexity of semi-stable and stage semantics in argumentation1325

frameworks, Inf. Process. Lett. 110 (11) (2010) 425–430.1326

[61] M. W. A. Caminada, W. A. Carnielli, P. E. Dunne, Semi-stable semantics, J. Log.1327

Comput. 22 (5) (2012) 1207–1254.1328

[62] P. E. Dunne, T. J. M. Bench-Capon, Coherence in finite argument systems, Artif. Intell.1329

141 (1/2) (2002) 187–203.1330

[63] Y. Dimopoulos, B. Nebel, F. Toni, On the computational complexity of assumption-1331

based argumentation for default reasoning, Artif. Intell. 141 (1/2) (2002) 57–78.1332

[64] K. Cyras, Q. Heinrich, F. Toni, Computational complexity of flat and generic1333

assumption-based argumentation, with and without probabilities, Artif. Intell. 2931334

(2021) 103449.1335

[65] B. Fazzinga, S. Flesca, F. Furfaro, L. Pontieri, Process mining meets argumentation:1336

Explainable interpretations of low-level event logs via abstract argumentation, Inf. Syst.1337

107 (2022) 101987.1338

[66] A. Raymond, M. Malencia, G. Paulino-Passos, A. Prorok, Agree to disagree: Subjective1339

fairness in privacy-restricted decentralised conflict resolution, Frontiers Robotics AI 91340

(2022) 733876.1341

[67] M. Bernreiter, J. Maly, O. Nardi, S. Woltran, Combining voting and abstract argumen-1342

tation to understand online discussions, in: M. Dastani, J. S. Sichman, N. Alechina,1343

V. Dignum (Eds.), Proc. AAMAS, IFAAMAS/ACM, 2024, pp. 170–179.1344

[68] Y. Dimopoulos, J. Mailly, P. Moraitis, Arguing and negotiating using incomplete nego-1345

tiators profiles, Auton. Agents Multi Agent Syst. 35 (2) (2021) 18.1346

[69] N. Kökciyan, N. Yaglikci, P. Yolum, An argumentation approach for resolving privacy1347

disputes in online social networks, ACM Trans. Internet Techn. 17 (3) (2017) 27:1–27:22.1348

[70] T. Lehtonen, A. Rapberger, M. Ulbricht, J. P. Wallner, Argumentation frameworks1349

induced by assumption-based argumentation: Relating size and complexity, in: P. Mar-1350

quis, T. C. Son, G. Kern-Isberner (Eds.), Proc. KR, 2023, pp. 440–450.1351

49

[71] T. Lehtonen, J. P. Wallner, M. Järvisalo, From structured to abstract argumentation:1352

Assumption-based acceptance via AF reasoning, in: A. Antonucci, L. Cholvy, O. Papini1353

(Eds.), Proc. ECSQARU, Vol. 10369 of LNCS, Springer, 2017, pp. 57–68.1354

[72] T. Lehtonen, J. P. Wallner, M. Järvisalo, Algorithms for reasoning in a default logic1355

instantiation of assumption-based argumentation, in: F. Toni, S. Polberg, R. Booth,1356

M. Caminada, H. Kido (Eds.), Proc. COMMA, Vol. 353 of FAIA, IOS Press, 2022, pp.1357

236–247.1358

[73] R. Craven, F. Toni, Argument graphs and assumption-based argumentation, Artif. In-1359

tell. 233 (2016) 1–59.1360

[74] Z. Bao, K. Cyras, F. Toni, ABAplus: attack reversal in abstract and structured argu-1361

mentation with preferences, in: B. An, A. L. C. Bazzan, J. Leite, S. Villata, L. W. N.1362

van der Torre (Eds.), Proc. PRIMA, Vol. 10621 of LNCS, Springer, 2017, pp. 420–437.1363

[75] T. Lehtonen, J. P. Wallner, M. Järvisalo, Declarative algorithms and complexity results1364

for assumption-based argumentation, J. Artif. Intell. Res. 71 (2021) 265–318.1365

[76] M. Diller, S. A. Gaggl, P. Gorczyca, Flexible dispute derivations with forward and1366

backward arguments for assumption-based argumentation, in: P. Baroni, C. Benzmüller,1367

Y. N. Wáng (Eds.), Proc. CLAR, Vol. 13040 of LNCS, Springer, 2021, pp. 147–168.1368

[77] M. Diller, S. A. Gaggl, P. Gorczyca, Strategies in flexible dispute derivations for1369

assumption-based argumentation, in: S. A. Gaggl, J. Mailly, M. Thimm, J. P. Wall-1370

ner (Eds.), Proc. SAFA, Vol. 3236 of CEUR Workshop Proceedings, CEUR-WS.org,1371

2022, pp. 59–72.1372

[78] A. Popescu, J. P. Wallner, Reasoning in assumption-based argumentation using tree-1373

decompositions, in: S. A. Gaggl, M. V. Martinez, M. Ortiz (Eds.), Proc. JELIA, Vol.1374

14281 of LNCS, Springer, 2023, pp. 192–208.1375

[79] P. M. Dung, P. M. Thang, N. D. Hung, Modular argumentation for modelling legal1376

doctrines of performance relief, Argument Comput. 1 (1) (2010) 47–69.1377

[80] X. Fan, S. Liu, H. Zhang, C. Leung, C. Miao, Explained activity recognition with com-1378

putational assumption-based argumentation, in: G. A. Kaminka, M. Fox, P. Bouquet,1379

E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen (Eds.), Proc. ECAI, Vol. 2851380

of FAIA, IOS Press, 2016, pp. 1590–1591.1381

[81] X. Fan, F. Toni, A general framework for sound assumption-based argumentation dia-1382

logues, Artif. Intell. 216 (2014) 20–54.1383

[82] Y. Gao, A random model for argumentation framework: Phase transitions, empirical1384

hardness, and heuristics, in: C. Sierra (Ed.), Proc. IJCAI, ijcai.org, 2017, pp. 503–509.1385

[83] F. Hutter, H. H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: An automatic algorithm1386

configuration framework, J. Artif. Intell. Res. 36 (2009) 267–306.1387

[84] A. Balint, A. Belov, M. Järvisalo, C. Sinz, Overview and analysis of the SAT Challenge1388

2012 solver competition, Artif. Intell. 223 (2015) 120–155.1389

50

[85] M. Järvisalo, T. Lehtonen, A. Niskanen (Eds.), Solver and Benchmark Descriptions1390

of ICCMA 2023: 5th International Competition on Computational Models of Argu-1391

mentation, Vol. B-2023-3 of Department of Computer Science Series of Publications B,1392

University of Helsinki, Finland, 2023.1393

[86] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: R. A.1394

Kowalski, K. A. Bowen (Eds.), Proc. ICLP/SLP, MIT Press, 1988, pp. 1070–1080.1395

[87] I. Niemelä, Logic programs with stable model semantics as a constraint programming1396

paradigm, Ann. Math. Artif. Intell. 25 (3-4) (1999) 241–273.1397

[88] U. Egly, S. A. Gaggl, S. Woltran, ASPARTIX: Implementing argumentation frameworks1398

using answer-set programming, in: M. G. de la Banda, E. Pontelli (Eds.), Proc. ICLP,1399

Vol. 5366 of LNCS, Springer, 2008, pp. 734–738.1400

[89] T. Balyo, A. Biere, M. Iser, C. Sinz, SAT Race 2015, Artif. Intell. 241 (2016) 45–65.1401

[90] N. Eén, N. Sörensson, Temporal induction by incremental SAT solving, Electronic Notes1402

in Theoretical Computer Science 89 (4) (2003) 543–560.1403

[91] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability - Second1404

Edition, Vol. 336 of FAIA, IOS Press, 2021.1405

[92] P. Besnard, S. Doutre, Checking the acceptability of a set of arguments, in: J. P.1406

Delgrande, T. Schaub (Eds.), Proc. NMR, 2004, pp. 59–64.1407

[93] W. Dvorák, M. Järvisalo, J. P. Wallner, S. Woltran, Complexity-sensitive decision pro-1408

cedures for abstract argumentation, Artif. Intell. 206 (2014) 53–78.1409

[94] M. J. H. Heule, Proofs of unsatisfiability, in: A. Biere, M. Heule, H. van Maaren,1410

T. Walsh (Eds.), Handbook of Satisfiability - Second Edition, Vol. 336 of FAIA, IOS1411

Press, 2021, pp. 635–668.1412

[95] G. Audemard, L. Simon, On the Glucose SAT solver, Int. J. Artif. Intell. Tools 27 (1)1413

(2018) 1840001:1–1840001:25.1414

[96] A. Ignatiev, A. Morgado, J. Marques-Silva, PySAT: A Python toolkit for prototyping1415

with SAT oracles, in: O. Beyersdorff, C. M. Wintersteiger (Eds.), Proc. SAT, Vol. 109291416

of LNCS, Springer, 2018, pp. 428–437.1417

[97] N. Wetzler, M. Heule, W. A. H. Jr., DRAT-trim: Efficient checking and trimming using1418

expressive clausal proofs, in: C. Sinz, U. Egly (Eds.), Proc. SAT, Vol. 8561 of LNCS,1419

Springer, 2014, pp. 422–429.1420

[98] F. Cerutti, N. Oren, H. Strass, M. Thimm, M. Vallati, A benchmark framework for a1421

computational argumentation competition, in: S. Parsons, N. Oren, C. Reed, F. Cerutti1422

(Eds.), Proc. COMMA, Vol. 266 of FAIA, IOS Press, 2014, pp. 459–460.1423

[99] M. Caminada, P. E. Dunne, Strong admissibility revisited: Theory and applications,1424

Argument Comput. 10 (3) (2019) 277–300.1425

51

[100] F. Cerutti, M. Giacomin, M. Vallati, Generating structured argumentation frame-1426

works: AFBenchGen2, in: P. Baroni, T. F. Gordon, T. Scheffler, M. Stede (Eds.),1427

Proc. COMMA, Vol. 287 of FAIA, IOS Press, 2016, pp. 467–468.1428

[101] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (5439)1429

(1999) 509–512.1430

[102] P. Erdős, A. Rényi, On random graphs I, Publ. Math. Debr. 6 (290-297) (1959) 18.1431

[103] A. Sideris, Y. Dimopoulos, Constraint propagation in propositional planning, in: R. I.1432

Brafman, H. Geffner, J. Hoffmann, H. A. Kautz (Eds.), Proc. ICAPS, AAAI, 2010, pp.1433

153–160.1434

[104] A. Z. Wyner, T. J. M. Bench-Capon, P. E. Dunne, F. Cerutti, Senses of ’argument’ in1435

instantiated argumentation frameworks, Argument Comput. 6 (1) (2015) 50–72.1436

[105] M. Caminada, B. Verheij, On the existence of semi-stable extensions, in: Proc. BNAIC,1437

2010.1438

[106] D. J. Watts, S. H. Strogatz, Collective dynamics of “small-world” networks, Nature1439

393 (6684) (1998) 440–442.1440

[107] B. Yun, M. Croitoru, S. Vesic, P. Bisquert, DAGGER: Datalog+/- argumentation graph1441

generator, in: E. André, S. Koenig, M. Dastani, G. Sukthankar (Eds.), Proc. AAMAS,1442

IFAAMAS, 2018, pp. 1841–1843.1443

[108] J. Lagniez, E. Lonca, J. Mailly, J. Rossit, A new evolutive generator for graphs with1444

communities and its application to abstract argumentation, in: O. Cocarascu, S. Doutre,1445

J. Mailly, A. Rago (Eds.), Proceedings of the First International Workshop on Argu-1446

mentation and Applications, Vol. 3472 of CEUR Workshop Proceedings, CEUR-WS.org,1447

2023, pp. 52–64.1448

[109] L. Malmqvist, Approximate solutions to abstract argumentation problems using graph1449

neural networks., Ph.D. thesis, University of York (2022).1450

[110] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,1451

N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison,1452

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An im-1453

perative style, high-performance deep learning library, in: H. M. Wallach, H. Larochelle,1454

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, R. Garnett (Eds.), Proc. NeurIPS, 2019,1455

pp. 8024–8035.1456

[111] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma,1457

Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola, Z. Zhang, Deep graph1458

library: Towards efficient and scalable deep learning on graphs, CoRR abs/1909.013151459

(2019). arXiv:1909.01315.1460

[112] J. Delobelle, J. Mailly, J. Rossit, Revisiting approximate reasoning based on grounded1461

semantics, in: Z. Bouraoui, S. Vesic (Eds.), Proc. ECSQARU, Vol. 14294 of LNCS,1462

Springer, 2023, pp. 71–83.1463

52

[113] P. Besnard, A. Hunter, A logic-based theory of deductive arguments, Artif. Intell. 128 (1-1464

2) (2001) 203–235.1465

[114] B. Bliem, M. Morak, S. Woltran, D-FLAT: Declarative problem solving using tree de-1466

compositions and answer-set programming, Theory Pract. Log. Program. 12 (4-5) (2012)1467

445–464.1468

[115] B. Bliem, G. Charwat, M. Hecher, S. Woltran, D-FLAT2: Subset minimization in1469

dynamic programming on tree decompositions made easy, Fundam. Informaticae 147 (1)1470

(2016) 27–61.1471

[116] A. Niskanen, M. Järvisalo, µ-toksia: An efficient abstract argumentation reasoner, in:1472

D. Calvanese, E. Erdem, M. Thielscher (Eds.), Proc. KR, 2020, pp. 800–804.1473

[117] T. Lehtonen, J. P. Wallner, M. Järvisalo, Harnessing incremental answer set solving1474

for reasoning in assumption-based argumentation, Theory Pract. Log. Program. 21 (6)1475

(2021) 717–734.1476

[118] J. Lagniez, E. Lonca, J. Mailly, CoQuiAAS: A constraint-based quick abstract argu-1477

mentation solver, in: Proc. ICTAI, IEEE, 2015, pp. 928–935.1478

[119] A. Biere, K. Fazekas, M. Fleury, M. Heisinger, CaDiCaL, Kissat, Paracooba, Plingeling1479

and Treengeling entering the SAT Competition 2020, in: T. Balyo, N. Froleyks, M. J. H.1480

Heule, M. Iser, M. Järvisalo, M. Suda (Eds.), Proceedings of SAT Competition 2020:1481

Solver and Benchmark Descriptions, Vol. B-2020-1 of Department of Computer Science1482

Report Series B, Department of Computer Science, University of Helsinki, 2020, pp.1483

50–53.1484

[120] M. Thimm, F. Cerutti, M. Vallati, Skeptical reasoning with preferred semantics in1485

abstract argumentation without computing preferred extensions, in: Z. Zhou (Ed.),1486

Proc. IJCAI, ijcai.org, 2021, pp. 2069–2075.1487

[121] L. M. de Moura, N. S. Bjørner, Z3: an efficient SMT solver, in: C. R. Ramakrishnan,1488

J. Rehof (Eds.), Proc. TACAS, Vol. 4963 of LNCS, Springer, 2008, pp. 337–340.1489

[122] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to cryptographic problems,1490

in: O. Kullmann (Ed.), Proc. SAT, Vol. 5584 of LNCS, Springer, 2009, pp. 244–257.1491

[123] N. Eén, N. Sörensson, An extensible SAT-solver, in: E. Giunchiglia, A. Tacchella (Eds.),1492

Proc. SAT, Vol. 2919 of LNCS, Springer, 2003, pp. 502–518.1493

[124] Y. Hamadi, S. Jabbour, L. Sais, ManySAT: a parallel SAT solver, J. Satisf. Boolean1494

Model. Comput. 6 (4) (2009) 245–262.1495

[125] J. H. Liang, V. Ganesh, P. Poupart, K. Czarnecki, Learning rate based branching heuris-1496

tic for SAT solvers, in: N. Creignou, D. L. Berre (Eds.), Proc. SAT, Vol. 9710 of LNCS,1497

Springer, 2016, pp. 123–140.1498

[126] D. Odekerken, F. Bex, A. Borg, B. Testerink, Approximating stability for applied1499

argument-based inquiry, Intell. Syst. Appl. 16 (2022) 200110.1500

53

[127] T. Lehtonen, J. P. Wallner, M. Järvisalo, An answer set programming approach to1501

argumentative reasoning in the ASPIC+ framework, in: D. Calvanese, E. Erdem,1502

M. Thielscher (Eds.), Proc. KR, 2020, pp. 636–646.1503

[128] D. Odekerken, T. Lehtonen, A. Borg, J. P. Wallner, M. Järvisalo, Argumentative rea-1504

soning in ASPIC+ under incomplete information, in: P. Marquis, T. C. Son, G. Kern-1505

Isberner (Eds.), Proc. KR, 2023, pp. 531–541.1506

[129] T. Lehtonen, J. P. Wallner, M. Järvisalo, Computing stable conclusions under the1507

weakest-link principle in the ASPIC+ argumentation formalism, in: G. Kern-Isberner,1508

G. Lakemeyer, T. Meyer (Eds.), Proc. KR, 2022, pp. 215–225.1509

[130] M. Thimm, T. Rienstra, Approximate reasoning with ASPIC+ by argument sampling,1510

in: S. A. Gaggl, M. Thimm, M. Vallati (Eds.), Proc. SAFA, Vol. 2672 of CEUR Work-1511

shop Proceedings, CEUR-WS.org, 2020, pp. 22–33.1512

[131] M. Snaith, C. Reed, TOAST: Online ASPIC+ implementation, in: B. Verheij, S. Szei-1513

der, S. Woltran (Eds.), Proc. COMMA, Vol. 245 of FAIA, IOS Press, 2012, pp. 509–510.1514

[132] R. Calegari, A. Omicini, G. Pisano, G. Sartor, Arg2P: an argumentation framework for1515

explainable intelligent systems, J. Log. Comput. 32 (2) (2022) 369–401.1516

[133] C. Cayrol, F. D. de Saint-Cyr, M. Lagasquie-Schiex, Change in abstract argumentation1517

frameworks: Adding an argument, J. Artif. Intell. Res. 38 (2010) 49–84.1518

[134] R. Baumann, G. Brewka, Expanding argumentation frameworks: Enforcing and mono-1519

tonicity results, in: P. Baroni, F. Cerutti, M. Giacomin, G. R. Simari (Eds.),1520

Proc. COMMA, Vol. 216 of FAIA, IOS Press, 2010, pp. 75–86.1521

[135] M. A. Falappa, A. J. García, G. Kern-Isberner, G. R. Simari, On the evolving relation1522

between belief revision and argumentation, Knowl. Eng. Rev. 26 (1) (2011) 35–43.1523

[136] J. P. Wallner, A. Niskanen, M. Järvisalo, Complexity results and algorithms for exten-1524

sion enforcement in abstract argumentation, J. Artif. Intell. Res. 60 (2017) 1–40.1525

[137] D. Baumeister, D. Neugebauer, J. Rothe, H. Schadrack, Verification in incomplete ar-1526

gumentation frameworks, Artif. Intell. 264 (2018) 1–26.1527

[138] R. Baumann, S. Doutre, J.-G. Mailly, J. Wallner, Enforcement in formal argumentation,1528

in: D. M. Gabbay, M. Giacomin, G. R. Simari, M. Thimm (Eds.), Handbook of Formal1529

Argumentation, Vol. 2, College Publications, 2021, pp. 445–510.1530

[139] D. Baumeister, M. Järvisalo, D. Neugebauer, A. Niskanen, J. Rothe, Acceptance in1531

incomplete argumentation frameworks, Artif. Intell. 295 (2021) 103470.1532

[140] G. Alfano, S. Greco, F. Parisi, G. I. Simari, G. R. Simari, An incremental approach to1533

structured argumentation over dynamic knowledge bases, in: M. Thielscher, F. Toni,1534

F. Wolter (Eds.), Proc. KR, AAAI Press, 2018, pp. 78–87.1535

54

[141] G. Alfano, S. Greco, F. Parisi, G. I. Simari, G. R. Simari, Incremental computation for1536

structured argumentation over dynamic delp knowledge bases, Artif. Intell. 300 (2021)1537

103553.1538

[142] B. Testerink, D. Odekerken, F. Bex, A method for efficient argument-based inquiry, in:1539

A. Cuzzocrea, S. Greco, H. L. Larsen, D. Saccà, T. Andreasen, H. Christiansen (Eds.),1540

Proc. FQAS, Vol. 11529 of LNCS, Springer, 2019, pp. 114–125.1541

[143] A. Borg, F. Bex, Enforcing sets of formulas in structured argumentation, in: M. Bien-1542

venu, G. Lakemeyer, E. Erdem (Eds.), Proc. KR, 2021, pp. 130–140.1543

[144] A. Rapberger, M. Ulbricht, On dynamics in structured argumentation formalisms, J.1544

Artif. Intell. Res. 77 (2023) 563–643.1545

[145] H. Prakken, Relating abstract and structured accounts of argumentation dynamics: the1546

case of expansions, in: P. Marquis, T. C. Son, G. Kern-Isberner (Eds.), Pro. KR, 2023,1547

pp. 562–571.1548

[146] M. Berthold, A. Rapberger, M. Ulbricht, Forgetting aspects in assumption-based argu-1549

mentation, in: P. Marquis, T. C. Son, G. Kern-Isberner (Eds.), Proc. KR, 2023, pp.1550

86–96.1551

[147] F. Cerutti, I. Tachmazidis, M. Vallati, S. Batsakis, M. Giacomin, G. Antoniou, Exploit-1552

ing parallelism for hard problems in abstract argumentation, in: B. Bonet, S. Koenig1553

(Eds.), Proc. AAAI, AAAI Press, 2015, pp. 1475–1481.1554

[148] M. Vallati, F. Cerutti, M. Giacomin, On the combination of argumentation solvers into1555

parallel portfolios, in: W. Peng, D. Alahakoon, X. Li (Eds.), Proc. AI, Vol. 10400 of1556

LNCS, Springer, 2017, pp. 315–327.1557

[149] F. Cerutti, M. Vallati, M. Giacomin, On the impact of configuration on abstract argu-1558

mentation automated reasoning, Int. J. Approx. Reason. 92 (2018) 120–138.1559

[150] M. Vallati, F. Cerutti, M. Giacomin, Predictive models and abstract argumentation:1560

the case of high-complexity semantics, Knowl. Eng. Rev. 34 (2019) e6.1561

[151] S. Doutre, M. Lafages, M. Lagasquie-Schiex, A distributed and clustering-based algo-1562

rithm for the enumeration problem in abstract argumentation, in: M. Baldoni, M. Das-1563

tani, B. Liao, Y. Sakurai, R. Zalila-Wenkstern (Eds.), Proc. PRIMA, Vol. 11873 of1564

LNCS, Springer, 2019, pp. 87–105.1565

[152] J. Klein, I. Kuhlmann, M. Thimm, Graph neural networks for algorithm selection in1566

abstract argumentation, in: I. Kuhlmann, J. Mumford, S. Sarkadi (Eds.), Proceedings of1567

the 1st Workshop on Argumentation & Machine Learning, Vol. 3208 of CEUR Workshop1568

Proceedings, CEUR-WS.org, 2022, pp. 81–95.1569

[153] J. Klein, M. Thimm, Revisiting SAT techniques for abstract argumentation, in:1570

H. Prakken, S. Bistarelli, F. Santini, C. Taticchi (Eds.), Proc. COMMA, Vol. 326 of1571

FAIA, IOS Press, 2020, pp. 251–262.1572

55

[154] S. Gning, J. Mailly, On the impact of SAT solvers on argumentation solvers, in: S. A.1573

Gaggl, M. Thimm, M. Vallati (Eds.), Proc.SAFA, Vol. 2672 of CEUR Workshop Pro-1574

ceedings, CEUR-WS.org, 2020, pp. 68–73.1575

56

