
Journal of Artificial Intelligence Research 80 (2024) 1223-1269 Submitted 08/2023; published 08/2024

From Single-Objective to Bi-Objective
Maximum Satisfiability Solving

Christoph Jabs christoph.jabs@helsinki.fi

Jeremias Berg jeremias.berg@helsinki.fi

Andreas Niskanen andreas.niskanen@helsinki.fi

Matti Järvisalo matti.jarvisalo@helsinki.fi

Department of Computer Science,

University of Helsinki,

Finland

Abstract

The declarative approach is key to efficiently finding optimal solutions to various types
of NP-hard real-world combinatorial optimization problems. Most work on practical declar-
ative solvers—ranging from classical integer programming to finite-domain constraint op-
timization and maximum satisfiability (MaxSAT)—has focused on optimization under a
single objective; fewer advances have been made towards efficient declarative techniques
for multi-objective optimization problems. Motivated by significant recent advances in
practical solvers for MaxSAT, in this work we develop BiOptSat, an exact declarative
approach for finding Pareto-optimal solutions to bi-objective optimization problems, with
propositional logic as the underlying constraint language. BiOptSat can be viewed as an
instantiation of the lexicographic method. The approach makes use of a single Boolean
satisfiability solver that is incrementally employed throughout the entire search procedure,
allowing for finding a single Pareto-optimal solution, finding one representative solution
for each non-dominated point, and enumerating all Pareto-optimal solutions. We detail
several algorithmic instantiations of BiOptSat, each building on recent algorithms pro-
posed for single-objective MaxSAT. We empirically evaluate the instantiations compared
to recently-proposed alternative approaches to multi-objective MaxSAT solving on several
real-world domains from the literature, showing the practical benefits of our approach.

1. Introduction

The declarative approach—with its various instantiations, ranging from classical integer
programming (Wolsey, 2020) to finite-domain constraint optimization (Rossi, van Beek, &
Walsh, 2006) and Boolean satisfiability (SAT)-based (Biere, Heule, van Maaren, & Walsh,
2021) approaches such as maximum satisfiability (MaxSAT) (Bacchus, Järvisalo, & Martins,
2021), SAT modulo theories (Barrett, Sebastiani, Seshia, & Tinelli, 2021), and answer set
programming (Niemelä, 1999)—is key to efficiently finding optimal solutions to various
types of NP-hard real-world combinatorial optimization problems. In this work, we build
on recent advances in MaxSAT solving (Bacchus et al., 2021). In particular, we develop
an exact declarative programming based algorithmic approach to finding so-called Pareto-
optimal solutions to bi-objective optimization problems encoded in propositional logic.

Much like how SAT solvers find various applications in solving NP-hard decision prob-
lems via compact propositional encodings, MaxSAT allows for succinctly encoding a wide
range of NP-hard real-world optimization problems. Modern MaxSAT solvers can scale up

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Jabs, Berg, Niskanen, & Järvisalo

to finding provably optimal solutions to instances of very significant size, and nowadays often
outperform key competing approaches, especially when facing optimization problems the
underlying constraints of which allow for natural encoding on the propositional level. This
is in particular due to conflict-driven clause learning SAT solvers (Marques-Silva, Lynce,
& Malik, 2021), the success of which has translated to increasing success of the Boolean
optimization paradigm of MaxSAT (Bacchus et al., 2021).

Most work on practical algorithms and their implementations (i.e., solvers) for exact
declarative optimization—including MaxSAT—has focused on optimization under a single
objective. However, various real-world settings give rise to multiple, often conflicting objec-
tives (Ehrgott, 2005). Whereas for a single objective function there is a clear minimum (or
maximum) and objective values can be unambiguously compared, a notion of optimality
of a solution becomes less obvious to define naturally for multi-objective settings and in
particular when—as is generally the case—there is no clear preference over which objective
should be considered the primary one. A commonly considered notion of “optimality” in
the multi-objective case is that of Pareto optimality (also called Pareto efficiency in some
contexts) (Arora, 2004; Ehrgott, 2005). Intuitively, a Pareto-optimal solution is one which
cannot be improved with respect to any single objective without making it worse with
respect to another objective.

Under Pareto optimality, several related tasks can be distinguished: (i) finding a single
Pareto-optimal solution, (ii) finding a representative solution for each non-dominated point
(i.e., tuple of objective values of Pareto-optimal solutions), and (iii) finding all Pareto-
optimal solutions. Many approaches (Soh, Banbara, Tamura, & Le Berre, 2017; Terra-
Neves, Lynce, & Manquinho, 2018b; Janota, Morgado, Santos, & Manquinho, 2021) to
multi-objective optimization under Pareto optimality tend to focus on the second task
where a single solution per non-dominated point is computed. The third task goes one step
further and enumerates the full Pareto front (i.e., all Pareto-optimal solutions), even when
multiple solutions share the same objective values. The techniques we develop in this work
are applicable to each of these three tasks.

We focus in particular on bi-objective optimization, that is, the task of finding the
Pareto-optimal solutions—or in other words, computing representative solutions for each
so-called non-dominated point—under two conflicting objectives. While the solutions of
interest can quickly become hard to grasp when the number of objectives is increased, bi-
objective problems naturally arise in the real world. One topical setting is that of learning
interpretable classifiers (Jin & Sendhoff, 2008; Malioutov & Meel, 2018; Narodytska, Ig-
natiev, Pereira, & Marques-Silva, 2018; Ignatiev, Pereira, Narodytska, & Marques-Silva,
2018; Hu, Siala, Hebrard, & Huguet, 2020; Yu, Ignatiev, Stuckey, & Bodic, 2021; Ig-
natiev, Marques-Silva, Narodytska, & Stuckey, 2021; Ghosh, Malioutov, & Meel, 2022)
such as decision rules or other logically-oriented representations from data. In this context,
interpretability—often understood as the size of a representation, with the intuition that
“the smaller the representation, the easier it is for humans to interpret”—is intrinsically
conflicting with the objective of accurately representing data at hand. Hence the two ob-
jectives of minimizing size of the representation and minimizing classification error give
naturally rise to combinatorial bi-optimization problems. While some Pareto-optimal solu-
tions may be found by minimizing a single linear combination of the objectives (i.e., with the
weighted sum method (Ehrgott, 2005) used for example by Malioutov and Meel (2018) in

1224

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

the particular context of learning interpretable classifiers), doing so does not provide guar-
antees on which Pareto-optimal solutions are obtained and—even more severely—there can
be certain Pareto-optimal solutions that can never be discovered through such means. This
further motivates the development of effective optimization procedures that work directly
and exactly on the bi-objective level.

As the main contribution of this work, we developBiOptSat, an approach to SAT-based
bi-objective optimization. The BiOptSat approach allows for computing representatives
for each non-dominated point in an ordered fashion. The approach also extends naturally
to enumerating all solutions at each non-dominated point, hence capturing a more generic
setting than the multi-level setting (Marques-Silva, Argelich, Graca, & Lynce, 2011) of
lexicographic optimization which assumes a preference order among the objectives. Our
approach—which can be viewed as an instantiation of the lexicographic method (Wassen-
hove & Gelders, 1980; Marler & Arora, 2004) via SAT solving—allows for building on ad-
vances in MaxSAT solving algorithms. However, instead of using MaxSAT solvers as black
boxes, we make use of incremental SAT solving (Eén & Sörensson, 2003; Marques-Silva
et al., 2021) directly in implementing the approach. As the approach allows for making use
of a MaxSAT algorithm of choice, we study the effectiveness of different algorithmic choices
that include both solution-improving (sometimes called SAT-UNSAT) (Eén & Sörensson,
2006; Le Berre & Parrain, 2010; Bacchus et al., 2021) and core-guided (Marques-Silva &
Planes, 2007; Ansótegui, Bonet, & Levy, 2009; Morgado, Dodaro, & Marques-Silva, 2014;
Ignatiev, Morgado, & Marques-Silva, 2019) instantiations. In particular, we propose six
different instantiations of BiOptSat that differ in how the minimization of what we re-
fer to as the “increasing” objective among the two objectives is handled. The first four
build on the SAT-UNSAT (Le Berre & Parrain, 2010), UNSAT-SAT (Fu & Malik, 2006),
MSU3 (Marques-Silva & Planes, 2007) and OLL (Morgado et al., 2014) MaxSAT algo-
rithms, respectively, and are adapted to the bi-objective setting by building on the fact
that a bound on the other, so-called “decreasing” objective needs to be enforced during op-
timization. The final two instantiations are hybrids, switching from a core-guided approach
(MSU3 and OLL, respectively) to the SAT-UNSAT-based instantiation during search with
the aim of combining the advantages of the two search strategies. We also detail refine-
ments for the approach as liftings from single-objective core-guided MaxSAT: lazy building
of the pseudo-Boolean constraints for both objectives to reduce the number of clauses in the
solver, and application-specific refinements of blocking clauses for speeding up enumeration
of all Pareto-optimal solutions.

We provide an open-source implementation (available at https://bitbucket.org/coreo-
group/bioptsat/) of all the described instantiations of BiOptSat. We also empirically
evaluate the performance of BiOptSat on several benchmark domains against key exact
SAT-based competitors implemented in the same code base, namely, enumeration of so-
called P -minimal solutions (Soh et al., 2017) (as one of the closest ones to ours) originally
proposed in the context of SAT-based constraint optimization (Koshimura, Nabeshima, Fu-
jita, & Hasegawa, 2009), and an implicit hitting set style approach in the flavour of the
recently-proposed Seesaw framework (Janota et al., 2021) (for more discussion on related
work, see Sections 2.6 and 5). Furthermore, we compare the performance of BiOptSat
also to existing implementations based on enumerating so-called Pareto-MCSes (Terra-
Neves et al., 2018b), lower-bounding search, and a further recent approach coined as a form

1225

https://bitbucket.org/coreo-group/bioptsat/
https://bitbucket.org/coreo-group/bioptsat/

Jabs, Berg, Niskanen, & Järvisalo

of implicit hitting set optimization (Cortes, Lynce, & Manquinho, 2023). While there are
no evident standard benchmark sets in the context of multi-objective optimization, for the
empirical evaluation we consider several benchmark domains: learning Pareto-optimal in-
terpretable decision rules (as a generalization of settings for which MaxSAT-based solutions
have been proposed) (Malioutov & Meel, 2018), bi-objective set covering (as earlier con-
sidered in the work presenting enumeration of P -minimal solutions (Soh et al., 2017)), the
package upgradeability problem under various objectives (Janota, Lynce, Manquinho, &
Marques-Silva, 2012), and truly bi-objective benchmark instances reverse-engineered from
MaxSAT Lib. The empirical results suggest that our approach outperforms the competing
approaches. Furthermore, the efficiency of our approach is impacted by the choice of the
integrated MaxSAT algorithm within the approach as well as by further design choices such
as how objective function coefficients are handled within the approach.

The rest of this article is organized as follows. We start with the necessary preliminaries
on SAT, MaxSAT, and the extension of MaxSAT to bi-objective optimization, as well as
an overview of related work on practical algorithmic approaches to MaxSAT-based multi-
objective optimization (Section 2.1). We then turn to the main algorithmic contributions of
this work, detailing the BiOptSat approach and several variants of instantiating one of its
subroutines (Section 3). The results from an extensive empirical evaluation of the approach
are presented in Section 4. Finally, before conclusions, we review related work (Section 5).

A preliminary version of this article was presented at 25th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2022) (Jabs, Berg, Niskanen, &
Järvisalo, 2022). The present article considerably expands on the preliminary SAT 2022
version in several ways. In terms of algorithmic advances, as a notable improvement over the
previously-proposed version of BiOptSat (Jabs et al., 2022), we propose the use of incre-
mental pseudo-Boolean encodings rather than expanding pseudo-Boolean constraints into
cardinality constraints, and outline a further hybrid instantiation of BiOptSat based on
the OLL algorithm. In terms of empirical evaluation, we extend the evaluation with further
benchmarks and further competing approaches (Cortes et al., 2023) that were published
after the SAT 2022 paper, and also provide further empirical results on the impact of dif-
ferent implementation details on the efficiency of BiOptSat. Furthermore, the discussion
overall has been expanded to be self-contained.

2. Preliminaries

As preliminaries, we recall Boolean satisfiability (SAT) and necessary related concepts, and
detail bi-objective MaxSAT as the main focus of our work.

2.1 Boolean Satisfiability

For a Boolean variable v there are two literals, the positive v and the negative ¬v. A clause
C is a set of (i.e., disjunction over) literals, and a CNF formula F is a set of (i.e., conjunction
over) clauses. The set of variables and literals appearing in F are denoted by var(F) and
lit(F), respectively. A truth assignment τ maps Boolean variables to 1 (true) or 0 (false).
The semantics of truth assignments are extended to a negated variable ¬v, a clause C and
a CNF formula F in the standard way: τ(¬v) = 1 − τ(v), τ(C) = max{τ(l) | l ∈ C},
and τ(F) = min{τ(C) | C ∈ F}. When convenient, we view an assignment τ over the set

1226

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

var(F) of variables as the set of literals assigned to 1, i.e., τ = {v | v ∈ var(F), τ(v) =
1} ∪ {¬v | v ∈ var(F), τ(v) = 0}. Under this convention τ(l) = 1 corresponds to l ∈ τ and
τ(l) = 0 to ¬l ∈ τ . An assignment τ for which τ(F) = 1 is a solution to F . A CNF formula
F is satisfiable if it has a solution, and otherwise unsatisfiable. The Boolean satisfiability
(SAT) problem asks to decide whether a given CNF formula is satisfiable.

As standardly employed, it is well-known that any propositional formula ϕ can be trans-
lated into a linear-size CNF formula using auxiliary variables naming the subformulas of
ϕ, so that the CNF representation of ϕ is satisfied by exactly the same assignments on the
variables in ϕ (Tseitin, 1983).

2.2 Incremental SAT Solving

An incremental SAT solver (Eén & Sörensson, 2003; Marques-Silva et al., 2021) is an
implementation of a decision procedure (in our context, a conflict-driven clause learning
(CDCL) algorithm (Marques-Silva et al., 2021)) that, given a CNF formula F and a set
A of literals, can decide whether there is a solution τ to F that extends A, i.e., for which
τ ⊃ A. We abstract the use of an incremental SAT solver into the function isSAT. More
precisely, isSAT(F,A) denotes a call to an incremental SAT solver under the formula F
and the assumptions specified by the set A of literals. The call returns a tuple (res, τ, κ)
where res is either SAT (“satisfiable”) or UNSAT (“unsatisfiable”) depending on whether F
is satisfiable under the assumptions or not. If res = SAT, τ is populated by a satisfying
assignment. If res = UNSAT, then κ ⊂ {¬l | l ∈ A} is populated with a subset of negated
assumptions such that F ∧

∧
l∈κ(¬l) is unsatisfiable. Such a κ is an unsatisfiable core of F

and can also be viewed as a clause containing negated assumptions entailed by F . When
the formula F is clear from context, we will simply write isSAT(A) for an invocation of
an incremental SAT solver on F under the assumptions A. In case the returned core of a
specific call is not used, we will omit it as a return parameter.

2.3 Pseudo-Boolean Expressions and Constraints

A pseudo-Boolean (PB) expression E =
∑

i ci · li is a linear combination of terms, each
consisting of a literal li and a coefficient ci. The set of literals appearing in E is denoted by
lit(E), and the coefficient of a literal l in E is coeff(E, l). The sum of all coefficients in E
is denoted by sum-coeff(E) =

∑
l∈lit(E) coeff(E, l). Further, E|L =

∑
l∈L coeff(E, l) · l

denotes the restriction of an expression E to a set of literals L.

A PB constraint is a PB expression the value of which is bounded by a constant. We
will in particular make use of PB constraints of form

∑
i ci · li < B, where each li is

a literal, ci a positive integer, and B an integer bound. Such a constraint is satisfied
by an assignment τ if

∑
i ci · τ(li) < B. Further, we will make extensive use of CNF

formulas equivalent to so-called reified PB constraints. More precisely, given an expression
E =

∑
i ci · li and a maximum bound UB, PbCnf(E, UB) denotes a CNF formula that defines

a set {⟨E < k⟩ | k = 1, . . . , UB} of output literals such that any solution of PbCnf(E, UB)
that sets ⟨E < k⟩ to 1 also satisfies

∑
i ci·li < k. Here PbCnf(E, UB) can be seen as the CNF

representation of the set of reified PB constraints of the form ⟨E < k⟩ →
∑

i ci · li < k for
all k = 1 . . . UB. For clarity of presentation, we often use ⟨E ≤ k⟩ to denote ⟨E < k+1⟩, and

1227

Jabs, Berg, Niskanen, & Järvisalo

PbCnf(E) to denote PbCnf(E, sum-coeff(E)), i.e., the PB encoding using the maximum
upper bound which is the sum of all coefficients in E.

As an important special case of PB constraints, we use CardCnf(L, UB) to denote a
CNF formula equivalent to a cardinality constraint

∑
l∈L l < B over a set L of literals with

a maximum bound UB. In other words, CardCnf(L, UB) is a CNF formula that defines a
set of output literals of the form ⟨L < k⟩ for k = 1 . . . UB such that any solution τ to ⟨L < k⟩
that sets τ(⟨L < k⟩) = 1 also assigns less than k of the literals in L to 1. Various CNF
encodings of PB and cardinality constraints are known (Bailleux & Boufkhad, 2003; Eén
& Sörensson, 2006; Tamura, Banbara, & Soh, 2013; Joshi, Martins, & Manquinho, 2015).
Although the algorithmic approach developed in this work is not tied to a specific encoding,
as described later in more detail, on the implementation level we make use of the so-called
(generalized) totalizer encoding (Bailleux & Boufkhad, 2003; Joshi et al., 2015).

2.4 Maximum Satisfiability

Maximum satisfiability (MaxSAT) (Bacchus et al., 2021) is the optimization variant of SAT.
A MaxSAT instance (F,O) consists of a set F of clauses and an objective O =

∑
i ci · li

represented as a pseudo-Boolean expression with positive constants, where each li is over
a variable in F .1 An assignment τ is a solution to a MaxSAT instance (F,O) if τ satisfies
F . The objective value (or cost) O(τ) of τ is O(τ) =

∑
l∈lit(O) τ(l) · coeff(O, l). The task

in MaxSAT is to find an optimal solution of (F,O), i.e., a solution τ of F that minimizes
O(τ) over all solutions. In the context of MaxSAT, PbCnf(O) denotes a CNF formula
defining output literals of the form ⟨O < k⟩ such that O(τ) < k for any solution τ to
F ∪ PbCnf(O) for which τ(⟨O < k⟩) = 1. This forms the basis for the so-called solution-
improving approach to solving MaxSAT.

Example 1. Consider the MaxSAT instance (F,O) with F = {(b1 ∨ b2), (b2 ∨ b3)} and
O = b1 + 3 · b2 + 5 · b3. Then PbCnf(O, 9) defines the output literals ⟨O < k⟩ for k ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9}. Now, isSAT(F ∧ PbCnf(O, 9), {⟨O < 4⟩}) reports satisfiability and
the solution τ that sets τ(b2) = 1 and all others to 0. On the other hand, isSAT(F ∧
PbCnf(O, 9), {⟨O < 3⟩}) reports unsatisfiability. Hence the instance has minimum-cost 3.

2.5 Bi-Objective Maximum Satisfiability

The main focus of this work is on developing practical algorithms for the following natural
generalization of MaxSAT to bi-objective optimization. A bi-objective MaxSAT instance is
a triple I = (F,O1, O2), consisting of a formula F and two objectives, O1 and O2. We lift
all terminology and concepts of the single-objective setting to the bi-objective case. Most
notably, an assignment τ is a solution to I if τ(F) = 1. The cost of τ with respect to O1 is
O1(τ) and O2(τ) with respect to O2.

The two objectives O1 and O2 may be (and typically are) in conflict with each other in
the sense that no solution is optimal for both O1 and O2 independently. With this in mind,
commonly studied notions of optimality in the multi-objective setting are based on the

1. We note that this definition of MaxSAT in terms of a set of clauses and an objective captures the—
arguably more classical—definition of MaxSAT in terms of hard and weighted soft clauses via the so-called
blocking variable transformation (Leivo, Berg, & Järvisalo, 2020; Bacchus et al., 2021). Specifically, our
definition corresponds to the so-called weighted partial MaxSAT problem.

1228

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

L ={¬i1,¬i2,¬i3,¬i4,¬d1,¬d2,¬d3,¬d4},

F =CardCnf(L, 5) ∪
{
(⟨L ≤ 4⟩),

(i1 ∨ i2), (i2 ∨ i3), (i2 ∨ i4)

(d1 ∨ d2), (d2 ∨ d3), (d2 ∨ d4)

}
,

OI =i1 + i2 + i3 + i4,

OD =d1 + d2 + d3 + d4.

0 1 2 3 4
0

1

2

3

4

τ c1τ c2
τ c3

τo1

τ c4τo2

τo3

OI

O
D

Infeasible region
Solutions

Pareto-optimal solutions

Figure 1: Left: An example bi-objective MaxSAT instance I = (F,OI, OD) Right: the
feasible region of F in the objective space defined by OI and OD. The solutions
τ o1 and τ o2 (solid points) are Pareto-optimal, while τ ci for i = 1, . . . , 4 are not.

following dominance relation between solutions. A solution τ1 dominates τ2 if (i) Oi(τ1) ≤
Oi(τ2) for i = 1, 2 and (ii) either O1(τ1) < O1(τ2) or O2(τ1) < O2(τ2). A solution τ is
Pareto-optimal if no other solution dominates it. The non-dominated set non-dom(I) of
I consists of the non-dominated points, i.e., the cost-pairs of all Pareto-optimal solutions,
denoted by non-dom(I) = {(O1(τ), O2(τ)) | τ is Pareto-optimal wrt. I}.

Example 2 (Running Example). A bi-objective MaxSAT instance I = (F,OI, OD) is shown
on the left in Figure 1. Here CardCnf(L, 5) together with (⟨L ≤ 4⟩) enforces that any so-
lution must assign at least 4 objective literals of OI and OD to 1. The solution space is illus-
trated in Figure 1 on the right. The three solid dots correspond to the three non-dominated
points {(1, 3), (2, 2), (3, 1)} of I. Examples of Pareto-optimal solutions corresponding to
these points are τ o1 = {i2, d1, d3, d4,¬i1,¬i3,¬i4,¬d2}, τ o2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4}
and τ o3 = {i1, i3, i4, d2,¬i2,¬d1,¬d3,¬d4}, respectively. The solution τ c3 = {i2, d1, d2, d3, d4,
¬i1,¬i3,¬i4} is dominated by τ o1 because OI(τ

o
1) ≤ OI(τ

c
3) and OD(τ

o
1) < OD(τ

c
3).

The following three tasks can be identified for the multi-objective problem setting:

(i) finding a representative solution for every non-dominated point (earlier considered
e.g. by Soh et al. (2017), Janota et al. (2021)),

(ii) finding all Pareto-optimal solutions (earlier considered e.g. by Isermann (1979)), and

(iii) finding a representative leximax-optimal solution (earlier considered e.g. by Cabral,
Janota, and Manquinho (2022)).

Note that each non-dominated point can correspond to several Pareto-optimal solutions,
leading to the two distinct tasks of either computing a single representative for each non-
dominated point or computing all Pareto-optimal solutions. The algorithmic approach
developed in this work is applicable to each of the three tasks.

1229

Jabs, Berg, Niskanen, & Järvisalo

In addition to the general problem of computing all Pareto-optimal solutions, our work
relates to two important special cases of Pareto-optimality: lexicographic max-ordering
(leximax) and lexicographic optimality (Ehrgott, 2005). The optimal solutions under both
of these notions are a subset of the Pareto-optimal solutions. Thus finding an optimal
solution under leximax and lexicographic optimality can be considered easier than finding
a representative solution for every non-dominated point.

In leximax optimization (Ehrgott, 2005), the goal is to find solutions that—informally
speaking—minimize the “worst” objective first. More precisely, given the non-dominated
set non-dom(I) of a bi-objective MaxSAT instance I = (F,O1, O2) the Pareto-optimal
solutions of I that correspond to the elements in non-dom(I) with the lowest maximum
objective value—i.e., the elements (c1, c2) ∈ non-dom(I) that minimize max{c1, c2}—are
called leximax-optimal. For bi-objective instances, an alternative description of leximax-
optimal solutions are the Pareto-optimal solutions that minimize the difference between
the two objective values. Notice that different leximax-optimal solutions can correspond to
different elements in non-dom(I).

Example 3. Consider again the formula F and the objectives OI and OD in Figure 1.
The solution τ o2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4} with costs (OI(τ

o
2), OD(τ

o
2)) = (2, 2) is

leximax-optimal: the greatest objective value for this solution is 2, and this is smaller than
for the two other Pareto-optimal solutions for which the greatest objective value is 3.

Finally, our work is also related to so-called lexicographic optimization (Ehrgott, 2005) in
which the solutions to a bi-objective MaxSAT instance I = (F,O1, O2) are ranked primarily
based on their costs wrt. O1 and secondarily based on their costs wrt. O2. More precisely,
a solution τ dominates another solution τ ′ in the lexicographic sense if (a) O1(τ) < O1(τ

′)
or (b) O1(τ) = O1(τ

′) and O2(τ) < O2(τ
′). A solution τ is lexicographically optimal if

τ is not dominated (in the lexicographic sense) by any other solution. For an alternative
description, the lexicographically optimal solutions of I are the Pareto-optimal solutions
which correspond to the non-dominated point with the lowest value for the cost of O1, i.e.,
the lowest first element of the tuple. Note that lexicographic optimization is reducible to
a single-objective optimization problem via the so-called weighted sum method (Ehrgott,
2005). More precisely, given a bi-objective MaxSAT instance I = (F,O1, O2), consider
the single-objective problem Isum = (F, λ · O1 + O2) obtained by multiplying O1 with a
coefficient λ > sum-coeff(O2) and summing the result with O2. The optimal (minimum-
cost) solutions of Isum are exactly the lexicographically optimal solutions of I and vice
versa. Thus, while the algorithmic approach we develop in this work is applicable—as is any
method capable of computing all Pareto-optimal solutions—to lexicographic optimization
as a special case, lexicographic optimization is in this sense not a true bi-objective problem.

Example 4. Consider again the bi-objective MaxSAT instance (F,OI, OD) from Figure 1.
All solutions corresponding to the non-dominated point (1, 3) (such as τ o1 = {i2, d1, d3, d4,
¬i1,¬i3,¬i4,¬d2}) are lexicographically optimal. These are also the solutions of the single-
objective MaxSAT problem (F,Osum), where Osum = 5 · OI + OD. To see this, note that
setting any l ∈ OI to 1 incurs cost Osum(l) = 5, i.e., more than setting all 4 literals in OD

to 1.

1230

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

2.6 Existing SAT-Based Approaches to Bi-Objective MaxSAT

We continue with an overview of related approaches to bi-objective MaxSAT solving: enu-
merating P -minimal solutions, multi-objective lower-bounding search, enumerating Pareto-
minimal correction sets, and approaches based on the implicit hitting set paradigm. Later,
we will empirically compare the performance of the BiOptSat approach developed in this
work to each of these approaches.

P -Minimal Solution Enumeration. The approach perhaps closest to the one developed
in this work finds the non-dominated set by enumerating so-called P -minimal solutions (Soh
et al., 2017; Koshimura et al., 2009). Originally, this approach was proposed in the context
of solving constraint satisfaction problems (Rossi et al., 2006) encoded in CNF via the
so-called order encoding (Tamura et al., 2013).

For a bi-objective MaxSAT instance I = (F,O1, O2), let FW = F ∧ PbCnf(O1) ∧
PbCnf(O2) be the CNF formula consisting of the clauses in F together with a (reified)
PB constraint over each objective. Computing the non-dominated set of I corresponds to
enumerating the solutions of FW that are subset-minimal wrt. the outputs of PbCnf(O1)
and PbCnf(O2) assigned to 0. In particular, if P is the set of those outputs, then a solution
τm is P -minimal if for no other solution τ does it hold that {l | l ∈ P, τ(l) = 0} ⊊ {l | l ∈
P, τm(l) = 0}. Each P -minimal solution τm corresponds to a non-dominated point (k1, k2)
of I, where ki for i ∈ {1, 2} is the largest value for which ⟨Oi < ki⟩ is set to 0 by τm.

Enumeration of P -minimal solutions (Koshimura et al., 2009) works by iteratively

(i) using a SAT solver to obtain a solution τ to FW,

(ii) iteratively minimizing the subset of variables of P set to 0 by τ , and

(iii) once a minimal solution τm has been found, adding to the working formula FW the
clause (⟨O1 < k1⟩ ∨ ⟨O2 < k2⟩), where ki = Oi(τ

m) for i = 1, 2, resulting in ruling out
the same non-dominated point from being discovered in subsequent iterations.

The procedure terminates when the working formula FW becomes unsatisfiable. We refer
to this algorithm for enumerating P -minimal solutions as “P -minimal” for short.

Enumeration of Pareto-Minimal Correction Sets. Another earlier proposed ap-
proach to multi-objective MaxSAT is based on the enumeration of so-called Pareto-minimal
correction (Terra-Neves et al., 2018b). For a bi-objective MaxSAT instance (F,O1, O2), let
L = lit(O1) ∪ lit(O2) be the set of all literals in the objectives O1 and O2. A Pareto-
MCS (Terra-Neves et al., 2018b; Terra-Neves, Lynce, & Manquinho, 2018a, 2018c; Guer-
reiro, Cortes, Vanderpooten, Bazgan, Lynce, Manquinho, & Figueira, 2023) (wrt. O1 and
O2) is a set M ⊂ L of objective literals such that there is a Pareto-optimal solution τ to
(F,O1, O2) that sets τ(l) = 1 for all l ∈M and τ(l) = 0 for all l ∈ L \M .

The computation of Pareto-optimal solutions can be reduced to the computation of
Pareto-MCSes (Terra-Neves et al., 2018b). The task of computing Pareto-MCSes is in turn
accomplished by enumerating all subsets T ⊂ L for which (i) F ∧

∧
l∈L\T (¬l) is satisfiable

and (ii) F ∧
∧

l∈L\T ′(¬l) is unsatisfiable for all T ′ ⊊ T . Let T consist of all such sets. The
Pareto-optimal solutions are obtained by extracting the solutions satisfying F ∧

∧
l∈L\T (¬l)

for all T ∈ T and removing the dominated ones (Terra-Neves et al., 2018b). We will refer

1231

Jabs, Berg, Niskanen, & Järvisalo

to this algorithm for enumerating Pareto-optimal solutions via enumerating Pareto-MCSes
as “Pareto-MCS” for short.

The computation of T corresponds to the enumeration of (subset-)minimal correction
sets, a problem for which numerous algorithms have been proposed (Morgado, Liffiton, &
Marques-Silva, 2012; Previti, Menćıa, Järvisalo, & Marques-Silva, 2017; Grégoire, Izza, &
Lagniez, 2018; Bend́ık & Cerna, 2020; Koshimura & Satoh, 2020). Intuitively, the search
performed by Pareto-MCS can be described as iteratively refining a set of solutions that
dominates an increasing number of solutions, towards constructing the full set of Pareto-
optimal solutions to the problem instance at hand. Importantly, note that any solution in
such a set can be guaranteed to be Pareto-optimal only once the set T has been completely
computed. More recent work (Guerreiro et al., 2023) aims to provide guarantees on the
quality of a suboptimal set of solutions by reformulating the objective, similarly to P -
minimal (Soh et al., 2017).

Multi-Objective Lower-Bounding Search. Cortes et al. (2023) recently proposed a
lower-bounding approach to multi-objective MaxSAT. Similarly as P -minimal, to solve a
bi-objective MaxSAT instance I = (F,O1, O2) the approach builds the working formula
FW = F ∧ PbCnf(O1) ∧ PbCnf(O2). In contrast to P -minimal, the search is lower-
bounding in the following sense. Initially, a bound of zero on both objectives is enforced via
assumptions. Whenever the SAT solver reports UNSAT, the current bound of each objective
whose output literals appear in the obtained core is increased. If the SAT solver instead
returns SAT, the obtained solution is minimized into a Pareto-optimal solution in an inner
loop. The intuition for why such an inner loop is necessary is that the bound relaxations
performed after each UNSAT may increment both bounds simultaneously and may thus relax
the constraints too much. Finally, when a Pareto-optimal solution is obtained, a clause
that blocks solutions dominated by the found Pareto-optimal solution is added to the SAT
solver. We will refer to this approach as CLM-LB.

Implicit Hitting Set based Bi-objective Optimization: Seesaw and CLM-IHS.
The implicit hitting set (IHS) approach (Reggia, Nau, &Wang, 1983; Reiter, 1987; Parker &
Ryan, 1996; Chandrasekaran, Karp, Moreno-Centeno, & Vempala, 2011; Moreno-Centeno
& Karp, 2013) has, among other formalisms and problems, been successfully applied to
MaxSAT (Davies & Bacchus, 2011, 2013b, 2013a; Saikko, Berg, & Järvisalo, 2016; Berg,
Bacchus, & Poole, 2020) as well as various other NP-hard decision and optimization prob-
lems (Ignatiev, Previti, Liffiton, & Marques-Silva, 2015; Ignatiev, Morgado, & Marques-
Silva, 2016; Saikko, Wallner, & Järvisalo, 2016; Saikko, Dodaro, Alviano, & Järvisalo,
2018; Fazekas, Bacchus, & Biere, 2018; Smirnov, Berg, & Järvisalo, 2021, 2022). Recently,
two approaches generalizing the IHS framework to bi-objective optimization have been pro-
posed: Seesaw (Janota et al., 2021) and CLM-IHS (Cortes et al., 2023). While the specifics
of these approaches differ significantly, on a high level both work by maintaining a set K
of cores which represent an undesirable or conflicting substructure of the problem at hand.
These cores can but do not have to be unsatisfiable cores that have been extracted with a
SAT solver. During search, both Seesaw and CLM-IHS compute solutions that satisfy the
current set of cores in a cost-minimal way, and check which of the solutions are feasible for
the input instance at hand. Feasible solutions are kept as Pareto-optimal solutions while
the infeasible ones are ruled out by extracting new cores.

1232

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

In more detail, in the context of bi-objective MaxSAT, the Seesaw algorithm (Jan-
ota et al., 2021) computes Pareto-optimal solutions of a bi-objective MaxSAT instance
(F,O1, O2) by maintaining a collection K of cores that are subsets of lit(O1). Informally
speaking, in the bi-objective setting, every solution τ that improves on O2 needs to assign
at least one literal from each core in K to 1. The algorithm works iteratively by computing
a minimum-cost hitting set hs ⊂ lit(O1) of K, i.e., a subset of the literals of O1 that
(i) intersects with each core in K and (ii) minimizes cost cost(hs) defined as the sum of
coefficients in O1 of the literals in hs, i.e., cost(hs) = sum-coeff(O1|hs). The hitting set
is computed using an integer programming solver. Next, a solution τ is computed with
τ(l) = 1 for each l ∈ hs, τ(l) = 0 for each l ∈ O1 \ hs, and O2(τ) the smallest possible value
for all such solutions, if one exists. In our SAT-based instantiation, this step is instantiated
by solution-improving search (often called SAT-UNSAT search) using a SAT solver. Seesaw
then extracts a new core that hs does not intersect with. We use the so-called SAT-based
core extraction which was shown by Jabs (2022) to outperform the so-called improved strat-
egy core extraction presented in the original publication on Seesaw (Janota et al., 2021).
The Pareto-optimal solutions of F are identified by the cost of the hitting set increasing.
If the previous hitting set hsold had cost cost(hsold) and the new hitting set hsnew has
strictly greater cost cost(hsnew) > cost(hsold), the solution τ found with hsold that has
the smallest minimum value O2(τ) is Pareto-optimal (Janota et al., 2021).

Turning to the CLM-IHS approach (Cortes et al., 2023), when solving a bi-objective
MaxSAT problem I = (F,O1, O2), a working instance IW = (Fsimp, O1, O2) is maintained
by CLM-IHS. Initially, IW is unconstrained, i.e., Fsimp = ∅. CLM-IHS maintains two
invariants: (i) every Pareto-optimal solution of IW that is also a solution of I is a Pareto-
optimal solution of I and (ii) every solution of I is a solution of IW . During each iteration
of the search, a representative solution for each element in the non-dominated set of IW

is computed. As implemented by Cortes et al. (2023), such a solution is computed using
CLM-LB. The obtained Pareto-optimal solutions of IW that are not solutions of I are then
blocked from subsequent consideration by adding clauses to Fsimp. The search terminates
when all Pareto-optimal solutions of IW are also solutions of I. From the perspective of
IHS, the set of Pareto-optimal solutions of IW is the hitting set and the clauses blocking
the infeasible solutions are the cores that the hitting set is computed over.

SAT-Based Leximax Optimization. A SAT-based approach to multi-objective opti-
mization under leximax optimality called leximaxIST was earlier proposed by Cabral et al.
(2022). The approach uses a single SAT solver working on encodings of cardinality con-
straints over each objective. The cardinality constraints are merged into an encoding for
the maximum value out of all objectives. This allows leximaxIST to iteratively minimize
this maximum with algorithmic ideas inspired by MaxSAT solving.

3. The BiOptSat Approach

With preliminaries in place, we detail BiOptSat, the MaxSAT-based approach to bi-
objective optimization developed in this work. We start with an overview of the generic
framework (Section 3.1) and then describe six specific instantiations (Section 3.2) based
on established MaxSAT algorithms. Furthermore, we detail the use of incremental pseudo-
Boolean encodings (Section 3.3) as an important refinement from the practical perspective.

1233

Jabs, Berg, Niskanen, & Järvisalo

Algorithm 1 BiOptSat: MaxSAT-based bi-objective optimization

Input: A bi-objective MaxSAT instance I = (F,OI, OD).
Output: Either a single representative for each non-dominated point of I or all Pareto-
optimal solutions.

1: InitSATsolver(F)
2: (res, τ)← isSAT(∅) {Invokes the SAT solver on the formula}
3: if res = UNSAT then return “no solutions”
4: bI ← −1, bD ←∞
5: while res = SAT do
6: (bI, τ)← Minimize-Inc(bD, bI, OI(τ)) {Maintains PbCnf(OI) (or similar)}
7: (bD, τ)← Sol-Impr-Search(bI, OD(τ)) {Builds PbCnf(OD)}
8: yield τ {Optionally: yield EnumSols(bD, bI)}
9: (res, τ)← isSAT({⟨OD < bD⟩})

3.1 Overview of BiOptSat

Algorithm 1 describes in pseudocode the BiOptSat framework for computing the Pareto-
optimal solutions of a given bi-objective MaxSAT instance I = (F,OI, OD). BiOptSat is
an instantiation of the general lexicographic method (Wassenhove & Gelders, 1980; Marler
& Arora, 2004) for multi-objective optimization, utilizing a SAT solver. To find a Pareto-
optimal solution, the lexicographic method iteratively minimizes both objectives individu-
ally and in order, in our case starting from OI. When minimizing the second objective (OD),
an additional constraint requiring the value of OI to be not worse than the value found in
the most-recent minimization procedure invocation is enforced. Once the minimum value
under these current additional constraints for both objectives is found, the current solution
is provably Pareto-optimal. By minimizing each objective in this way separately, the lexi-
cographic method can enumerate all Pareto-optimal solutions in monotonically-increasing
order of OI. After finishing an iteration, the remaining Pareto-optimal solutions will have
higher values of OI but lower values of OD. The search continues by enforcing a constraint
stating that OD must be improved in the next iteration. Search terminates when there are
no solutions with lower values of OD.

By enumerating solutions in increasing order of cost wrt. OI, the Pareto-optimal solu-
tions are enumerated in decreasing order for the other objective OD. With this intuition,
as formalized in the following observation, we will refer to objective OI as increasing and
OD as decreasing.

Observation 1 (Adapted from (Hartert & Schaus, 2014)). Sorting the Pareto-optimal so-
lutions of a bi-objective optimization problem under the objectives O1 and O2 wrt. increasing
values of O1 amounts to sorting the solutions wrt. decreasing values of O2, and vice-versa.

In BiOptSat, the lexicographic method is instantiated in full using a single SAT solver.
The SAT solver instantiation is invoked incrementally and thereby preserved (i.e., not reset)
during the whole search. BiOptSat maintains the bounds bI and bD on the two objectives
OI and OD, respectively. In each iteration, the Minimize-Inc procedure sets the value of bI
to the smallest value of OI for which there is an undiscovered Pareto-optimal solution τ o.
The value of bD is then set to OD(τ

o) by the Sol-Impr-Search procedure.

1234

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

In its default configuration, detailed in pseudocode as Algorithm 1, BiOptSat solves
the task of finding a single representative per non-dominated point. The first Pareto-
optimal solution discovered by BiOptSat is guaranteed to be lexicographically optimal. For
enumerating all Pareto-optimal solutions, the EnumSols procedure is extended to enumerate
all Pareto-optimal solutions τ o for which OI(τ

o) = bI and OD(τ
o) = bD.

In detail, given a bi-objective MaxSAT instance I = (F,OI, OD), BiOptSat search
(Algorithm 1) starts by initializing a SAT solver with all clauses in F on line 1. Satisfiability
of the current set of clauses (i.e., the existence of Pareto-optimal solutions) is checked
by invoking the SAT solver on its internal formula without assumptions via the isSAT(∅)
function (line 2). If res is UNSAT, I has no solutions and the algorithm terminates. Otherwise,
an assignment τ that satisfies F is obtained. Then, before the main enumeration procedure,
the bounds bI and bD on OI and OD are initialized to −1 and ∞, respectively.

The main search loop (lines 5–9) is iterated over as long as there are Pareto-optimal
solutions of I that have not yet been enumerated, i.e., while there is a solution τ for which
OD(τ) < bD. This termination criterion is checked by invoking the SAT solver under the
assumptions ⟨OD < bD⟩ on line 9. As we will detail later, the PB constraint defining
⟨OD < bD⟩ is built and maintained by the Sol-Impr-Search subroutine.

In the beginning of each main loop iteration, the procedure Minimize-Inc is employed to
minimize the increasing objective, i.e., to compute the smallest value bI for which there is a
solution τm with OI(τ

m) = bI and OD(τ
m) < bD (line 6). The parameters of the Minimize-

Inc procedure are the strict upper bound bD on solutions wrt. the decreasing objective,
and bI as a known lower and OI(τ) as a known upper bound on the minimum increasing
objective value. In the following, we will assume that Minimize-Inc maintains a way of
enforcing ⟨OI < b⟩ for any b and that BiOptSat and all of its subroutines have access to
the literals required to do so; specific implementations of Minimize-Inc are detailed later
in Section 3.2.

Next, the algorithm employs solution-improving search (Eén & Sörensson, 2006; Le Berre
& Parrain, 2010; Bacchus et al., 2021) to minimize the decreasing objective, i.e., to com-
pute the smallest bD for which there is a solution τ o with OI(τ

o) = bI and OD(τ
o) = bD

(line 7). The pseudo-boolean constraint PbCnf(OD, OD(τ)) is built the first time this sub-
routine is invoked. Building the constraint at this point allows for only building it up to
bound OD(τ), which is sufficient since all Pareto-optimal solutions are known to have at
most that value for OD. Solution-improving search—starting from the known upper bound
b = OD(τ)—iteratively invokes the SAT solver under the assumptions {⟨OD < b⟩, ⟨OI ≤ bI⟩}
for decreasing values of b until the SAT solver reports unsatisfiability. As soon as unsat-
isfiability is reached, Sol-Impr-Search returns bD = b and the latest solution τ for which
we have OI(τ) = bI and OD(τ) = bD. At this point, there is no solution of F that domi-
nates τ , and hence τ is returned as Pareto-optimal on line 8. Optionally, to enumerate all
solutions τ o that have cost (bI, bD), the EnumSols procedure repeatedly invokes the SAT
solver with the assumptions {⟨OD ≤ bD⟩, ⟨OI ≤ bI⟩} and blocking each found solution with
a clause until no more solutions are found. Then the unit clause (⟨OD ≤ b⟩) is added to
the SAT solver. This is possible since the values wrt. OD(τ) monotonically decrease dur-
ing the search. Compared to adding the output literal as an assumption, adding the unit
clauses allows the solver to permanently simplify clauses through unit propagation for its
subsequent invocations.

1235

Jabs, Berg, Niskanen, & Järvisalo

0 1 2 3 4
0

1

2

3

4

τ c1τ c2
τ c3

τo1

τ c4τo2

τo3

OI

O
D

Infeasible region
Solutions

Pareto-optimal solutions
Minimize-Inc (SAT-UNSAT)

Solution-Improving-Search
isSAT (Algorithm 1 line 9)

Figure 2: The search progression of the SAT-UNSAT instantiation of BiOptSat on the in-
stance from Figure 1.

Example 5. Consider invoking BiOptSat on the formula F and objectives OI, OD from
Figure 1. The search starts by invoking the SAT solver on F . This call returns a solution,
say τ c1 = {i1, i2, i3, i4, d1, d2, d3, d4} (see Figure 2), for which OI(τ

c
1) = OD(τ

c
1) = 4. The

first iteration of the main search loop starts with a call to Minimize-Inc. This returns
bI = 1 and, e.g., the solution τ c3 = {i2, d1, d2, d3, d4,¬i1,¬i3,¬i4} for which OI(τ

c
3) = 1 and

OD(τ
c
3) = 4. BiOptSat then proceeds to the Sol-Impr-Search subroutine that initializes a

PB encoding PbCnf(OD, 4). The first call to the SAT solver is made with the assumptions
A = {⟨OI ≤ 1⟩, ⟨OD < 4⟩}. The query is satisfiable. Say that the solver returns the solution
τ o1 = {i2, d1, d3, d4,¬i1,¬i3,¬i4,¬d2}. Then, the solver is invoked with the assumptions
A = {⟨OI ≤ 1⟩, ⟨OD < 3⟩}. The query is unsatisfiable, so the procedure returns the Pareto-
optimal τ o1 and bD = OD(τ

o
1) = 3. At the end of the iteration, the SAT solver is queried

with the assumption {⟨OD < 3⟩}. As the query is satisfiable and the solver returns, e.g.,
the solution τ c4 = {i1, i2, i3, d1, d2,¬i4,¬d3,¬d4}, BiOptSat continues similarly for two
more iterations, finding, e.g., the Pareto-optimal τ o2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4} with
OI(τ

o
2) = OD(τ

o
2) = 2 in the second iteration and τ o3 with OI(τ

o
3) = 3 and OD(τ

o
3) = 1.

The algorithm then terminates as the SAT solver queried under the assumption {⟨OD < 1⟩}
reports unsatisfiability.

3.2 Instantiations for Minimizing the Increasing Objective

We detail six different instantiations of the Minimize-Inc procedure for minimizing the
increasing objective within BiOptSat. The first four, SAT-UNSAT, UNSAT-SAT, MSU3 and
OLL, are inspired by existing MaxSAT algorithms, while the latter two, MSHybrid and
OSHybrid, switch between two types of MaxSAT-like algorithms with the aim of combining
their advantages. We note that, unlike Minimize-Inc, the Sol-Impr-Search procedure is
fixed within BiOptSat to perform solution-improving upper-bounding search. Intuitively,
this choice is based on the fact that the constraints enforced on the increasing objective when

1236

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Algorithm 2 SAT-UNSAT instantiation of Minimize-Inc

Input: Most-recent bound bD onOD and known upper bound b on the constrained minimum
value of OI.
Output: Solution τ and b = OI(τ) minimal under OD(τ) < bD.

1: build or extend PbCnf(OI, b) if necessary
2: (res, τ)← isSAT({⟨OI < b⟩, ⟨OD < bD⟩})
3: while res = SAT do
4: b← OI(τ)
5: (res, τ)← isSAT({⟨OI < b⟩, ⟨OD < bD⟩})
6: return (b, τ)

performing minimization in Sol-Impr-Search are iteratively weakened, which in general
results in earlier-obtained lower bounds and cores becoming invalid.2

3.2.1 SAT-UNSAT

The SAT-UNSAT instantiation of Minimize-Inc performs solution-improving search (Eén
& Sörensson, 2006; Le Berre & Parrain, 2010; Bacchus et al., 2021) similarly as employed in
Sol-Impr-Search. As input, the SAT-UNSAT instantiation of Minimize-Inc takes the most-
recent bound bD on OD and the upper bound b = OI(τ) on the constrained minimum value
of the increasing objective known from the most recent SAT solver call. Since SAT-UNSAT

is upper-bounding, it does not make use of the known lower bound. Since the latest query
to the SAT solver was made on line 9 (Algorithm 1) with the assumptions {⟨OD < bD⟩},
the solution τ has OD(τ) < bD.

SAT-UNSAT is outlined in pseudocode as Algorithm 2. The procedure maintains the PB
encoding PbCnf(OI) and starts on line 1 by checking whether the current upper bound
on PbCnf(OI) is at least b. If this is not the case, the PB encoding is extended with the
additional required clauses. Then the SAT solver is iteratively invoked with the assumptions
{⟨OD < bD⟩, ⟨OI < b⟩} for decreasing values of b (line 5). The procedure terminates when
the SAT solver reports unsatisfiability. At this point (on line 6) the value of b and the
solution obtained from the last SAT solver call which reported satisfiability are returned as
bI and τ .

Example 6. Consider again the invocation of BiOptSat from Example 5. We detail
the invocations of Minimize-Inc instantiated as SAT-UNSAT. Figure 2 illustrates the search
progression for this configuration. In the first iteration, SAT-UNSAT is invoked with bD =∞
and b = OI(τ

c
1) = 4. At this point, the PB encoding over OI has not been built, so the

procedure starts by adding PbCnf(OI, 4) to the solver. The first call to the SAT solver
is made with the assumptions {⟨OI < 4⟩} (as bD = ∞ no assumptions on OD are used).
Assume that the solver returns the solution τ c2 = {i1, i2, d1, d2, d3, d4,¬i3,¬i4}. In the next
iteration, the set of assumptions is {⟨OI < 2⟩}. The solver returns, e.g., the solution
τ c3 = {i2, d1, d2, d3, d4,¬i1,¬i3,¬i4}. The final (unsatisfiable) SAT solver call is then made
under the assumptions {⟨OI < 1⟩}, resulting in the procedure returning bI = 1 and τ c3 .

2. Investigating ways of making incremental use of other types of MaxSAT search approaches for the
decreasing objective is left for further work.

1237

Jabs, Berg, Niskanen, & Järvisalo

Algorithm 3 UNSAT-SAT instantiation of Minimize-Inc

Input: Most recent bounds bD on OD and bI on OI.
Output: Solution τ and b = OI(τ) minimal under OD(τ) < bD.

1: b← bI
2: build or extend PbCnf(OI, b+ 1)
3: (res, τ)← isSAT({⟨OI ≤ b+ 1⟩, ⟨OD < bD⟩})
4: while res = UNSAT do
5: b← b+ 1
6: extend PbCnf(OI, b+ 1)
7: (res, τ)← isSAT({⟨OI ≤ b+ 1⟩, ⟨OD < bD⟩})
8: return (b+ 1, τ)

In the second and third iterations, the first SAT solver call is made by SAT-UNSAT (with
assumptions {⟨OD < 3⟩, ⟨OI < 3⟩} and {⟨OD < 2⟩, ⟨OI < 3⟩} respectively) returns UNSAT,
resulting in SAT-UNSAT immediately returning the current solution.

3.2.2 UNSAT-SAT

UNSAT-SAT takes an analogous approach to SAT-UNSAT search but searches for the con-
strained minimum value of OI by lower-bounding instead of upper-bounding. The procedure
takes as input the most recent bounds bD on OD and bI on OI as a lower bound on OI subject
to OD < bD.

The UNSAT-SAT instantiation of Minimize-Inc is outlined in pseudocode as Algorithm 3.
UNSAT-SAT maintains a PB encoding PbCnf(OI) for enforcing a bound b on OI. On line 1,
b is set to the known lower bound bI and the SAT solver is then iteratively invoked on line 7
under the assumptions {⟨OI ≤ b+1⟩, ⟨OD < bD⟩}. If the SAT solver reports unsatisfiability,
the bound b is increased by 1 and the SAT solver is invoked again. The search ends once
the SAT solver reports satisfiability. At this time the solution and the updated bound are
returned on line 8. Note that since the value of b is monotonically increasing, it suffices
to build the pseudo-boolean encoding PbCnf(OI) up to the bound b+ 1 on each iteration
(line 6). This way the SAT solver is always invoked without unnecessary clauses in terms
of the PB encoding.

Example 7. Consider again the invocation of BiOptSat from Example 5. We detail the
invocations of Minimize-Inc instantiated as UNSAT-SAT. In the first iteration, UNSAT-SAT
is invoked with bD = ∞ and bI = −1. At this point, the PB encoding over OI has not yet
been built, so the procedure starts by initializing PbCnf(OI, 0) and invokes the SAT solver
with the assumptions {⟨OI ≤ 0⟩}. The query is unsatisfiable, so the PB encoding is extended
to PbCnf(OI, 1) and the SAT solver is invoked with the assumptions {⟨OI ≤ 1⟩}. The SAT
solver now reports satisfiability, returning e.g. the solution τ c3 = {i2, d1, d2, d3, d4,¬i1,¬i3,
¬i4}. Then UNSAT-SAT returns bI = 1 and τ c3 . The second and third invocations extend the
PB encoding further and return τ o2 and τ o3 respectively.

1238

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Algorithm 4 MSU3 instantiation of Minimize-Inc

Input: Most recent bounds bD on OD and bI on OI.
Output: Solution τ and b = OI(τ) minimal under OD(τ) < bD.

1: b← max{bI, 0}
2: (res, τ, κ)← isSAT(⟨OI|Act ≤ b⟩ ∪ ⟨OD < bD⟩ ∪ {¬l | l ∈ lit(OI) \ Act})
3: while res = UNSAT do
4: b← b+ 1
5: κ← κ ∩ lit(OI)
6: Act← Act ∪ κ
7: build or extend PbCnf(OI|Act, b)
8: (res, τ, κ)← isSAT({⟨OI|Act ≤ b⟩, ⟨OD < bD⟩} ∪ {¬l | l ∈ lit(OI) \ Act})
9: return (b, τ)

3.2.3 MSU3

The MSU3 instantiation of Minimize-Inc is a core-guided approach inspired by the MSU3
single-objective MaxSAT algorithm (Marques-Silva & Planes, 2007). As input MSU3 takes
the most recent bounds bD on OD and bI on OI as a lower bound on the constrained
minimum value of OI. MSU3 maintains a set Act ⊂ lit(OI) of active objective literals and
a PB encoding PbCnf(OI|Act) built over the restriction of the increasing objective to the
active literals. Initially all literals of OI are inactive, i.e., Act = ∅. An inactive literal l ∈
lit(OI)\Act is assumed to the value 0 in every invocation of the SAT solver until l occurs in
the core returned by the SAT solver. Algorithm 4 illustrates the search performed by MSU3.
The algorithm starts from the value b = bI computed in the previous iteration and invokes
the SAT solver with the assumptions A = {⟨Act ≤ b⟩, ⟨OD < bD⟩}∪{¬l | l ∈ lit(OI) \Act}
on line 2. If the query is unsatisfiable, the SAT solver returns a core κ ⊂ {¬l | l ∈ A}. Next,
the bound b is increased by one, the inactive literals in κ become active by adding them to
Act and the PB encoding PbCnf(O|Act) is extended (lines 4–7). The procedure continues
until the query is satisfiable, at which point a solution τ with OI(τ) = b and OD(τ) < bD is
found. At this point the value b is the minimum value OI(τ) for any solution τ subject to
OD(τ) < bD. This is because the value of b is increased monotonically, and the SAT solver
reported unsatisfiability up to the second-to-last iteration. Note that the set Act of active
literals is maintained between the invocations of MSU3.

Note that when using MSU3, OI(τ) ≤ bI cannot be enforced in the other procedures
within BiOptSat using a single literal. Instead, the algorithm uses a set of assumptions
{⟨OI|Act ≤ bI⟩} ∪ {¬l | l ∈ lit(OI) \ Act} that restrict the cost of active literals set to 1 to
bI and fix the value of each inactive literal to 0. The following establishes that using these
assumptions to enforce OI(τ) ≤ bI does not remove any Pareto-optimal solutions from the
search.

Proposition 1. Invoke BiOptSat with Minimize-Inc instantiated as MSU3 on an instance
(F,OI, OD). Let bD and bI be the values returned by MSU3 and Sol-Impr-Search on the i:th
iteration of the search, respectively, and Act the set of active literals after the i:th invocation
of MSU3. Consider a Pareto-optimal solution τ o of the instance for which OI(τ

o) = bI. Then
τ o(l) = 0 for all l ∈ lit(OI) \ Act.

1239

Jabs, Berg, Niskanen, & Järvisalo

Proof. (Sketch) Since bI was returned by MSU3, we know that there is a Pareto-optimal τ o

for which OI(τ
o) = bI and OD(τ

o) < bD. By the properties of cores, any solution τ s of F
for which OD(τ

s) < bD assigns literals in Act with at least cost bI to 1. Thus, any τn that
assigns τn(l) = 1 for an inactive literal l ∈ lit(OI) \ Act will have OI(τ

n) > bI.

Example 8. Consider the invocation of BiOptSat from Example 5. We detail the invo-
cations of Minimize-Inc instantiated as MSU3. In the first iteration of BiOptSat, MSU3
is invoked with bD = ∞ and bI = −1. Initially, the set Act = ∅ of active literals is empty,
so the first call to the SAT solver is made with the assumptions A = {¬i1,¬i2,¬i3,¬i4}.
The query is unsatisfiable. Assume that the SAT solver returns κ = {i1, i2}. The literals
in κ are marked as active and the PB encoding PbCnf(OI|Act, 1) is initialized. The SAT
solver is then invoked with the assumptions A = {¬i3,¬i4, ⟨OI|Act ≤ 1⟩}. The query is
satisfiable, so MSU3 returns, e.g., bI = 1 and the solution τ c3 = {i2, d1, d2, d3, d4,¬i1,¬i3,
¬i4}. In the next iteration of BiOptSat, MSU3 is invoked with bD = 3 and bI = 1. The
set Act = {i1, i2} is kept from the previous iteration and the SAT solver is invoked with
A = {⟨OI|Act ≤ 1⟩, ⟨OD < 3⟩,¬i3,¬i4}. The query is unsatisfiable. Assume that the core
returned by the SAT solver is κ = {⟨OD < 3⟩, ⟨OI|Act ≤ 1⟩, i3, i4}. The literals i3 and i4
are marked as active, and the PB encoding is extended to PbCnf(OI|Act, 2). The next SAT
solver call with assumptions A = {⟨OI|Act ≤ 2⟩, ⟨OD < 2⟩} is satisfiable and MSU3 returns
bI = 2 and, e.g., τ o2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4}. In the last iteration, MSU3 is invoked
with bD = 2 and bI = 2. At this point Act = lit(OI) so the core found in the first SAT
solver invocation will only result in the PB encoding being extended to PbCnf(OI|Act, 3).
The next SAT solver invocation reports satisfiability, and the procedure returns bI = 3 and,
e.g., τ o3 = {i1, i3, i4, d2,¬i2,¬d1,¬d3,¬d4}.

3.2.4 OLL

The core-guided single-objective MaxSAT algorithm OLL (Andres, Kaufmann, Matheis,
& Schaub, 2012; Morgado et al., 2014; Ignatiev et al., 2019), applied in the context of
BiOptSat, iteratively reformulates the objective OI based on extracted cores in a way
that allows a minimum amount of cost to be incurred in future iterations. In more detail,
OLL maintains a reformulated objective OI-ref, initialized to OI. Each invocation of the
SAT solver is made under a set A = {¬l | l ∈ lit(OI-ref)} ∪ {⟨OD < bD⟩} of assumptions
consisting of the negation of the literals in OI-ref and a bound on the decreasing objective.
If a core κ is obtained and ¬⟨OD < bD⟩ is part of the core, ¬⟨OD < bD⟩ is removed
from the core so that κ ⊂ lit(OI-ref). A cardinality constraint CardCnf(κ) is built over
the literals in κ and OI-ref is updated by replacing the terms

∑
l∈κ coeff(OI-ref, l) · l with∑

l∈κ((coeff(OI-ref, l)−wmin
κ)·l)+

∑|κ|
i=2w

min
κ ·¬⟨κ < i⟩, where wmin

κ = min{coeff(OI-ref, l) |
l ∈ κ}. Conceptually, this reformulation step (i) decreases the coefficient in OI-ref for each
l ∈ κ by wmin

κ , and (ii) adds |κ| − 1 new literals that bound the number of literals in κ
assigned to 1 to the objective with coefficient wmin

κ . Note that the coefficient of at least one
literal l in κ is lowered to 0 in the reformulation, thus removing such l from the objective
and the assumptions in subsequent iterations. This essentially allows the SAT solver to
incur cost on l by assigning it to 1. Furthermore, adding ¬⟨κ < 2⟩ to the objective ensures
that assigning more than one literal to 1 incurs more cost. If the SAT solver query is on
the other hand satisfiable, the thereby obtained solution τ incurs no cost in OI-ref and thus

1240

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Algorithm 5 MSHybrid instantiation of Minimize-Inc

Input: Most recent bound bD on OD, known upper and lower bounds b and bI on constrained
minimum of OI.
Output: Solution τ and b = OI(τ) minimal under OD(τ) < bD.

1: if sum-coeff(OI|Act) < thr · sum-coeff(OI) then
2: (bI, τ)← MSU3(bD, bI) {Immediately terminates once threshold is met}
3: if sum-coeff(OI|Act) ≥ thr · sum-coeff(OI) then
4: fully build or extend PbCnf(OI, b) if necessary
5: (bI, τ)← SAT-UNSAT(bD, b)
6: return (bI, τ)

a minimum amount of cost in OI, and hence at this stage τ is returned as a solution with
minimum cost to OI and OD(τ) < bD.

Example 9. Let OI = 3 · i1+2 · i2+ i3 be the increasing objective of a bi-objective MaxSAT
instance. Consider invoking Minimize-Inc instantiated with OLL when solving such an
instance with BiOptSat. Assume that the first core discovered within OLL is κ = {i1, i2}.
OLL then adds CardCnf(κ) and the new reformulated objective is OI-ref = i1+ i3+2 ·¬⟨κ <
2⟩.

Similarly to MSU3, when instantiating Minimize-Inc with OLL, there is no single literal
that can be used to enforce OI(τ) ≤ bI in other parts of the BiOptSat algorithm. Instead,
enforcing all literals in the reformulated objective to 0 will also bound OI to at most bI.
This follows from the correctness of OLL for single-objective MaxSAT and an argument
very similar to the one we made in Proposition 1: when OLL finds a constrained minimum
bI, any Pareto-optimal solution τ o for which OI(τ

o) = bI has τ
o(l) = 0 for all l ∈ lit(OI-ref).

3.2.5 Hybrid Approaches MSHybrid and OSHybrid

The final two instantiations of Minimize-Inc we consider are hybrids that alternate
between the core-guided approaches and SAT-UNSAT. A similar approach of combining core-
guided and solution-improving search is known in single-objective MaxSAT solving as core-
boosted linear search (Berg, Demirovic, & Stuckey, 2019).

The first one, MSHybrid, combines MSU3 and SAT-UNSAT. The intuition underlying
MSHybrid is that if MSU3 reaches the stage where all literals of the objective are active,
its search will essentially degenerate to UNSAT-SAT, i.e., a lower-bounding search where the
bound on the PB encoding PbCnf(OI) is increased by one every iteration until the SAT
query is satisfiable.3 Intuitively, MSHybrid aims to avoid this “degeneration” by switching
to SAT-UNSAT instead when a considerable number of objective literals have become active.

With this intuition, we propose MSHybrid as a hybrid instantiation that starts with MSU3

search and switches to SAT-UNSAT as soon as a certain percentage of the literals in OI have
become active. Outlined in pseudocode as Algorithm 5, MSHybrid takes the last bound bD

3. Note that if a problem instance has literals in OI that never appear in any cores, i.e., that are not
constrained by F , these literals will never become active. As a result, MSU3 will behave similarly as
UNSAT-SAT on such instances, even before all literals are active.

1241

Jabs, Berg, Niskanen, & Järvisalo

on OD as well as the known upper b = OI(τ) and lower bounds bI on the minimum of OI as
input Additionally, MSHybrid employs a configuration parameter thr that defines at which
percentage of the objective OI being active the algorithm switches from MSU3 to SAT-UNSAT.
Initially MSHybrid executes MSU3 on line 2. If MSU3 finds the minimum without meeting
the threshold condition sum-coeff(OI|Act) ≥ thr · sum-coeff(OI), the found minimum bI
and a corresponding solution τ are returned on line 6. In case the threshold condition is
met during the execution of MSU3, it is immediately terminated. On line 4 the PB encoding
PbCnf(OI, k) is fully built from the existing PbCnf(OI|Act) and SAT-UNSAT is invoked on
line 5. From then on, every call to MSHybrid executes SAT-UNSAT on line 5.

Example 10. Consider the invocation of BiOptSat from Example 5. We detail the invo-
cations of Minimize-Inc instantiated as MSHybrid. Since MSHybrid starts out as MSU3, the
first invocation follows the description in Example 8. Assume that MSHybrid is configured
to switch as soon as 70% of OI is active (thr = 0.7). Since we have Act = {i1, i2} after the
first iteration of BiOptSat, less than 70% of the literals in OI are active, and so MSU3 is
again employed in the second invocation of MSHybrid. As soon as i3 and i4 become active,
with the first core in the second invocation of MSU3, the MSU3 subroutine is terminated since
the threshold for switching to SAT-UNSAT is reached. Since all literals in OI are already
active in this example and thereby included in PbCnf(OI|Act), the PB encoding does not
need to be extended. SAT-UNSAT can directly be invoked as in the second iteration outlined in
Example 6. In the third iteration of BiOptSat, MSHybrid will directly invoke SAT-UNSAT,
which proceeds as described in Example 6.

The second hybrid instantiation we consider is OSHybrid. Analogous to MSHybrid, which
first employs MSU3, OSHybrid first employs OLL, and later invokes SAT-UNSAT once a certain
portion of the literals in the original objective OI have been extracted in a core. More
precisely, in the context of OLL, we say that a literal l ∈ lit(OI) \ lit(OI-ref) is marked
active once its coefficient in OI-ref drops to 0 and gets removed. For both MSU3 and OLL, the
active literals are the ones that are not enforced to 0 by assumptions. OSHybrid operates
similarly to MSHybrid. When the fraction of active literals in lit(OI) increases above the
user-defined threshold thr, the following steps are taken: (i) OLL is terminated, (ii) a PB
encoding PbCnf(OI-ref) is built from the cardinality constraints constructed in OLL, and
(iii) SAT-UNSAT is invoked using the previously-built PbCnf(OI-ref). However, note that
MSHybrid and OSHybrid are conceptually different in that while SAT-UNSAT is invoked in
MSHybrid on the original objective OI, SAT-UNSAT is in OSHybrid instead invoked on the
reformulated objective OI-ref.

3.3 Incremental Pseudo-Boolean Encodings in BiOptSat

At this stage, it is apparent that, regardless of how Minimize-Inc is instantiated, BiOpt-
Sat makes extensive use of encodings of pseudo-Boolean constraints. Due to this, the
choice of how and when the pseudo-Boolean constraints are built can have a significant
impact on the performance of BiOptSat in practice. In the implementation reported on
in the preliminary conference version of this work (Jabs et al., 2022), the PB constraint
PbCnf(O) over an objective O was built by expanding each term c · l in O with c > 1
into c terms l + l + . . . + l. Conceptually, this reduced the PB constraint into a (larger)
cardinality constraint which was encoded with a CNF encoding for cardinality constraints.

1242

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Here we detail an improvement on this obtained via harnessing incremental PB encodings,
i.e., encodings that are incrementally built only to the extent necessary for each SAT solver
call within BiOptSat.

More formally, given an objective O, two subsets L ⊂ L′ ⊂ lit(O) and two bounds b1 <
b2, an encoding of a PB constraint is incremental if (a) PbCnf(O|L, b) ⊂ PbCnf(O|L′ , b)
and (b) PbCnf(O, b1) ⊂ PbCnf(O, b2). The use of incremental PB encodings allows for
invoking a SAT solver multiple times under different bounds on the PB constraint and
allowing the solver to retain its state between the invocations. This can have a positive
impact on the overall runtime of the SAT solver and hence also the empirical runtime
performance of BiOptSat.

We note that the use of incremental cardinality encodings is well-established (Martins,
Joshi, Manquinho, & Lynce, 2014a). However, the use of incremental PB constraints as a
generalization of cardinality constraints is less studied. Here we focus on the totalizer en-
coding for cardinality constraints (Bailleux & Boufkhad, 2003) and the generalized totalizer
encoding (Joshi et al., 2015) for the PB constraints employed in our current implementation
of BiOptSat. Both of these encodings can be viewed as binary trees. Each leaf of the
tree is associated with a distinct input literal of the encoding. The root is associated with
the set of output literals. An internal node N is associated with a set of auxiliary variables
that—informally speaking—count the number (in the case of the totalizer) or sum of coef-
ficients (in the case of the generalized totalizer) of the literals associated with the leaves of
the subtree rooted at N that are assigned to 1.

To understand the challenge in employing the generalized totalizer incrementally, we
need a more precise definition of the output literals. For a CNF formula CardCnf(L) over
a set L of literals produced by the totalizer encoding, and a bound k, first note that the
definition ⟨L < k⟩ →

∑
l∈L l < k of the output literals discussed in Section 2.3 is equivalent

to
∑

l∈L l ≥ k → ¬⟨L < k⟩. However, only a solution τ that assigns a subset of the literals
of L containing exactly k elements to 1 is guaranteed to assign ⟨L < k⟩ to 0. For cardinality
constraints, this also implies that any solution τ b that assigns a subset Lb ⊂ L containing
more than k literals to 1 will also assign ⟨L < k⟩ to 0. This is due to the fact that any such
Lb is guaranteed to contain another subset with exactly k literals.

However, the same reasoning does not hold for general PB constraints. Given an objec-
tive O and a bound k, we again have that any solution τ that assigns a subset of the literals
in lit(O) whose sum of coefficients add up to exactly k will assign ⟨O < k⟩ to 0. However,
in contrast to the case of cardinality constraints, as illustrated in the following example,
this does not imply that all solutions that satisfy a subset of literals with a larger sum of
coefficients would necessarily assign ⟨O < k⟩ to 0.

Example 11. Consider the objective O = b1 + b2 + 2 · b3 + 3 · b4 and the CNF formula
PbCnf(O) resulting from the generalized totalizer encoding. Any solution that assigns a
subset of lit(O) with sum-of-weights exactly 2 to 1 will also assign the literal ⟨O < 2⟩
to 0. These include the solutions {b1, b2,¬b3,¬b4}, {b1, b2, b3,¬b4} and {¬b1,¬b2, b3,¬b4}.
However, the solution τ = {¬b1,¬b2,¬b3, b4} need not assign ⟨O < 2⟩ to 0 even though
O(τ) = 4 > 2. Specifically, both τ ∪ {⟨O < 2⟩} and τ ∪ {¬⟨O < 2⟩} can be extended to
solutions of PbCnf(O).

1243

Jabs, Berg, Niskanen, & Järvisalo

To the best of our knowledge, previous work (Joshi et al., 2015) making use of the
generalized totalizer focuses on a static setting where a single bound B is to be enforced on
the PB expression O. In such a more restrictive setting the issue illustrated in Example 11
is circumvented by slightly altering the encoding by adding clauses that explicitly enforce
O ≥ k → ¬⟨O < B⟩ for all k ≥ B, and has been shown to be beneficial in practice (Joshi
et al., 2015). However, in BiOptSat we need the ability to increase the bound on the
PB constraint dynamically. Thus, for the purposes of potential runtime improvements for
BiOptSat, we propose an incremental extension of the generalized totalizer encoding4. For
this, we enforce a bound k on the coefficients of literals set to 1 not by the single literal
⟨O < k⟩, but instead by the set of literals {⟨O < k⟩, . . . , ⟨O < k + cmax⟩}, where cmax is
the largest coefficient among the coefficients of literals in O. The intuition here is that any
subset of the literals in lit(O) the coefficients of which sum up to more than k will contain
a subset of literals with sum of weights equal to a number between k and k + cmax.

In terms of specific instantiations of Minimize-Inc, for the OSHybrid variant, the fact
that the objective reformulation steps performed during OLL are instantiated with totalizers
is made use of when switching from the core-guided approach to SAT-UNSAT. When OSHybrid

terminates its core-guided phase, all cardinality constraints resulting from objective refor-
mulation are extended with the needed outputs that might not have been introduced yet
due to the use of incremental totalizers. When subsequently building a generalized totalizer
over the reformulated objective, the sets of outputs of totalizers are seen as internal nodes
rather than separate leaves. This saves on the number of clauses that need to be added
and—informally speaking—avoids building a sorting structure in the generalized totalizer
over the totalizer outputs that are already known to represent a sorted unary number.

4. Empirical Evaluation

We turn to an empirical evaluation of our implementation of the BiOptSat approach. All
experiments reported on in this section were run on 2.60-GHz Intel Xeon E5-2670 machines
with 64-GB RAM in RHEL under a 1.5-hour per-instance time and 16-GB memory limit.

4.1 Implementation and Competing Approaches

Our implementations of BiOptSat and the competing P -minimal and Seesaw approaches
are available in open source at https://bitbucket.org/coreo-group/bioptsat/. All of
our implementations use the state-of-the-art SAT solver CaDiCaL 1.5.2 (Biere, Fazekas,
Fleury, & Heisinger, 2020). We implemented all instantiations of BiOptSat described in
Section 3 in C++. Our implementations of MSU3 and OLL are inspired by their single-
objective MaxSAT implementations in Open-WBO v2.1 (Martins, Manquinho, & Lynce,
2014c). The other instantiations were implemented fully from scratch. Our implementa-
tions of the core-guided instantiations MSU3 and OLL as well as the hybrid instantiations
MSHybrid and OSHybrid make use of refinements commonly used in core-guided MaxSAT

4. We note that an incremental version of the sequential weight counter encoding (Hölldobler, Manthey, &
Steinke, 2012) has been proposed earlier (Martins, Joshi, Manquinho, & Lynce, 2014b). Our motivation
of an incremental version of the generalized totalizer encoding comes from the fact that the generalized
totalizer encoding has been shown to outperform the sequential weight counter encoding (Joshi et al.,
2015).

1244

https://bitbucket.org/coreo-group/bioptsat/

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

solving. Specifically, in addition to the use of incremental cardinality and pseudo-Boolean
encodings discussed in Section 3.3, we use a heuristic form of core minimization known
as core trimming (Ignatiev et al., 2019) during which we iteratively invoke the SAT solver
with assumptions corresponding to the extracted core in the hopes of it computing a smaller
core5. In OLL and OSHybrid, we also employ core exhaustion (Ansótegui, Bonet, Gabàs, &
Levy, 2013; Ignatiev et al., 2019) and weight-aware core extraction (Berg & Järvisalo, 2017)
as additional optimizations geared toward extracting cores that result in larger increases in
the lower bound. The hybrids MSHybrid and OSHybrid are configured to switch between
MSU3/OLL and SAT-UNSAT once 70% of OI is active. This particular value was chosen based
on preliminary experiments, with the aim of preventing the MSU3 search phase from “degen-
erating” into UNSAT-SAT-style search (recall Section 3.2.5). In the preliminary experiments,
the exact choice of the threshold value within reasonable scale did not appear to have a
significant impact on performance.

We compare the empirical performance of our implementation of BiOptSat to all of the
related approaches discussed in Section 2.6. For a fair comparison, we implemented both P -
minimal and Seesaw in C++ under the same code based as BiOptSat. For Seesaw, we use
CPLEX v20.10 for the hitting set computations in the experiments. As for Pareto-MCS and
CLM-LB/CLM-IHS, we use the implementations available at https://gitlab.ow2.org/

sat4j/moco and https://gitlab.inesc-id.pt/u001810/moco, respectively. Our main
focus in the empirical evaluation is on the tasks of computing the non-dominated set and
enumerating all Pareto-optimal solutions. However, we also include in the comparison the
recently-proposed SAT-based leximax solver leximaxIST (Cabral et al., 2022) downloaded
from https://github.com/miguelcabral/leximaxIST, although it should be noted that
leximaxIST is only applicable to the arguably easier task of computing a leximax-optimal
solution.

4.2 Benchmarks

We used four bi-objective benchmark domains in the empirical evaluation. In addition to
three specific bi-objective problem domains (learning interpretable decision rules from data,
bi-objective set covering, and package upgradeability), we reverse-engineered bi-objective
optimization problem instances from single-objective MaxSAT instances originally submit-
ted to the MaxSAT Evaluation (Bacchus, Järvisalo, & Martins, 2019) between 2006 and
2019 which actually encode a linear combination of two separate objectives. Beyond the
following descriptions of the benchmarks, summary statistics for the number of variables
and clauses as well as the objective weights are provided in Appendix A. The benchmarks
are available at https://bitbucket.org/coreo-group/bioptsat/src/master/jair24.

4.2.1 Learning Interpretable Decision Rules

A variety of (Max)SAT-based approaches have recently been proposed for the intrinsically
bi-objective problem of learning interpretable classifiers from data (Jin & Sendhoff, 2008;
Malioutov & Meel, 2018; Narodytska et al., 2018; Ignatiev et al., 2018; Hu et al., 2020; Yu
et al., 2021; Ignatiev et al., 2021; Ghosh et al., 2022). The two (conflicting) objectives are

5. In preliminary tests, we found that a complete core minimization procedure that iteratively tries to
remove each variable in the core would be too expensive.

1245

https://gitlab.ow2.org/sat4j/moco
https://gitlab.ow2.org/sat4j/moco
https://gitlab.inesc-id.pt/u001810/moco
https://github.com/miguelcabral/leximaxIST
https://bitbucket.org/coreo-group/bioptsat/src/master/jair24

Jabs, Berg, Niskanen, & Järvisalo

the classification error and the classifier size, the latter as a proxy for the interpretability of
the classifier. As a representative of these types of bi-objective optimization problems, we
consider learning of interpretable decision rules (LIDR) (Malioutov & Meel, 2018) where
the classifier is a CNF formula over Boolean features. Previous work (Malioutov & Meel,
2018) considered the problem of computing individual non-dominated points of the size and
error objectives by reducing the problem into a single-objective optimization problem with
a method similar to the weighted sum method (recall Section 2.5). While the approach
can be used for computing individual Pareto-optimal solutions, it offers no guarantees on
finding all non-dominated points. Here we instead consider the more general problem of
computing the entire non-dominated set in a structured manner, treating the two objectives
separately, which gives rise to proper bi-objective MaxSAT instances.

In more detail, a data sample x = [x1, . . . , xm] over m binary features can be seen
as a truth assignment over m variables {s1, . . . , sm} that assigns x(sj) = xj . Similarly,
a CNF formula R over the variables {s1, . . . , sm} can be viewed as a Boolean classifier
over such samples that assigns the class x(R) to the sample x. Such classifiers are called
decision rules. A LIDR benchmark based on a given a set {(xi, yi) | i = 1, . . . , n} of n
data samples xi, each associated with a known Boolean class yi, is a bi-objective MaxSAT
problem I = (F,OI, OD) obtained using the encoding from (Malioutov & Meel, 2018).6

Each solution τ to I maps to a decision rule Rτ for which OI(τ) matches the size of Rτ

measured as the total number of variables in Rτ . Furthermore, OD(τ) is the classification
error, i.e., the number of data samples xi that Rτ does not assign the class yi to.

When enumerating multiple solutions corresponding to the same non-dominated point,
stronger domain-specific blocking clauses are employed: we identify a subset of the literals
in the MaxSAT problem that uniquely define the decision rule Rτ that a solution τ of the
bi-objective MaxSAT instance corresponds to, and block each solution by negating only
those literals. Furthermore, since BiOptSat enumerates the Pareto-optimal solutions in a
known order, it is enough to block variables assigned to 0 in the found solution.

We generated the LIDR instances using 24 UCI (Dua & Graff, 2021) and Kaggle (https:
//www.kaggle.com) benchmark datasets, including ones used in the original evaluation of the
base MaxSAT encoding (Malioutov & Meel, 2018), with the encoding configured to learn
CNF decision rules consisting of two clauses. More details on the datasets are provided
in Appendix B. We independently at random sampled subsets of n ∈ {50, 100, 1000, 5000,
10000} data samples from the datasets, four of each size (given that the original dataset
contained at least as many samples). This resulted in a total of 372 datasets. The datasets
were discretized following (Malioutov & Meel, 2018): categorical features were one-hot
encoded and continuous features discretized by comparing to a collection of thresholds.

4.2.2 Bi-Objective Set Covering

An instance of the bi-objective set covering problem consists of a ground set N = {1, . . . , n}
and a collection S of subsets of N with each element e ∈ N assigned two weights ce1, c

e
2.

A cover C of S is a subset of N that intersects with each s ∈ S. We consider the problem

6. As an implementation detail, we extended the base encoding from (Malioutov & Meel, 2018) by breaking
symmetries that arise from the encoding imposing a lexicographic ordering on the clauses of the decision
rules being learned. The symmetries in the base encoding result in two rules R1 and R2 containing the
same clauses in different orders being unnecessarily considered distinct.

1246

https://www.kaggle.com
https://www.kaggle.com

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

of computing the covers of S that are Pareto-optimal with respect to the two objectives
c1(C) =

∑
e∈C c

e
1 and c2(C) =

∑
e∈C c

e
2, following the original work describing the P -minimal

approach (Soh et al., 2017). We encode the covering problem into bi-objective MaxSAT
using the standard way of encoding set covering in propositional logic: for each set s ∈ S,
introduce the clause {ve | e ∈ S}, where ve is an indicator variable representing whether
element e is in C. The two objectives are OI =

∑
e c

e
1 · ve and OD =

∑
e c

e
2 · ve.

We generated two types of bi-objective set covering problem instances.

SC-EP: instances were generated by enforcing a fixed probability p for an element appear-
ing in a set.

SC-SC: instances were generated by enforcing fixed set cardinality s, with elements in a
set chosen uniformly at random without replacement.

Both types of set covering instances were generated using combinations of the following
parameters: number of elements n ∈ {100, 150, 200}, number of sets m ∈ {20, 40, 60, 80},
element probability p ∈ {0.1, 0.2} and set cardinality s ∈ {5, 10}. For each parameter
combination, we generated five instances, leading to a total of 120 instances of each type.
The integer cost values c for the two objectives were chosen uniformly at random from the
range c ∈ [1, 100].

4.2.3 Package Upgradeability

The package upgradeability problem deals with automated package management of software
packages in operating systems, with the goals of satisfying user requests and maintaining
a consistent state of packages regarding their dependencies and conflicts. A user may also
have preferences regarding how much their system is allowed to change in order to fulfil
the specified request. PackUP (Janota et al., 2012) provides a Boolean encoding for the
package upgradeability problem under five optional minimization objectives: the number
of newly installed, removed, changed, and outdated packages, as well as the number of
unmet recommendations. We used PackUP to generate instances based on 142 package
upgradeability instances from Mancoosi International Solver Competition 2011 (https://
www.mancoosi.org/misc-2011/). For bi-objective instances, we consider all pairs out of the 5
objectives, which led to 1057 instances after removing duplicates and instances with empty
objectives.

4.2.4 Bi-objective Problems from MaxSAT Lib

As a basis for further bi-objective instances, we considered benchmark instances submit-
ted to MaxSAT Evaluation (Bacchus et al., 2019) between 2006 and 2018, obtained from
MaxSAT Lib (http://www.cs.toronto.edu/maxsat-lib/maxsat-instances/). In particular,
we used the algorithm described by Paxian, Raiola, and Becker (2021) to detect whether
the single objective O of each MaxSAT Lib instance (F,O) is of the form O = OD + λ ·OI

for some constant λ > sum-coeff(OD). Such instances are single-objective encoded lex-
icographic optimization instances (employing the weighted sum method) based on origi-
nally bi-objective problem instances. For our evaluation we reverse-engineered each such
instance into a true bi-objective MaxSAT instance (F,OI, OD). We included in the bench-
mark set all MaxSAT Lib families for which each instance could be reverse engineered

1247

https://www.mancoosi.org/misc-2011/
https://www.mancoosi.org/misc-2011/
http://www.cs.toronto.edu/maxsat-lib/maxsat-instances/

Jabs, Berg, Niskanen, & Järvisalo

into a multi-objective instance with exactly two objectives. This resulted in a total of 254
bi-objective instances based on six MaxSAT Lib families: spot5, drmx-atmostk (am-k),
drmx-cryptogen, haplotyping-pedigrees (hap-ped), protein ins (prot), and frb (see
Appendix C for more details on the instances).

4.3 Results

We turn to a detailed overview of our empirical results. We start with a performance com-
parison of BiOptSat and its direct competitors on the task of discovering one represen-
tative Pareto-optimal solution for each non-dominated point. Subsequently, we empirically
analyze the best-performing BiOptSat instantiation in more detail.

4.3.1 Performance Comparison

Table 1 shows the number of solved instances per benchmark domain for all six instantiations
of BiOptSat and all considered competing approaches. Furthermore, Table 2 lists the
normalized PAR-2 scores for each solver.7 The MaxSAT Lib families drmx-cryptogen

and frb are excluded from the results as none of the solvers solved any instances from
these families under the 1.5-h per-instance time limit. The best-performing approach for
computing the entire non-dominated set per benchmark domain is highlighted in bold. We
stress again that here the leximaxIST solver is instead computing a single leximax -optimal
solution, hence solving a simpler problem than the other solvers; the results for leximaxIST
are thereby not directly comparable to those for the other solvers. Overall, Pareto-MCS,
Seesaw8, and CLM-IHS are not competitive with P -minimal, CLM-LB, and BiOptSat,
each solving significantly fewer instances from each of the benchmark domains.

For the LIDR domain, all instantiations of BiOptSat solve more instances than P -
minimal and CLM-LB, the best-performing competitors of the approaches that find the
entire non-dominated set. As can be observed from the runtime distributions in Figure 3
and the PAR-2 scores in Table 2, the performance difference between BiOptSat and P -
minimal is relatively small, but especially the SAT-UNSAT instantiation clearly outperforms
P -minimal, by more than 1000 seconds on the hardest instances.

Turning to set covering, we observe that the SAT-UNSAT and hybrid instantiations of
BiOptSat outperform P -minimal and CLM-LB on both types of set covering instances.
With the runtime distributions shown in Figure 4, we observe that the OSHybrid instantia-
tion performs notably well on the SC-SC domain, solving > 11 % more instances than the
second-best performing approach.

On the PackUP benchmark domain, all BiOptSat instantiations outperform CLM-
LB. The MSU3 and MSHybrid BiOptSat instantiations also solve more instances than P -
minimal. However, by considering the PAR-2 scores, we observe that all BiOptSat instan-
tiations score better than P -minimal, suggesting that BiOptSat solves the instances faster.

7. The normalized PAR-x score of a solver on a benchmark domain is obtained by summing the total
runtime (in seconds) of the solver over all solved instances, adding x times the timeout of 5 400 seconds
(i.e. 10 800 seconds for x = 2) for each instance on which the solver was unable to find all non-dominated
points within the 1.5-h timeout, and dividing the result by the number of instances in the domain.

8. In the case of Seesaw, one should here note that the framework was primarily developed for capturing
settings where one objective cannot be encoded directly but needs to be treated as a black box. Since
here both objectives are directly encoded, these potential benefits of the framework do not apply here.

1248

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Set Covering MaxSAT Lib

Domain LIDR SC-EP SC-SC PackUP spot5 hap-ped am-k prot

Inst. 371 120 120 1057 32 100 36 11

SAT-UNSAT 222 94 42 846 20 21 24 11
UNSAT-SAT 222 89 38 846 20 21 23 11
MSU3 221 89 38 848 18 22 23 11
OLL 221 73 41 847 24 22 23 11
MSHybrid 222 94 42 848 16 22 24 11
OSHybrid 222 90 47 847 10 21 23 11

P -minimal 220 89 40 846 20 23 23 11

CLM-LB 185 93 43 819 5 19 1 0
CLM-IHS 86 86 39 626 4 7 0 0

Seesaw 135 60 39 204 6 18 0 2

Pareto-MCS 34 0 0 277 0 1 0 0

leximaxIST 220 52 42 962 8 23 18 11

Table 1: Solved instances by approach and benchmark domain.

Set Covering MaxSAT Lib

Domain LIDR SC-EP SC-SC PackUP spot5 hap-ped am-k prot

SAT-UNSAT 4434 2872 7358 2201 4122 8610 3730 182
UNSAT-SAT 4453 3149 7567 2188 4166 8582 3996 518
MSU3 4484 3171 7584 2159 4839 8483 4002 389
OLL 4478 4823 7385 2168 2822 8509 4072 102
MSHybrid 4439 2844 7293 2161 5465 8506 3746 158
OSHybrid 4437 3294 6870 2173 7464 8575 3992 101

P -minimal 4531 3578 7583 2212 4105 8408 4032 161

CLM-LB 5502 2872 7156 2563 9183 8771 10583 10800
CLM-IHS 8386 3660 7527 4494 9450 10071 10800 10800

Seesaw 6980 5981 7711 8717 8779 8900 10800 8853

Pareto-MCS 9832 10800 10800 8012 10800 10800 10800 10800

leximaxIST 4513 6889 7423 987 8254 8395 5411 386

Table 2: Normalized PAR-2 scores by approach and benchmark domain.

1249

Jabs, Berg, Niskanen, & Järvisalo

0 1 2 3 4

·103

0

50

100

150

200

5.4

222

cpu time (s)

#
in

st
an

ce
s

so
lv

ed

SAT-UNSAT
OSHybrid
MSHybrid
UNSAT-SAT

OLL
MSU3

leximaxIST
P -minimal
CLM-LB
Seesaw

CLM-IHS
Pareto-MCS

0 1 2 3 4

·103

190

200

210

5.4

222

cpu time (s)

Figure 3: Solver runtime distributions on the LIDR benchmark domain.

0 1 2 3 4

·103

0

20

40

60

80

5.4

94

cpu time (s)

#
in

st
an

ce
s

so
lv

ed

SetCovering-EP

0 1 2 3 4

·103

0

10

20

30

40

5.4

47

cpu time (s)

SetCovering-SC

OSHybrid
CLM-LB
MSHybrid
SAT-UNSAT

OLL
leximaxIST
CLM-IHS
UNSAT-SAT
P -minimal

MSU3
Seesaw

Figure 4: Solver runtime distributions on the set covering benchmark domains.

1250

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

0 1 2 3 4

·103

0

200

400

600

800

5.4

962

cpu time (s)

#
in

st
an

ce
s

so
lv

ed
leximaxIST

MSU3
MSHybrid

OLL
OSHybrid
UNSAT-SAT
SAT-UNSAT
P -minimal
CLM-LB
CLM-IHS

Pareto-MCS
Seesaw

0 1 2 3 4

·103

835

840

845

5.4
830

848

cpu time (s)

Figure 5: Solver runtime distribution on the PackUP benchmark domain.

This can also be observed in the runtime distributions shown in Figure 5: all BiOptSat
instantiations clearly outperform P -minimal up to a runtime limit of about 4000 seconds.

Turning to the reverse engineered bi-objective instances from MaxSAT Lib, on the
hap-ped, am-k, and prot families the performance of the BiOptSat instantiations and
P -minimal is very similar. The runtime distributions for each of the families are shown in
Figure 6. On the spot5 family, the two hybrid instantiations of BiOptSat are outperformed
by the other BiOptSat instantiations and P -minimal. On the other hand, BiOptSat
outperforms CLM-LB on each of the families.

The percentage of instances on which the hybrid variants MSHybrid and OSHybrid of
BiOptSat switch to SAT-UNSAT varies significantly between the benchmark domains. On
SC-EP, spot5, am-k, prot both hybrids switch to SAT-UNSAT on almost all solved instances.
On hap-ped both hybrids switch on almost no instance. For the remaining domains, both
MSHybrid (that uses MSU3 as the core-guided component) and OSHybrid (that uses OLL)
switched on similar percentages of solved instances: ∼ 77% (LIDR), ∼ 53% (SC-SC), and
∼ 16% (PackUP) of solved instances.

Turning to comparing BiOptSat to leximaxIST, recall again that leximaxIST is specific
to the task of computing a single leximax-optimal solution. This task is arguably easier
than the tasks of computing a single representative solution for each non-dominated point.9

However, comparing the runtime performance of BiOptSat on the more general task of
enumerating the entire non-dominated set to the runtime performance of leximaxIST on
the task of computing a single leximax-optimal solution (see Tables 1–2 and Figures 3–5)
we observe that, on all but the PackUP and the hap-ped benchmark domains, at least one
and often most of the BiOptSat instantiations are able to find a representative solution
for all elements of the non-dominated set—and thus also a leximax-optimal solution—for
more instances than leximaxIST can find a single leximax-optimal solution for.

9. What comes to BiOptSat, note that given a representative Pareto-optimal solution for each non-
dominated point, the one(s) with the smallest maximum objective value is (are) leximax-optimal. As
such BiOptSat, can also be used for computing a leximax-optimal solution by simply enumerating the
entire non-dominated set and returning one of the found solutions that obtains the smallest maximum
objective value.

1251

Jabs, Berg, Niskanen, & Järvisalo

0 1 2 3 4

·103

0

5

10

15

20

5.4

24

cpu time (s)

#
in

st
an

ce
s

so
lv

ed

spot5

0 1 2 3 4

·103

0

5

10

15

20

5.4

23

cpu time (s)

#
in

st
an

ce
s

so
lv

ed

hap-ped

0 1 2 3 4

·103

0

5

10

15

20

5.4

24

cpu time (s)

#
in

st
an

ce
s

so
lv

ed

am-k

0 1 2 3 4

·103

0

2

4

6

8

10

5.4

11

cpu time (s)

#
in

st
an

ce
s

so
lv

ed

prot

OSHybrid
OLL

MSHybrid
P -minimal
SAT-UNSAT

leximaxIST
MSU3

UNSAT-SAT
Seesaw

CLM-LB
CLM-IHS

Figure 6: Solver runtime distributions on the MaxSAT Lib benchmark families.

4.3.2 Detailed Analysis of the Best-performing BiOptSat Instantiation

Finally, we provide more detailed empirical analysis on the MSHybrid instantiation of
BiOptSat. In the remaining of this section we will refer to BiOptSat instantiated with
MSHybrid simply by BiOptSat. Since a detailed analysis of each of the six instantia-
tions would consume significant computational resources, we chose to focus on MSHybrid

based on the observation that it solved the most instances on most of the benchmark do-
mains. Specifically, we provide (i) a detailed comparison of BiOptSat with P -minimal
and leximaxIST, (ii) details on how much time BiOptSat spends in on the two subrou-
tines Minimize-Inc and Sol-Impr-Search, (iii) an overview of the overhead incurred when
enumerating all Pareto-optimal solutions compared to enumerating one representative per
non-dominated point, and (iv) discussion on the impact of directly encoding PB constraints
as CNF compared to expanding them into cardinality constraint (recall Section 3.3) as the
main difference between the current implementation of BiOptSat and the one presented
in the preliminary version of this work (Jabs et al., 2022).

For a comparison of the per-instance runtimes of BiOptSat with P -minimal, CLM-
LB and leximaxIST, respectively, see Figure 7. (Similar comparisons individually between
BiOptSat in the MSHybrid variant and CLM-IHS, Seesaw, and Pareto-MCS are provided in

1252

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

10 100 1 000
10

100

1 000

5 400

5 400

P -minimal (s)

B
iO

pt
Sa

t
(M

SH
yb

ri
d)

(s
)

10 100 1 000 5 400

CLM-LB (s)
10 100 1 000 5 400

leximaxIST (s)

PackUP LIDR SC-EP SC-SC spot5 hap-ped am-k prot

Figure 7: Runtime comparisons of BiOptSat instantiated with MSHybrid and (left) P -
minimal, (middle) CLM-LB, (right) leximaxIST.

Appendix D.) BiOptSat outperforms P -minimal on all domains apart from the MaxSAT
Lib family spot5. Overall, BiOptSat solves 18 instances that P -minimal is unable to
solve, while the converse holds for 10 instances. CLM-LB outperforms BiOptSat on the
set covering domains, while BiOptSat is significantly more efficient at solving PackUP and
LIDR instances. Overall, CLM-LB solves only 5 instances that BiOptSat does not solve
while the converse holds for 128 instances. Compared to leximaxIST, BiOptSat performs
significantly better on both set covering domains. BiOptSat solves 68 instances that lex-
imaxIST is unable to solve. This is especially notable for the benefit of BiOptSat since,
again, BiOptSat computes one solution for each non-dominated point while leximaxIST
only computes a single leximax-optimal solution. Excluding PackUP, which is the bench-
mark domain leximaxIST was originally evaluated on (Cabral et al., 2022), there were only
11 instances for which leximaxIST was able to compute a single leximax-solution while on
which BiOptSat was not able to compute a solution for each non-dominated point.

Turning to analyzing the internal runtime behavior of BiOptSat, Figure 8 (left) pro-
vides a per-instance comparison of the time BiOptSat spends in each of the two subroutines
Minimize-Inc (minimizing the “increasing objective”) and Sol-Impr-Search (minimizing
the “decreasing objective”). For most domains, a clear majority of the runtime is spent in
one of the subroutines, but the subroutine in question clearly depends on the benchmark
domain. For LIDR, PackUP and spot5 more time is spent in the Sol-Impr-Search routine
while for the other domains the majority of the time is spent in the Minimize-Inc routine.
This suggests investigating potential instance-specific heuristics for deciding which objec-
tive to treat as increasing and decreasing. In an attempt to understand how the choice of
which objective to treat as the increasing and decreasing affects runtimes of BiOptSat, we
ran all instances with the objectives switched. We found that the performance BiOptSat
is in fact relatively robust in terms of how the objectives are treated: the number of solved
instances varied only by 20 between the virtual best and worst objective choice per instance.

Figure 8 (right) provides a per-instance runtime comparison of using BiOptSat for the
tasks of finding (i) a single representative solution per non-dominated point and (ii) all

1253

Jabs, Berg, Niskanen, & Järvisalo

10 100 1 000
10

100

1 000

5 400

5 400

Minimize-Inc (s)

So
lu

ti
on

-I
mp

ro
vi

ng
-S

ea
rc

h
(s

)

10 100 1 000
10

100

1 000

5 400

5 400

single representative (s)

al
lr

ep
re

se
nt

at
iv

es
(s

) PackUP
LIDR
SC-EP
SC-SC
spot5

hap-ped
am-k
prot

Figure 8: Left: Time (in seconds) spent in the Minimize-Inc and Sol-Impr-Search sub-
routines. Right: Runtime comparison for enumerating a single representative per
non-dominated point or all Pareto-optimal solutions. Both for the MSHybrid in-
stantiation of BiOptSat.

Pareto-optimal solutions. Overall, the enumeration of all Pareto-optimal solutions could
be achieved for 38% of the instances for which the non-dominated set could be discovered.
However, the additional overhead incurred by enumerating all Pareto-optimal solutions
(compared to a single representative solution per non-dominated point) strongly depends on
the benchmark domain. Out of the 990 instances for which not all Pareto-optimal solutions
could be enumerated, 921 are from the PackUP and 24 from the am-k domain. In contrast,
for LIDR, set covering, and the prot family of MaxSAT Lib, enumerating all Pareto-optimal
solutions is achieved by BiOptSat with relatively minor overhead. We note that, interest-
ingly, the domain-specific blocking clauses (recall Section 4.2) applicable in BiOptSat in
the LIDR domain turned out to be crucial for enumeration of all Pareto-optimal decision
rules. In fact, without domain-specific blocking full enumeration was possible for only nine
instances. This suggests that specific domain knowledge when available has high poten-
tial for speeding up BiOptSat in full enumeration of all Pareto-optimal solutions in other
problems domains as well.

Turning to the runtime impact of the choice of PB encodings in BiOptSat (recall Sec-
tion 3.3), Figure 9 (left) provides a per-instance runtime comparison of BiOptSat when
employing the totalizer cardinality encoding (as earlier implemented in BiOptSat) and the
generalized totalizer PB encoding described in Section 3.3. Overall, employing the gener-
alized totalizer appears to be often a better choice than employing the totalizer cardinality
encoding. The generalized totalizer leads to a significant speed-up in particular on the set
covering benchmarks. Note that in the other benchmark domains apart from set covering,
objective coefficients of terms are small (see Table 3 in Appendix A for details). It seems
reasonable to assume that the generalized totalizer PB encoding will not provide significant
improvements over the totalizer cardinality encoding on such benchmarks. On the PackUP
domain, all instances of which have small objective coefficients (up to a maximum of four),
the generalized totalizer results in an overall runtime overhead on some of the relatively
easy-to-solve instances in the lower left-hand side of Figure 9 (left). This may be due to an

1254

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

10 100 1 000
10

100

1 000

5 400

5 400

totalizer (s)

ge
ne

ra
liz

ed
to

ta
liz

er
(s

)

10 100 1 000
10

100

1 000

5 400

5 400

without lazy PbCnf(OD) building (s)

w
it

h
la

zy
P

bC
nf

(O
D
)

bu
ild

in
g

(s
)

PackUP
LIDR
SC-EP
SC-SC
spot5

hap-ped
am-k
prot

Figure 9: Performance impact of using the generalized totalizer PB encoding (left) and
lazily building the PB encoding over the decreasing objective (right).

overhead incurred from initially building the more complicated generalized totalizer PB en-
coding. In contrast, the objective coefficients are more varied in the set covering instances,
allowing for BiOptSat gaining more in performance from employing the generalized total-
izer PB encoding. Expectedly, the performance improvement due to using a PB encoding
on the set covering domains is likely to translate to other domains containing objectives
with highly varying coefficients.

Finally, we note that preliminary work on BiOptSat (Jabs et al., 2022; Jabs, 2022) con-
sidered an approach of lazily building the totalizer cardinality encoding over the decreasing
objective in the core-guided BiOptSat instantiations if the two objectives share literals. It
turns out that by employing the generalized totalizer PB encoding described in Section 3.3
this refinement has much less of an impact. In detail, Figure 9 (right) shows the impact
of this refinement for the MSHybrid instantiation when employing the generalized totalizer
encoding. When employing the totalizer cardinality encoding, lazily building the encoding
over the decreasing objective had a positive impact, especially on the SC-SC domain (as
reported by Jabs et al. (2022, Section 3.3 and Figure 5) and Jabs (2022, Section 4.3.1 and
Figure 5.7)), a similar positive effect is not observed when employing the generalized total-
izer PB encoding. This suggests that the performance improvements previously gained by
lazily building the encoding over the decreasing encoding can also be achieved by employing
a PB encoding instead of expanding the objective into a cardinality constraint.

5. Related Work

Before conclusions, we discuss further related work, adding on what was covered in the
previous sections and in particular in Sections 1–2.

SAT-based approaches have previously been developed for computing lexicographically
optimal solutions by reducing the problem into single-objective MaxSAT (Argelich, Lynce,
& Silva, 2009; Marques-Silva et al., 2011). Many modern MaxSAT solvers exploit properties
of instances encoded by the weighted sum method to improve search efficiency (Ansótegui,

1255

Jabs, Berg, Niskanen, & Järvisalo

Bonet, Gabàs, & Levy, 2012; Paxian et al., 2021). In contrast—and while BiOptSat can
also be employed for finding leximax-optimal solutions via early termination—we focus
on the more generic setting of computing the non-dominated set and its representative
solutions.

Beyond SAT-based approaches, multi-objective optimization has been studied in the
context of other declarative optimization paradigms. An early algorithm used in constraint
programming (Rossi et al., 2006) is based on the lexicographic method (Wassenhove &
Gelders, 1980; Marler & Arora, 2004). A branch-and-bound-based algorithm that outper-
forms the previous algorithm was presented later (Gavanelli, 2002). This improved filtering
algorithm was improved again by the Pareto constraint (Schaus & Hartert, 2013; Hartert
& Schaus, 2014). The resulting search algorithm is similar to Pareto-MCS in that it main-
tains a set T of solutions that do not dominate each other. When a new solution is found,
any solution it dominates is removed from T . Constraint programming approaches have
also been proposed for finding lexicographically and leximax-optimal solutions (Ehrgott &
Gandibleux, 2000; Argelich et al., 2009; Bouveret & Lemâıtre, 2009; Marques-Silva et al.,
2011). The leximax optimization approaches developed include ones based on branch-and-
bound and others based on adding constraints to encode the sorted objective value (Bou-
veret & Lemâıtre, 2009). Multi-objective optimization has also been studied in the context
of linear programming, mixed integer programming and zero-one-programming (Ehrgott,
2005; Rasmussen, 1986; Alves & Cĺımaco, 2007). The underlying algorithmic approaches
considered include ones based on Simplex (Evans & Steuer, 1973; Ehrgott, 2005), branch-
and-bound (Santis, Eichfelder, Niebling, & Rocktäschel, 2020; Adelgren & Gupte, 2022),
as well as some based on reducing the problem of finding a Pareto-optimal solution to
single-objective mixed integer programming (Soland, 1979; Sun, 2017; Lu, Mizuno, & Shi,
2020).

Beyond exact approaches, incomplete search algorithms for multi-objective optimization
have also been proposed (Zitzler & Thiele, 1998; Dubois-Lacoste, López-Ibáñez, & Stützle,
2012, 2015; Jaszkiewicz, 2018; Saini & Saha, 2021). In contrast to exact approaches (in-
cluding the one we developed in this work), incomplete approaches are not guaranteed
to return the exact non-dominated set, and instead aim to return a set of solutions that
dominates as many of the solutions of the instance as possible under given resource lim-
its. Literature on incomplete optimization algorithms is vast; for a survey, see e.g. (Saini &
Saha, 2021). Incomplete algorithms that have been extended to multiple objectives include,
e.g., Pareto local search (Dubois-Lacoste et al., 2012, 2015; Jaszkiewicz, 2018), simulated
annealing (Kirkpatrick, Gelatt Jr., & Vecchi, 1983; Bandyopadhyay, Saha, Maulik, & Deb,
2008; Sengupta & Saha, 2018), and evolutionary algorithms (Dasgupta & Michalewicz,
1997; Storn & Price, 1997; Zitzler & Thiele, 1998; Deb, Agrawal, Pratap, & Meyarivan,
2002). All three of these categories of algorithms can be described as “local search style”,
where one or more solutions are iteratively modified to find better solutions.

6. Conclusions

We presented BiOptSat, an approach to exact bi-objective optimization under Pareto-
optimality. The structured search of BiOptSat builds on algorithms for MaxSAT and
makes incremental use of a SAT solver. BiOptSat allows for both finding the non-

1256

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

dominated set (with a representative solution for each element) and enumerating all Pareto-
optimal solutions of NP-hard bi-objective optimization problems encoded in propositional
logic. Furthermore, the first solution the approach finds is guaranteed to be lexicograph-
ically optimal. BiOptSat constitutes an algorithmic framework that can be instantiated
in multiple ways. We detailed four instantiations of BiOptSat that are based on indi-
vidual SAT-UNSAT/UNSAT-SAT and core-guided algorithms proposed for MaxSAT, as
well as two novel hybrids between core-guided and SAT-UNSAT search. We provided an
open-source implementation of all six instantiations. We empirically evaluated our imple-
mentation of BiOptSat on four well-motivated application settings of bi-objective opti-
mization, comparing its performance to that of previously-proposed approaches solving the
same problem setting. In the experiments, the hybrid MSHybrid instantiation of BiOpt-
Sat outperformed both all the five other instantiations of BiOptSat and each of its direct
competitors. We also detailed the use of incremental PB encodings, which in the context of
BiOptSat turned out to be a significant factor in improving the runtime performance of the
approach, which we showed also empirically for the best-performing MSHybrid instantiation.

There are various possibilities for further work towards potential further practical im-
provements. For example, we based BiOptSat on combinations of solution-improving and
core-guided MaxSAT approaches. The question of whether recent developments in branch-
and-bound style MaxSAT solving (Li, Xu, Coll, Manyà, Habet, & He, 2021) could be
integrated into the framework remains open. Secondly, the potential of employing recently-
developed incremental MaxSAT solving techniques (Niskanen, Berg, & Järvisalo, 2021,
2022) for speeding up BiOptSat search further could be studied. Towards more fine-
grained improvements, evaluating the practical impact of different heuristic choices within
the BiOptSat subroutines, such as core minimization in the context of core-guided search,
might provide further insights. Finally, extending BiOptSat to multi-objective optimiza-
tion beyond two objectives remains a non-trivial challenge from the practical perspective.

Acknowledgments

Work financially supported by Academy of Finland under grants 322869, 328718, 342145,
and 356046. The authors wish to thank the Finnish Computing Competence Infrastructure
(FCCI) for supporting this project with computational and data storage resources.

Appendix A. Benchmark Statistics

Table 3 provides for each benchmark family the minimum, median, and maximum values
of the number of variables and the number of clauses; and the minimum, maximum, and
median of the weights over both objectives and the number of unique weights.

Appendix B. LIDR Datasets

Table 4 provides a summary of the datasets based on which the LIDR benchmark were
generated, including their origin, number of data samples (# samp.), number of features
before (# feat.) and after (# disc. feat.) discretization, and the sizes of the resulting bi-
objective MaxSAT instances in terms of number of clauses (# cls) and number of variables

1257

Jabs, Berg, Niskanen, & Järvisalo

Family # Inst. # Variables # Clauses OI Weight OD Weight

min med max min med max # uniq min med max # uniq min med max

LIDR 371 168 2116 736k 341 7718 11M unit coefficients unit coefficients
SC-EP 120 86 150 200 20 50 80 100 1 51 100 100 1 51 100
SC-SC 120 57 120 200 20 50 80 100 1 51 100 100 1 51 100
PackUP 1057 364 7199 21k 1243 38k 127k 3 1 1 4 3 1 1 4
spot5 32 101 609 3004 427 7532 37k 3 1 1 5 2 1 2 2
am-k 36 181 505 3013 381 1474 4422 unit coefficients unit coefficients
drmx-cryptogen 40 1600 10k 23k 7244 36k 79k unit coefficients unit coefficients
hap-ped 100 62k 172k 216k 275k 1.1M 4.1M unit coefficients unit coefficients
prot 11 171 2236 3016 13k 2.1M 3.8M unit coefficients unit coefficients
frb 35 60 325 760 601 11k 42k unit coefficients unit coefficients

Table 3: Benchmark family summary statistics: minimum (min), median (med), maximum
(max), and unique values for the number of variables and clauses as well as mini-
mum, median and maximum objective weights and the number of unique weights.

Dataset Origin # samp. # feat. # disc. feat. # cls (103) # vars (103)

Adult UCI 32 561 14 144 635 98.1
Bank Marketing UCI 45 211 16 88 1329 136
Banknote Authentication UCI 372 4 16 6.67 4.16
Connect 4 UCI 67 557 42 126 2052 203
Default of Credit Card Clients UCI 30 000 23 110 878 90.3
Dota 2 Games Results UCI 92 650 115 345 11 164 279
FIFA 2018 Man of the Match Kaggle 128 26 106 3.00 0.708
Heart Disease Kaggle 303 13 31 3.72 1.00
Indian Liver Patient Dataset UCI 583 10 14 6.67 1.79
Ionosphere UCI 351 33 144 9.90 1.49
Iris UCI 150 4 11 1.08 0.483
MAGIC Gamma Telescope UCI 19 020 10 79 273 57.3
Medical Hospital Readmissions Kaggle 25 000 64 125 1641 75.4
Mushroom UCI 8124 22 115 190 24.7
Parkinsons UCI 195 22 51 2.81 0.738
Pima Indians Diabetes Kaggle 768 8 30 7.25 2.39
Skin Segmentation UCI 245 057 3 119 745 736
Tic-Tac-Toe Endgame UCI 958 9 27 7.75 2.96
Buzz in Social Media (Toms Hardware) UCI 28 179 96 910 3712 87.3
Buzz in Social Media (Twitter) UCI 49 999 77 1511 5406 155
Blood Transfusion Service Center UCI 748 4 6 4.39 2.26
Travel Insurance Kaggle 63 326 10 211 1188 191
Wisconsin Diagnostic Breast Cancer UCI 569 30 88 20.7 1.97
Rain in Australia Kaggle 107 696 16 141 2952 339

Table 4: The datasets used in the decision rule experiments and summary statistics on them
and the CNF formulas generated from them.

1258

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Domain / Directory Shortened name # instances

spot5 spot5 34 (−2)
drmx-atmostk am-k 36
drmx-cryptogen drmx-cryptogen 40
haplotyping-pedigrees hap-ped 100
protein ins prot 11
frb frb 35

Table 5: MaxSAT Lib families with underlying bi-objective problems and their number of
instances.

10 100 1 000
10

100

1 000

5 400

5 400

CLM-IHS (s)

B
iO

pt
Sa

t
(M

SH
yb

ri
d)

(s
)

10 100 1 000 5 400

Seesaw (s)
10 100 1 000 5 400

Pareto-MCS (s)

PackUP LIDR SC-EP SC-SC spot5 hap-ped am-k prot

Figure 10: Runtime comparisons of BiOptSat in the MSHybrid variant and CLM-IHS
(left), Seesaw (middle), and Pareto-MCS (right).

(# vars) in 103. The original datasets were downloaded from the UCI Machine Learning
Repository (Dua & Graff, 2021) and from Kaggle (https://www.kaggle.com). Links to the
original datasets as well as the discretized versions used as basis for the bi-objective MaxSAT
instances used in the experiments are available at https://bitbucket.org/coreo-group/
bioptsat/src/master/jair24.

Appendix C. MaxSAT Lib Benchmarks

Table 5 lists all MaxSAT Lib families for which we were able to identify an original bi-
objective problem. For the spot5 family, two out of the 34 instances (28.wcsp.dir.wcnf.gz
and 28.wcsp.log.wcnf.gz) could be split into three instead of two objectives and hence
were excluded from the benchmark set.

1259

https://www.kaggle.com
https://bitbucket.org/coreo-group/bioptsat/src/master/jair24
https://bitbucket.org/coreo-group/bioptsat/src/master/jair24

Jabs, Berg, Niskanen, & Järvisalo

Appendix D. Additional Empirical Data

A pairwise per-instance runtime comparison of the MSHybrid variant of BiOptSat and
CLM-IHS, Seesaw, and Pareto-MCS is shown in Figure 10.

References

Adelgren, N., & Gupte, A. (2022). Branch-and-bound for biobjective mixed-integer linear
programming. INFORMS J. Comput., 34 (2), 909–933.

Alves, M. J., & Cĺımaco, J. C. N. (2007). A review of interactive methods for multiobjective
integer and mixed-integer programming. European Journal of Operational Research,
180 (1), 99–115.

Andres, B., Kaufmann, B., Matheis, O., & Schaub, T. (2012). Unsatisfiability-based opti-
mization in clasp. In Dovier, A., & Costa, V. S. (Eds.), Technical Communications
of the 28th International Conference on Logic Programming, ICLP 2012, September
4–8, 2012, Budapest, Hungary, Vol. 17 of LIPIcs, pp. 211–221. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik.

Ansótegui, C., Bonet, M. L., Gabàs, J., & Levy, J. (2012). Improving SAT-based
weighted MaxSAT solvers. In Milano, M. (Ed.), Principles and Practice of Constraint
Programming—18th International Conference, CP 2012, Québec City, QC, Canada,
October 8–12, 2012. Proceedings, Vol. 7514 of Lecture Notes in Computer Science, pp.
86–101. Springer.

Ansótegui, C., Bonet, M. L., Gabàs, J., & Levy, J. (2013). Improving WPM2 for
(weighted) partial MaxSAT. In Schulte, C. (Ed.), Principles and Practice of Con-
straint Programming—19th International Conference, CP 2013, Uppsala, Sweden,
September 16–20, 2013. Proceedings, Vol. 8124 of Lecture Notes in Computer Science,
pp. 117–132. Springer.

Ansótegui, C., Bonet, M. L., & Levy, J. (2009). Solving (weighted) partial MaxSAT through
satisfiability testing. In Kullmann, O. (Ed.), Theory and Applications of Satisfiability
Testing—SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June
30 – July 3, 2009. Proceedings, Vol. 5584 of Lecture Notes in Computer Science, pp.
427–440. Springer.

Argelich, J., Lynce, I., & Silva, J. P. M. (2009). On solving boolean multilevel optimization
problems. In Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11–17,
2009, pp. 393–398.

Arora, J. S. (2004). Multiobjective optimum design concepts and methods. In Arora, J. S.
(Ed.), Introduction to Optimum Design (Second Edition) (Second Edition edition).,
pp. 543–563. Academic Press, San Diego.

Bacchus, F., Järvisalo, M., & Martins, R. (2019). MaxSAT Evaluation 2018: New develop-
ments and detailed results. Journal on Satisfiability, Boolean Modeling and Compu-
tation, 11 (1), 99–131.

1260

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Bacchus, F., Järvisalo, M., & Martins, R. (2021). Maximum satisfiabiliy. In Biere, A.,
Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability - Second
Edition, Vol. 336 of Frontiers in Artificial Intelligence and Applications, pp. 929–991.
IOS Press.

Bailleux, O., & Boufkhad, Y. (2003). Efficient CNF encoding of boolean cardinality con-
straints. In Rossi, F. (Ed.), Principles and Practice of Constraint Programming—CP
2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 – Octo-
ber 3, 2003, Proceedings, Vol. 2833 of Lecture Notes in Computer Science, pp. 108–122.
Springer.

Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A simulated annealing-based
multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary
Computation, 12 (3), 269–283.

Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2021). Satisfiability modulo
theories. In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook
of Satisfiability - Second Edition, Vol. 336 of Frontiers in Artificial Intelligence and
Applications, pp. 1267–1329. IOS Press.

Bend́ık, J., & Cerna, I. (2020). Rotation based MSS/MCS enumeration. In Albert, E., &
Kovács, L. (Eds.), LPAR 2020: 23rd International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Alicante, Spain, May 22–27, 2020, Vol. 73
of EPiC Series in Computing, pp. 120–137. EasyChair.

Berg, J., Bacchus, F., & Poole, A. (2020). Abstract cores in implicit hitting set MaxSat
solving. In Pulina, L., & Seidl, M. (Eds.), Theory and Applications of Satisfiability
Testing—SAT 2020—23rd International Conference, Alghero, Italy, July 3–10, 2020,
Proceedings, Vol. 12178 of Lecture Notes in Computer Science, pp. 277–294. Springer.

Berg, J., Demirovic, E., & Stuckey, P. J. (2019). Core-boosted linear search for incomplete
MaxSAT. In Rousseau, L., & Stergiou, K. (Eds.), Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research—16th International Con-
ference, CPAIOR 2019, Thessaloniki, Greece, June 4–7, 2019, Proceedings, Vol. 11494
of Lecture Notes in Computer Science, pp. 39–56. Springer.

Berg, J., & Järvisalo, M. (2017). Weight-aware core extraction in SAT-based MaxSAT
solving. In Beck, J. C. (Ed.), Principles and Practice of Constraint Programming—
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 –
September 1, 2017, Proceedings, Vol. 10416 of Lecture Notes in Computer Science, pp.
652–670. Springer.

Biere, A., Fazekas, K., Fleury, M., & Heisinger, M. (2020). CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In Balyo, T., Frol-
eyks, N., Heule, M., Iser, M., Järvisalo, M., & Suda, M. (Eds.), Proceedings of SAT
Competition 2020—Solver and Benchmark Descriptions, Vol. B-2020-1 of Department
of Computer Science Report Series B, pp. 51–53. University of Helsinki.

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2021). Handbook of Satisfiability
- Second Edition, Vol. 336 of Frontiers in Artificial Intelligence and Applications. IOS
Press.

1261

Jabs, Berg, Niskanen, & Järvisalo

Bouveret, S., & Lemâıtre, M. (2009). Computing leximin-optimal solutions in constraint
networks. Artificial Intelligence, 173 (2), 343–364.

Cabral, M., Janota, M., & Manquinho, V. M. (2022). SAT-based leximax optimisation
algorithms. In Meel, K. S., & Strichman, O. (Eds.), 25th International Conference on
Theory and Applications of Satisfiability Testing, SAT 2022, August 2–5, 2022, Haifa,
Israel, Vol. 236 of LIPIcs, pp. 29:1–29:19. Schloss Dagstuhl — Leibniz-Zentrum für
Informatik.

Chandrasekaran, K., Karp, R. M., Moreno-Centeno, E., & Vempala, S. S. (2011). Algorithms
for implicit hitting set problems. In Randall, D. (Ed.), Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23–25, 2011, pp. 614–629. SIAM.

Cortes, J., Lynce, I., & Manquinho, V. M. (2023). New core-guided and hitting set algo-
rithms for multi-objective combinatorial optimization. In Sankaranarayanan, S., &
Sharygina, N. (Eds.), Tools and Algorithms for the Construction and Analysis of Sys-
tems — 29th International Conference, TACAS 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France,
April 22-27, 2023, Proceedings, Part II, Vol. 13994 of Lecture Notes in Computer
Science, pp. 55–73. Springer.

Dasgupta, D., & Michalewicz, Z. (1997). Evolutionary algorithms in engineering applica-
tions. Springer.

Davies, J., & Bacchus, F. (2011). Solving MAXSAT by solving a sequence of simpler SAT
instances. In Lee, J. H. (Ed.), Principles and Practice of Constraint Programming—
CP 2011—17th International Conference, CP 2011, Perugia, Italy, September 12–16,
2011. Proceedings, Vol. 6876 of Lecture Notes in Computer Science, pp. 225–239.
Springer.

Davies, J., & Bacchus, F. (2013a). Exploiting the power of MIP solvers in MAXSAT.
In Järvisalo, M., & Gelder, A. V. (Eds.), Theory and Applications of Satisfiability
Testing—SAT 2013—16th International Conference, Helsinki, Finland, July 8–12,
2013. Proceedings, Vol. 7962 of Lecture Notes in Computer Science, pp. 166–181.
Springer.

Davies, J., & Bacchus, F. (2013b). Postponing optimization to speed up MAXSAT solving.
In Schulte, C. (Ed.), Principles and Practice of Constraint Programming—19th Inter-
national Conference, CP 2013, Uppsala, Sweden, September 16–20, 2013. Proceedings,
Vol. 8124 of Lecture Notes in Computer Science, pp. 247–262. Springer.

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (2),
182–197.

Dua, D., & Graff, C. (2021). UCI machine learning repository. http://archive.ics.uci.
edu/ml.

Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2012). Pareto local search algorithms
for anytime bi-objective optimization. In Hao, J., & Middendorf, M. (Eds.), Evo-
lutionary Computation in Combinatorial Optimization—12th European Conference,

1262

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

EvoCOP 2012, Málaga, Spain, April 11–13, 2012. Proceedings, Vol. 7245 of Lecture
Notes in Computer Science, pp. 206–217. Springer.

Dubois-Lacoste, J., López-Ibáñez, M., & Stützle, T. (2015). Anytime Pareto local search.
European Journal of Operational Research, 243 (2), 369–385.

Eén, N., & Sörensson, N. (2003). Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89 (4), 543–560.

Eén, N., & Sörensson, N. (2006). Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2 (1–4), 1–26.

Ehrgott, M. (2005). Multicriteria Optimization (2. ed.). Springer.

Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiob-
jective combinatorial optimization. OR Spectrum, 22 (4), 425–460.

Evans, J. P., & Steuer, R. E. (1973). A revised simplex method for linear multiple objective
programs. Mathematical Programming, 5 (1), 54–72.

Fazekas, K., Bacchus, F., & Biere, A. (2018). Implicit hitting set algorithms for maximum
satisfiability modulo theories. In Galmiche, D., Schulz, S., & Sebastiani, R. (Eds.), Au-
tomated Reasoning—9th International Joint Conference, IJCAR 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14–17, 2018, Pro-
ceedings, Vol. 10900 of Lecture Notes in Computer Science, pp. 134–151. Springer.

Fu, Z., & Malik, S. (2006). On solving the partial MAX-SAT problem. In Biere, A., &
Gomes, C. P. (Eds.), Theory and Applications of Satisfiability Testing—SAT 2006,
9th International Conference, Seattle, WA, USA, August 12–15, 2006, Proceedings,
Vol. 4121 of Lecture Notes in Computer Science, pp. 252–265. Springer.

Gavanelli, M. (2002). An algorithm for multi-criteria optimization in CSPs. In van Harme-
len, F. (Ed.), Proceedings of the 15th European Conference on Artificial Intelligence,
ECAI’2002, Lyon, France, July 2002, pp. 136–140. IOS Press.

Ghosh, B., Malioutov, D., & Meel, K. S. (2022). Efficient learning of interpretable classifi-
cation rules. Journal of Artificial Intelligence Research, 74, 1823–1863.

Grégoire, É., Izza, Y., & Lagniez, J. (2018). Boosting MCSes enumeration. In Lang, J.
(Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artifi-
cial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 1309–1315.
ijcai.org.

Guerreiro, A. P., Cortes, J., Vanderpooten, D., Bazgan, C., Lynce, I., Manquinho, V. M.,
& Figueira, J. R. (2023). Exact and approximate determination of the Pareto front
using minimal correction subsets. Computers & Operations Research, 153, 106153.

Hartert, R., & Schaus, P. (2014). A support-based algorithm for the bi-objective Pareto
constraint. In Brodley, C. E., & Stone, P. (Eds.), Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27–31, 2014, Québec City, Québec,
Canada, pp. 2674–2679. AAAI Press.

Hölldobler, S., Manthey, N., & Steinke, P. (2012). A compact encoding of pseudo-boolean
constraints into SAT. In Glimm, B., & Krüger, A. (Eds.), KI 2012: Advances in Arti-
ficial Intelligence—35th Annual German Conference on AI, Saarbrücken, Germany,

1263

Jabs, Berg, Niskanen, & Järvisalo

September 24–27, 2012. Proceedings, Vol. 7526 of Lecture Notes in Computer Science,
pp. 107–118. Springer.

Hu, H., Siala, M., Hebrard, E., & Huguet, M. (2020). Learning optimal decision trees with
MaxSAT and its integration in AdaBoost. In Bessiere, C. (Ed.), Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pp. 1170–1176. ijcai.org.

Ignatiev, A., Marques-Silva, J., Narodytska, N., & Stuckey, P. J. (2021). Reasoning-based
learning of interpretable ML models. In Zhou, Z. (Ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event
/ Montreal, Canada, 19–27 August 2021, pp. 4458–4465. ijcai.org.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2016). Propositional abduction with implicit
hitting sets. In Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum, V.,
Dignum, F., & van Harmelen, F. (Eds.), ECAI 2016—22nd European Conference on
Artificial Intelligence, 29 August-2 September 2016, The Hague, The Netherlands—
Including Prestigious Applications of Artificial Intelligence (PAIS 2016), Vol. 285 of
Frontiers in Artificial Intelligence and Applications, pp. 1327–1335. IOS Press.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2019). RC2: an efficient MaxSAT solver.
Journal on Satisfiability, Boolean Modeling and Computation, 11 (1), 53–64.

Ignatiev, A., Pereira, F., Narodytska, N., & Marques-Silva, J. (2018). A SAT-based ap-
proach to learn explainable decision sets. In Galmiche, D., Schulz, S., & Sebastiani,
R. (Eds.), Automated Reasoning—9th International Joint Conference, IJCAR 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14–17,
2018, Proceedings, Vol. 10900 of Lecture Notes in Computer Science, pp. 627–645.
Springer.

Ignatiev, A., Previti, A., Liffiton, M. H., & Marques-Silva, J. (2015). Smallest MUS extrac-
tion with minimal hitting set dualization. In Pesant, G. (Ed.), Principles and Practice
of Constraint Programming—21st International Conference, CP 2015, Cork, Ireland,
August 31 – September 4, 2015, Proceedings, Vol. 9255 of Lecture Notes in Computer
Science, pp. 173–182. Springer.

Isermann, H. (1979). The enumeration of all efficient solutions for a linear multiple-objective
transportation problem. Naval Research Logistics Quarterly, 26 (1), 123–139.

Jabs, C. (2022). A maximum satisfiability based approach to bi-objective boolean optimiza-
tion. Master’s thesis, University of Helsinki, Finland.

Jabs, C., Berg, J., Niskanen, A., & Järvisalo, M. (2022). MaxSAT-based bi-objective boolean
optimization. In Meel, K. S., & Strichman, O. (Eds.), 25th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2022), Haifa, Israel, August
2–5, 2022, Vol. 236 of LIPIcs. Schloss Dagstuhl—Leibniz-Zentrum für Informatik.

Janota, M., Lynce, I., Manquinho, V. M., & Marques-Silva, J. (2012). PackUp: Tools
for package upgradability solving. Journal on Satisfiability, Boolean Modeling and
Computation, 8 (1/2), 89–94.

Janota, M., Morgado, A., Santos, J. F., & Manquinho, V. M. (2021). The Seesaw algorithm:
Function optimization using implicit hitting sets. In Michel, L. D. (Ed.), 27th Interna-

1264

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

tional Conference on Principles and Practice of Constraint Programming, CP 2021,
Montpellier, France (Virtual Conference), October 25–29, 2021, Vol. 210 of LIPIcs,
pp. 31:1–31:16. Schloss Dagstuhl—Leibniz-Zentrum für Informatik.

Jaszkiewicz, A. (2018). Many-objective Pareto local search. European Journal of Operera-
tional Research, 271 (3), 1001–1013.

Jin, Y., & Sendhoff, B. (2008). Pareto-based multiobjective machine learning: An overview
and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C,
38 (3), 397–415.

Joshi, S., Martins, R., & Manquinho, V. M. (2015). Generalized totalizer encoding for
pseudo-boolean constraints. In Pesant, G. (Ed.), Principles and Practice of Constraint
Programming—21st International Conference, CP 2015, Cork, Ireland, August 31 –
September 4, 2015, Proceedings, Vol. 9255 of Lecture Notes in Computer Science, pp.
200–209. Springer.

Kirkpatrick, S., Gelatt Jr., D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220 (4598), 671–680.

Koshimura, M., Nabeshima, H., Fujita, H., & Hasegawa, R. (2009). Minimal model gener-
ation with respect to an atom set. In Peltier, N., & Sofronie-Stokkermans, V. (Eds.),
Proceedings of the 7th International Workshop on First-Order Theorem Proving, FTP
2009, Oslo, Norway, July 6–7, 2009, Vol. 556 of CEUR Workshop Proceedings. CEUR-
WS.org.

Koshimura, M., & Satoh, K. (2020). A simple yet efficient MCSes enumeration with SAT
oracles. In Nguyen, N. T., Jearanaitanakij, K., Selamat, A., Trawinski, B., & Chit-
tayasothorn, S. (Eds.), Intelligent Information and Database Systems - 12th Asian
Conference, ACIIDS 2020, Phuket, Thailand, March 23-26, 2020, Proceedings, Part
I, Vol. 12033 of Lecture Notes in Computer Science, pp. 191–201. Springer.

Le Berre, D., & Parrain, A. (2010). The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7 (2–3), 59–6.

Leivo, M., Berg, J., & Järvisalo, M. (2020). Preprocessing in incomplete MaxSAT solving.
In ECAI, Vol. 325 of Frontiers in Artificial Intelligence and Applications, pp. 347–354.
IOS Press.

Li, C., Xu, Z., Coll, J., Manyà, F., Habet, D., & He, K. (2021). Combining clause learning
and branch and bound for MaxSAT. In Michel, L. D. (Ed.), 27th International Con-
ference on Principles and Practice of Constraint Programming, CP 2021, Montpellier,
France (Virtual Conference), October 25–29, 2021, Vol. 210 of LIPIcs, pp. 38:1–38:18.
Schloss Dagstuhl—Leibniz-Zentrum für Informatik.

Lu, K., Mizuno, S., & Shi, J. (2020). A new mixed integer programming approach for
optimization over the efficient set of a multiobjective linear programming problem.
Optimization Letters, 14 (8), 2323–2333.

Malioutov, D., & Meel, K. S. (2018). MLIC: A MaxSAT-based framework for learning
interpretable classification rules. In Hooker, J. N. (Ed.), Principles and Practice of
Constraint Programming—24th International Conference, CP 2018, Lille, France, Au-

1265

Jabs, Berg, Niskanen, & Järvisalo

gust 27–31, 2018, Proceedings, Vol. 11008 of Lecture Notes in Computer Science, pp.
312–327. Springer.

Marler, R., & Arora, J. (2004). Survey of multi-objective optimization methods for engi-
neering. Structural and Multidisciplinary Optimization, 26, 369–395.

Marques-Silva, J., Argelich, J., Graca, A., & Lynce, I. (2011). Boolean lexicographic op-
timization: Algorithms & applications. Annals of Mathematics and Artificial Intelli-
gence, 62 (3–4), 317–343.

Marques-Silva, J., Lynce, I., & Malik, S. (2021). Conflict-driven clause learning SAT solvers.
In Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.), Handbook of Satisfiability
- Second Edition, Vol. 336 of Frontiers in Artificial Intelligence and Applications, pp.
133–182. IOS Press.

Marques-Silva, J., & Planes, J. (2007). On using unsatisfiability for solving maximum
satisfiability. Computing Research Repository, abs/0712.1097.

Martins, R., Joshi, S., Manquinho, V. M., & Lynce, I. (2014a). Incremental cardinality
constraints for MaxSAT. In O’Sullivan, B. (Ed.), Principles and Practice of Constraint
Programming—20th International Conference, CP 2014, Lyon, France, September 8–
12, 2014. Proceedings, Vol. 8656 of Lecture Notes in Computer Science, pp. 531–548.
Springer.

Martins, R., Joshi, S., Manquinho, V. M., & Lynce, I. (2014b). On using incremental en-
codings in unsatisfiability-based MaxSAT solving. J. Satisf. Boolean Model. Comput.,
9 (1), 59–81.

Martins, R., Manquinho, V. M., & Lynce, I. (2014c). Open-WBO: A modular MaxSAT
solver. In Sinz, C., & Egly, U. (Eds.), Theory and Applications of Satisfiability
Testing—SAT 2014—17th International Conference, Held as Part of the Vienna Sum-
mer of Logic, VSL 2014, Vienna, Austria, July 14–17, 2014. Proceedings, Vol. 8561
of Lecture Notes in Computer Science, pp. 438–445. Springer.

Moreno-Centeno, E., & Karp, R. M. (2013). The implicit hitting set approach to solve
combinatorial optimization problems with an application to multigenome alignment.
Operations Research, 61 (2), 453–468.

Morgado, A., Dodaro, C., & Marques-Silva, J. (2014). Core-guided MaxSAT with soft
cardinality constraints. In O’Sullivan, B. (Ed.), Principles and Practice of Constraint
Programming—20th International Conference, CP 2014, Lyon, France, September 8–
12, 2014. Proceedings, Vol. 8656 of Lecture Notes in Computer Science, pp. 564–573.
Springer.

Morgado, A., Liffiton, M. H., & Marques-Silva, J. (2012). MaxSAT-based MCS enumeration.
In Biere, A., Nahir, A., & Vos, T. E. J. (Eds.), Hardware and Software: Verification and
Testing—8th International Haifa Verification Conference, HVC 2012, Haifa, Israel,
November 6–8, 2012. Revised Selected Papers, Vol. 7857 of Lecture Notes in Computer
Science, pp. 86–101. Springer.

Narodytska, N., Ignatiev, A., Pereira, F., & Marques-Silva, J. (2018). Learning optimal
decision trees with SAT. In Lang, J. (Ed.), Proceedings of the Twenty-Seventh Inter-

1266

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

national Joint Conference on Artificial Intelligence, IJCAI 2018, July 13–19, 2018,
Stockholm, Sweden, pp. 1362–1368. ijcai.org.

Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25 (3-4), 241–273.

Niskanen, A., Berg, J., & Järvisalo, M. (2021). Enabling incrementality in the implicit
hitting set approach to MaxSAT under changing weights. In Michel, L. D. (Ed.), 27th
International Conference on Principles and Practice of Constraint Programming, CP
2021, Montpellier, France (Virtual Conference), October 25–29, 2021, Vol. 210 of
LIPIcs, pp. 44:1–44:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Niskanen, A., Berg, J., & Järvisalo, M. (2022). Incremental maximum satisfiability. In
Meel, K. S., & Strichman, O. (Eds.), 25th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2022), Haifa, Israel, August 2–5, 2022, Vol.
236 of LIPIcs, pp. 14:1–14:19. Schloss Dagstuhl—Leibniz-Zentrum für Informatik.

Parker, M., & Ryan, J. (1996). Finding the minimum weight IIS cover of an infeasible
system of linear inequalities. Annals of Mathematics and Artificial Intelligence, 17 (1-
2), 107–126.

Paxian, T., Raiola, P., & Becker, B. (2021). On preprocessing for weighted MaxSAT.
In Henglein, F., Shoham, S., & Vizel, Y. (Eds.), Verification, Model Checking, and
Abstract Interpretation—22nd International Conference, VMCAI 2021, Copenhagen,
Denmark, January 17–19, 2021, Proceedings, Vol. 12597 of Lecture Notes in Computer
Science, pp. 556–577. Springer.

Previti, A., Menćıa, C., Järvisalo, M., & Marques-Silva, J. (2017). Improving MCS enu-
meration via caching. In Gaspers, S., & Walsh, T. (Eds.), Theory and Applications
of Satisfiability Testing—SAT 2017—20th International Conference, Melbourne, VIC,
Australia, August 28 – September 1, 2017, Proceedings, Vol. 10491 of Lecture Notes
in Computer Science, pp. 184–194. Springer.

Rasmussen, L. M. (1986). Zero-one programming with multiple criteria. European Journal
of Operational Research, 26 (1), 83–95.

Reggia, J. A., Nau, D. S., & Wang, P. Y. (1983). Diagnostic expert systems based on a set
covering model. International Journal of Man-Machine Studies, 19 (5), 437–460.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32 (1),
57–95.

Rossi, F., van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of Constraint Programming,
Vol. 2 of Foundations of Artificial Intelligence. Elsevier.

Saikko, P., Berg, J., & Järvisalo, M. (2016). LMHS: A SAT-IP hybrid MaxSAT solver. In
Creignou, N., & Berre, D. L. (Eds.), Theory and Applications of Satisfiability Test-
ing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, Vol. 9710 of Lecture Notes in Computer Science, pp. 539–546. Springer.

Saikko, P., Dodaro, C., Alviano, M., & Järvisalo, M. (2018). A hybrid approach to opti-
mization in answer set programming. In Thielscher, M., Toni, F., & Wolter, F. (Eds.),
Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth

1267

Jabs, Berg, Niskanen, & Järvisalo

International Conference, KR 2018, Tempe, Arizona, 30 October – 2 November 2018,
pp. 32–41. AAAI Press.

Saikko, P., Wallner, J. P., & Järvisalo, M. (2016). Implicit hitting set algorithms for rea-
soning beyond NP. In Baral, C., Delgrande, J. P., & Wolter, F. (Eds.), Principles of
Knowledge Representation and Reasoning: Proceedings of the Fifteenth International
Conference, KR 2016, Cape Town, South Africa, April 25–29, 2016, pp. 104–113.
AAAI Press.

Saini, N., & Saha, S. (2021). Multi-objective optimization techniques: A survey of the state-
of-the-art and applications. The European Physical Journal Special Topics, 230 (10),
2319–2335.

Santis, M. D., Eichfelder, G., Niebling, J., & Rocktäschel, S. (2020). Solving multiobjective
mixed integer convex optimization problems. SIAM Journal on Optimization, 30 (4),
3122–3145.

Schaus, P., & Hartert, R. (2013). Multi-objective large neighborhood search. In Schulte, C.
(Ed.), Principles and Practice of Constraint Programming—19th International Con-
ference, CP 2013, Uppsala, Sweden, September 16–20, 2013. Proceedings, Vol. 8124
of Lecture Notes in Computer Science, pp. 611–627. Springer.

Sengupta, R., & Saha, S. (2018). Reference point based archived many objective simulated
annealing. Information Sciences, 467, 725–749.

Smirnov, P., Berg, J., & Järvisalo, M. (2021). Pseudo-boolean optimization by implicit
hitting sets. In Michel, L. D. (Ed.), 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Confer-
ence), October 25-29, 2021, Vol. 210 of LIPIcs, pp. 51:1–51:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Smirnov, P., Berg, J., & Järvisalo, M. (2022). Improvements to the implicit hitting set
approach to pseudo-boolean optimization. In Meel, K. S., & Strichman, O. (Eds.),
25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, Vol. 236 of LIPIcs, pp. 13:1–13:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Soh, T., Banbara, M., Tamura, N., & Le Berre, D. (2017). Solving multiobjective dis-
crete optimization problems with propositional minimal model generation. In Beck,
J. C. (Ed.), Principles and Practice of Constraint Programming—23rd International
Conference, CP 2017, Melbourne, VIC, Australia, August 28 – September 1, 2017,
Proceedings, Vol. 10416 of Lecture Notes in Computer Science, pp. 596–614. Springer.

Soland, R. M. (1979). Multicriteria optimization: A general characterization of efficient
solutions. Decision Sciences, 10 (1), 26–38.

Storn, R., & Price, K. V. (1997). Differential evolution—A simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11 (4),
341–359.

Sun, E. (2017). On optimization over the efficient set of a multiple objective linear program-
ming problem. Journal of Optimization Theory and Applications, 172 (1), 236–246.

1268

From Single-Objective to Bi-Objective Maximum Satisfiability Solving

Tamura, N., Banbara, M., & Soh, T. (2013). Compiling pseudo-boolean constraints to SAT
with order encoding. In 25th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2013, Herndon, VA, USA, November 4–6, 2013, pp. 1020–1027.
IEEE Computer Society.

Terra-Neves, M., Lynce, I., & Manquinho, V. M. (2018a). Enhancing constraint-based multi-
objective combinatorial optimization. In McIlraith, S. A., & Weinberger, K. Q. (Eds.),
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2–7, 2018, pp. 6649–6656. AAAI Press.

Terra-Neves, M., Lynce, I., & Manquinho, V. M. (2018b). Multi-objective optimization
through Pareto minimal correction subsets. In Lang, J. (Ed.), Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13–19, 2018, Stockholm, Sweden, pp. 5379–5383. ijcai.org.

Terra-Neves, M., Lynce, I., & Manquinho, V. M. (2018c). Stratification for constraint-
based multi-objective combinatorial optimization. In Lang, J. (Ed.), Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13–19, 2018, Stockholm, Sweden, pp. 1376–1382. ijcai.org.

Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus. In Siek-
mann, J. H., & Wrightson, G. (Eds.), Automation of Reasoning: 2: Classical Papers
on Computational Logic 1967–1970, pp. 466–483, Berlin, Heidelberg. Springer.

Wassenhove, L. N. V., & Gelders, L. F. (1980). Solving a bicriterion scheduling problem.
European Journal of Operational Research, 4 (1), 42–48.

Wolsey, L. A. (2020). Integer Programming. Wiley.

Yu, J., Ignatiev, A., Stuckey, P. J., & Bodic, P. L. (2021). Learning optimal decision sets
and lists with SAT. Journal of Artificial Intelligence Research, 72, 1251–1279.

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms—
A comparative case study. In Eiben, A. E., Bäck, T., Schoenauer, M., & Schwefel,
H. (Eds.), Parallel Problem Solving from Nature—PPSN V, 5th International Con-
ference, Amsterdam, The Netherlands, September 27–30, 1998, Proceedings, Vol. 1498
of Lecture Notes in Computer Science, pp. 292–304. Springer.

1269

	Introduction
	Preliminaries
	Boolean and Maximum Satisfiability
	Bi-Objective Maximum Satisfiability
	Special cases of Pareto-optimal solutions
	Existing SAT-Based Approaches to Bi-Objective Optimization

	The BiOptSat Algorithm
	Overview of the Algorithm
	Variants for Minimizing the Increasing Objective
	SAT-UNSAT
	UNSAT-SAT
	MSU3
	OLL
	Hybrid approaches MSHybrid and OSHybrid

	Refinements to BiOptSat
	Refinements to Core-Guided Variants
	Lazily Building PbCnf(OD)
	Blocking of Dominated Solutions
	Domain-Specific Solution Blocking
	Bound Hardening

	Experiments
	Benchmarks
	Learning Interpretable Decision Rules
	Bi-Objective Set Covering
	Package Upgradeability
	Lexicographic Optimization MaxSAT Instances

	Results
	Performance Comparison

	Analysis of the Best-performing BiOptSat Variant

	Related Work
	Conclusions

