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ABSTRACT

Mining frequent structural patterns from graph databases
is an interesting problem with broad applications. Most
of the previous studies focus on pruning unfruitful search
subspaces effectively, but few of them address the mining
on large, disk-based databases. As many graph databases
in applications cannot be held into main memory, scalable
mining of large, disk-based graph databases remains a chal-
lenging problem. In this paper, we develop an effective index
structure, ADI (for adjacency index), to support mining var-
ious graph patterns over large databases that cannot be held
into main memory. The index is simple and efficient to build.
Moreover, the new index structure can be easily adopted in
various existing graph pattern mining algorithms. As an ex-
ample, we adapt the well-known gSpan algorithm by using
the ADI structure. The experimental results show that the
new index structure enables the scalable graph pattern min-
ing over large databases. In one set of the experiments, the
new disk-based method can mine graph databases with one
million graphs, while the original gSpan algorithm can only
handle databases of up to 300 thousand graphs. Moreover,
our new method is faster than gSpan when both can run in
main memory.

Categories and Subject Descriptors: H.2.8 [Database
Applications|: Data Mining

General Terms: Algorithms, Performances.

Keywords: Graph mining, index, graph database, frequent
graph pattern.

1. INTRODUCTION

Mining frequent graph patterns is an interesting research
problem with broad applications, including mining struc-
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tural patterns from chemical compound databases, plan
databases, XML documents, web logs, citation networks,
and so forth. Several efficient algorithms have been pro-
posed in the previous studies [2, 5, 6, 8, 11, 9], ranging
from mining graph patterns, with and without constraints,
to mining closed graph patterns.

Most of the existing methods assume implicitly or explic-
itly that the databases are not very large, and the graphs
in the database are relatively simple. That is, either the
databases or the major part of them can fit into main mem-
ory, and the number of possible labels in the graphs [6] is
small. For example, [11] reports the performance of gSpan,
an efficient frequent graph pattern mining algorithm, on
data sets of size up to 320 KB, using a computer with 448
MB main memory. Clearly, the graph database and the
projected databases can be easily accommodated into main
memory.

Under the large main memory assumption, the computa-
tion is CPU-bounded instead of I/O-bounded. Then, the
algorithms focus on effective heuristics to prune the search
space. Few of them address the concern of handling large
graph databases that cannot be held in main memory.

While the previous studies have made excellent progress
in mining graph databases of moderate size, mining large,
disk-based graph databases remains a challenging problem.
When mining a graph database that cannot fit into main
memory, the algorithms have to scan the database and nav-
igate the graphs repeatedly. The computation becomes I1/0-
bounded.

For example, we obtain the executable of gSpan from the
authors and test its scalability. In one of our experiments®,
we increase the number of graphs in the database to test
the scalability of gSpan on the database size. g¢Span can
only handle up to 300 thousand graphs. In another exper-
iment, we increase the number of possible labels in graphs.
We observe that the runtime of gSpan increases exponen-
tially. It finishes a data set of 300 thousand graphs with 636
seconds when there are only 10 possible labels, but needs
15 hours for a data set with the same size but the number
of possible labels is 45! This result is consistent with the
results reported in [11].

Are there any real-life applications that need to mine large
graph databases? The answer is yes. For example, in data
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collection of XML documents. It is easy to see applications
with collections of millions of XML documents. There are

!Details will be provided in Section 6



hundreds of even thousands of different labels. As another
example, chemical structures can be modeled as graphs. A
chemical database for drug development can contain millions
of different chemical structures, and the number of different
labels in the graphs can easily go to up to 100. These large
databases are disk-based and often cannot be held into main
memory.

Why is mining large disk-based graph databases so chal-
lenging? In most of the previous studies, the major data
structures are designed for being held in main memory. For
example, the adjacency-list or adjacency-matrix representa-
tions are often used to represent graphs. Moreover, most of
the previous methods are based on efficient random accesses
to elements (e.g., edges and their adjacent edges) in graphs.
However, if the adjacency-list or adjacency-matrix represen-
tations cannot be held in main memory, the random accesses
to them become very expensive. For disk-based data, with-
out any index, random accesses can be extremely costly.

Can we make mining large, disk-based graph databases fea-
sible and scalable? This is the motivation of our study.

Since the bottleneck is the random accesses to the large
disk-based graph databases, a natural idea is to index the
graph databases properly. Designing effective and efficient
index structures is one of the most invaluable exercises in
database research. A good index structure can support a
general category of data access operations. Particularly, a
good index should be efficient and scalable in construction
and maintenance, and fast for data access.

Instead of inventing new algorithms to mine large, disk-
based graph patterns, can we devise an efficient index struc-
ture for graph databases so that mining various graph pat-
terns can be conducted scalably? Moreover, the index struc-
ture should be easy to be adopted in various existing meth-
ods with minor adaptations.

Stimulated by the above thinking, in this paper, we study
the problem of efficient index for scalable mining of large,
disk-based graph databases, and make the following contri-
butions.

e By analyzing the frequent graph pattern mining prob-
lem and the typical graph pattern mining algorithms
(taking gSpan as an example), we identify several bot-
tleneck data access operations in mining large, disk-
based graph databases.

e We propose ADI (for adjacency index), an effective
index structure for graphs. We show that the major
operations in graph mining can be facilitated efficiently
by an ADI structure. The construction algorithm of
ADI structure is presented.

e We adapt the gSpan algorithm by using the A DI struc-
ture on mining large, disk-based graph databases, and
achieve algorithm A DI-Mine. We show that ADI-Mine
outperforms gSpan in mining complex graph databases
and can mine much larger databases than gSpan.

e A systematic performance study is reported to verify
our design. The results show that our new index struc-
ture and algorithm are scalable on large data sets.

The remainder of the paper is organized as follows. We
define the problem of frequent graph pattern mining in Sec-
tion 2. The idea of minimum DFS code and algorithm gSpan

@ ®v0 V2

a a a
b b vl b vl

A\ a \P
v2 v3 ®v3 \"¢}

(c) DFS-tree  (d) DFS-tree
T T

(a) Graph
G

(b) Subgraph
Gl

Figure 1: Subgraph and DFS codes

are reviewed in Section 3, and the major data access opera-
tions in graph mining are also identified. The ADI structure
is developed in Section 4. The efficient algorithm ADI-Mine
for mining large, disk-based graph databases using ADI is
presented in Section 5. The experimental results are re-
ported in Section 6. The related work is discussed in Sec-
tion 7. Section 8 concludes the paper.

2. PROBLEM DEFINITION

In this paper, we focus on undirected labeled simple graphs.
A labeled graph is a 4-tuple G = (V, E, L,1), where V is a set
of vertices, E CV x V is a set of edges, L is a set of labels,
and [ : VUFE — L is a labeling function that assigns a label
to an edge or a vertex. We denote the vertex set and the
edge set of a graph G by V(G) and E(G), respectively.

A graph G is called connected if for any vertices u,v €
V(G), there exist vertices wi,...,w, € V(G) such that
{(uaw1)7 (w17w2)7 B (wn—l,wn)7 (wTH v)} - E(G)

Frequent patterns in graphs are defined based on subgraph
isomorphism.

DEFINITION 1 (SUBGRAPH ISOMORPHISM). Given graphs
G=(V,E,L,l) and G' = (V',E',L’,l'). An injective func-
tion f : V' — V is called a subgraph isomorphism from G’ to
G if (1) for any vertex u € V', f(u) € V and I'(u) = I(f(u));
and (2) for any edge (u,v) € E', (f(u), f(v)) € E and
V(. 0) = 1 f(u), (0).

If there exists a subgraph isomorphism from G’ to G, then
G’ is called a subgraph of G and G is called a supergraph of
G’, denoted as G' C G. n

For example, the graph G’ in Figure 1(b) is a subgraph of
G in Figure 1(a).

A graph database is a set of tuples (gid, G), where gid is
a graph identity and G is a graph. Given a graph database
GDB, the support of a graph G’ in GD B, denoted as sup(G')
for short, is the number of graphs in the database that are
supergraphs of G’, i.e., |{(gid, G) € GDB|G' C G}|.

For a support threshold min_sup (0 < min_sup < |GDB|),
a graph G’ is called a frequent graph pattern if sup(G') >
min_sup. In many applications, users are only interested
in the frequent recurring components of graphs. Thus, we
put a constraint on the graph patterns: we only find the
frequent graph patterns that are connected.

Problem definition. Given a graph database GDB and
a support threshold min_sup. The problem of mining fre-
quent connected graph patterns is to find the complete set of
connected graphs that are frequent in GDB. n



3. MINIMUM DFS CODE AND GSPAN

In [11], Yan and Han developed the lexicographic order-
ing technique to facilitate the graph pattern mining. They
also propose an efficient algorithm, gSpan, one of the most
efficient graph pattern mining algorithms so far. In this
section, we review the essential ideas of gSpan, and point
out the bottlenecks in the graph pattern mining from large
disk-based databases.

3.1 Minimum DFS Code

In order to enumerate all frequent graph patterns effi-
ciently, we want to identify a linear order on a representation
of all graph patterns such that if two graphs are in identical
representation, then they are isomorphic. Moreover, all the
(possible) graph patterns can be enumerated in the order
without any redundancy.

The depth-first search tree (DFS-tree for short) [3] is pop-
ularly used for navigating connected graphs. Thus, it is
natural to encode the edges and vertices in a graph based
on its DFS-tree. All the vertices in G can be encoded in
the pre-order of 7. However, the DFS-tree is generally not
unique for a graph. That is, there can be multiple DFS-trees
corresponding to a given graph.

For example, Figures 1(c) and 1(d) show two DFS-trees of
the graph G in Figure 1(a). The thick edges in Figures 1(c)
and 1(d) are those in the DFS-trees, and are called forward
edges, while the thin edges are those not in the DFS-trees,
and are called backward edges. The vertices in the graph
are encoded vo to vs according to the pre-order of the cor-
responding DFS-trees.

To solve the uniqueness problem, a minimum DFS code
notation is proposed in [11].

For any connected graph G, let T' be a DFS-tree of G.
Then, an edge is always listed as (v;, v;) such that ¢ < j. A
linear order < on the edges in G can be defined as follows.
Given edges e = (v;,v;) and € = (vy,vy). e < € if (1)
when both e and €’ are forward edges (i.e., in DFS-tree T),
j<ij or(i>iAnj=j); (2) when both e and €' are
backward edges (i.e., edges not in DFS-tree T'), i < ¢ or
(i =4 Aj<j); (3) when e is a forward edge and €’ is a
backward edge, 7 < i’; or (4) when e is a backward edge and
e’ is a forward edge, i < j'.

For a graph G and a DFS-tree T, a list of all edges in
E(G) in order < is called the DF'S code of G with respect to
T, denoted as code(G,T). For example, the DFS code with
respect to the DFS-tree 17 in Figure 1(c) is code(G,T1) =
<(U07 U1, %, a, iE)—(?)l, V2, %, a, Z)—(UQ, Vo, 2, b, 'T)_('Ulv v3, T, b, y)>7
where an edge (v;,v;) is written as (vs, v, (vs), (v, v;),
l(vj)), i.e., the labels are included. Similarly, the DFS code
with respect to the DFS-tree T3 in Figure 1(d) is
COde(G7 TQ) = <(U07 v1,Y,b, ‘r)'(vh V2,7, a, I)-(UQ, v3, T, b, Z)'
(’U3,’U1,Z,CL,ZI3)>.

Suppose there is a linear order over the label set L. Then,
for DFS-trees 77 and 7% on the same graph G, their DFS
codes can be compared lexically according to the labels of
the edges. For example, we have code(G,T1) < code(G,T>)
in Figures 1(c) and 1(d).

The lexically minimum DFS code is selected as the repre-
sentation of the graph, denoted as min(G). In our example
in Figure 1, min(G) = code(G,T1).

Minimum DFS code has a nice property: two graphs G
and G’ are isomorphic if and only if min(G) = min(G’).
Moreover, with the minimum DFS code of graphs, the prob-

Input: a DFS code s, a graph database GDB and min_sup
Output: the frequent graph patterns
Method:
if s is not a minimum DFS code then return;
output s as a pattern if s is frequent in GDB;
let C' = 0;
scan GDB once, find every edge e such that
e can be concatenated to s to form a DFS code soe
and soe is frequent; C = C U {soe};
sort the DF'S codes in C in lexicographic order;
for each s¢e € C in lexicographic order do
call gSpan(s < e, GDB, min_sup);
return;

Figure 2: Algorithm gSpan.

lem of mining frequent graph patterns is reduced to mining
frequent minimum DFS codes, which are sequences, with
some constraints that preserve the connectivity of the graph
patterns.

3.2 Algorithm gSpan

Based on the minimum DFS codes of graphs, a depth-
first search, pattern-growth algorithm, gSpan, is developed
in [11], as shown in Figure 2. The central idea is to con-
duct a depth-first search of minimum DFS codes of possi-
ble graph patterns, and obtain longer DFS codes of larger
graph patterns by attaching new edges to the end of the
minimum DFS code of the existing graph pattern. The
anti-monotonicity of frequent graph patterns, i.e., any super
pattern of an infrequent graph pattern cannot be frequent, is
used to prune.

Comparing to the previous methods on graph pattern
mining, gSpan is efficient, since gSpan employs the smart
idea of minimum DFS codes of graph patterns that facili-
tates the isomorphism test and pattern enumeration. More-
over, gSpan inherits the depth-first search, pattern-growth
methodology to avoid any candidate-generation-and-test. As
reported in [11], the advantages of gSpan are verified by the
experimental results on both real data sets and synthetic
data sets.

3.3 Bottlenecks in Mining Disk-based Graph
Databases

Algorithm ¢Span is efficient when the database can be
held into main memory. For example, in [11], gSpan is scal-
able for databases of size up to 320 KB using a computer
with 448 MB main memory. However, it may encounter dif-
ficulties when mining large databases. The major overhead
is that gSpan has to randomly access elements (e.g., edges
and vertices) in the graph database as well as the projec-
tions of the graph database many times. For databases that
cannot be held into main memory, the mining becomes I/0O
bounded and thus is costly.

Random accesses to elements in graph databases and check-
ing the isomorphism are not unique to gSpan. Instead, such
operations are extensive in many graph pattern mining al-
gorithms, such as FSG [6] (another efficient frequent graph
pattern mining algorithm) and CloseGraph [9] (an efficient
algorithm for mining frequent closed graph patterns).

In mining frequent graph patterns, the major data access
operations are as follows.



OP1: Edge support checking. Find the support of an
edge (lu,le,ly), where I, and [, are the labels of ver-
tices and [. is the label of the edge, respectively;

OP2: Edge-host graph checking. For an edge e =
(lu,le,ly), find the graphs in the database where e ap-
pears;

OP3: Adjacent edge checking. For an edge e =
(lu,le,ly), find the adjacent edges of e in the graphs
where e appears, so that the adjacent edges can be
used to expand the current graph pattern to larger
ones.

Each of the above operations may happen many times
during the mining of frequent graph patterns. Without an
appropriate index, each of the above operations may have to
scan the graph database or its projections. If the database
and its projections cannot fit into main memory, the scan-
ning and checking can be very costly.

Can we devise an index structure so that the related in-
formation can be kept and all the above operations can be
achieved using the index only, and thus without scanning
the graph database and checking the graphs? This motivates
the design of the ADI structure.

4. THE ADI STRUCTURE

In this section we will devise an effective data structure,
ADI (for adjacency index), to facilitate the scalable mining
of frequent graph patterns from disk-based graph databases.

4.1 Data Structure

The ADI index structure is a three-level index for edges,
graph-ids and adjacency information. An example is shown
in Figure 3, where two graphs, G1 and G2, are indexed.

4.1.1 Edge Table

There can be many edges in a graph database. The edges
are often retrieved by the labels during the graph pattern
mining, such as in the operations identified in Section 3.3.
Therefore, the edges are indexed by their labels in the ADI
structure.

In ADI, an edge e = (u,v) is recorded as a tuple
(l(u),l(u,v),l(v)) in the edge table, and is indexed by the
labels of the vertices, i.e., [(u) and I(v), and the label of
the edge itself, i.e., [(u,v). Each edge appears only once in
the edge table, no matter how many times it appears in the
graphs. For example, in Figure 3, edge (A,d,C) appears
once in graph G and twice in graph G2. However, there
is only one entry for the edge in the edge table in the ADI
structure.

All edges in the edge table in the A DI structure are sorted.
When the edge table is stored on disk, a B+-tree is built on
the edges. When part of the edge table is loaded into main
memory, it is organized as a sorted list. Thus, binary search
can be conducted.

4.1.2 Linked Lists of Graph-ids

For each edge e, the identities of the graphs that contain
e form a linked list of graph-ids. Graph-id G; is in the list
of edge e if and only if there exists at least one instance of e
in G;. For example, in Figure 3, both G; and G2 appear in
the list of edge (A, d, C), since the edge appears in G1 once
and in G2 twice. Please note that the identity of graph G;

Edges Graph—ids (on disk) Adjacency (on disk)

(A, a, B)
(A, d,C)
(B, b,D)
(B,c, C)
(B, d, D)
(C,d,D)

Figure 3: An ADI structure.

appears in the linked list of edge e only once if e appears in
G, no matter how many times edge e appears in G;.

A list of graph-ids of an edge are stored together. There-
fore, given an edge, it is efficient to retrieve all the identities
of graphs that contain the edge.

Every entry in the edge table is linked to its graph-id
linked list. By this linkage, the operation OP2: edge-host
graph checking can be conducted efficiently. Moreover, to
facilitate operation OP1: edge support checking, the length
of the graph-id linked list, i.e., the support of an edge, is
registered in the edge table.

4.1.3 Adjacency Information

The edges in a graph are stored as a list of the edges
encoded. Adjacent edges are linked together by the common
vertices, as shown in Figure 3. For example, in block 1,
all the vertices having the same label (e.g., 1) are linked
together as a list. Since each edge has two vertices, only
two pointers are needed for each edge.

Moreover, all the edges in a graph are physically stored
in one block on disk (or on consecutive blocks if more space
is needed), so that the information about a graph can be
retrieved by reading one or several consecutive blocks from
disk. Often, when the graph is not large, a disk-page (e.g.,
of size 4k) can hold more than one graph.

Encoded edges recording the adjacency information are
linked to the graph-ids that are further associated with the
edges in the edge table.

4.2 Space Requirement

The storage of an ADI structure is flexible. If the graph
database is small, then the whole index can be held into
main memory. On the other hand, if the graph database
is large and thus the ADI structure cannot fit into main



memory, some levels can be stored on disk. The level of
adjacency information is the most detailed and can be put
on disk. If the main memory is too small to hold the graph-
id linked lists, they can also be accommodated on disk. In
the extreme case, even the edge table can be held on disk
and a B+-tree or hash index can be built on the edge table.

THEOREM 1 (SPACE COMPLEXITY). For graph database
GDB = {Gi,...,Gn}, the space complexity is
O(Z7, [E(GH))).

Proof. The space complexity is determined by the following
facts. (1) The number of tuples in the edge table is equal to
the number of distinct edges in the graph database, which is
bounded by > 7, |E(G:)l; (2) The number of entries in the
graph-id linked lists in the worst case is the number of edges
in the graph database, i.e., >.._, |E(G:)| again; and (3) The
adjacency information part records every edge exactly once.

n

Please note that, in many application, it is reasonable to
assume that the edge table can be held into main memory.
For example, suppose we have 1,000 distinct vertex labels
and 1,000 distinct edge labels. There can be up to 1000 x
999 + 2 x 1000 = 4.995 x 10% different edges, i.e., all possible
combinations of vertex and edge labels. Suppose up to 1%
edges are frequent, there are only less than 5 million different
edges, and thus the edge table can be easily held into main
memory.

In real applications, the graphs are often sparse, that is,
not all possible combinations of vertex and edge labels ap-
pear in the graphs as an edge. Moreover, users are often
interested in only those frequent edges. That shrinks the
edge table substantially.

4.3 Search Using ADI

Now, let us examine how the ADI structure can facilitate
the major data access operations in graph pattern mining
that are identified in Section 3.3.

OP1: Edge support checking Once an ADI structure is
constructed, this information is registered on the edge
table for every edge. We only need to search the edge
table, which is either indexed (when the table is on
disk) or can be searched using binary search (when
the table is in main memory).

In some cases, we may need to count the support of an
edge in a subset of graphs G’ C G. Then, the linked
list of the graph-ids of the edge is searched. There is
no need to touch any record in the adjacency informa-
tion part. That is, we do not need to search any detail
about the edges. Moreover, for counting supports of
edges in projected databases, we can maintain the sup-
port of each edge in the current projected database and
thus we do not even search the graph-id linked lists.

OP2: Edge-host graph checking We only need to search
the edge table for the specific edge and follow the link
from the edge to the list of graph-ids. There is no
need to search any detail from the part of adjacency
information.

OP3: Adjacent edge checking Again, we start from an
entry in the edge table and follow the links to find
the list of graphs where the edge appears. Then, only

Input: a graph database GDB and min_sup
Output: the ADI structure
Method:
scan GDB once, find the frequent edges;
initialize the edge table for frequent edges;
for each graph do
remove infrequent edges;
compute the mininmum DFS code [11];
use the DFS-tree to encode the vertices;
store the edges in the graph onto disk and form
the adjacency information;
for each edge do
insert the graph-id to the graph-id list
associated with the edge;
link the graph-id to the related adjacency
information;
end for
end for

Figure 4: Algorithm of ADI construction.

the blocks containing the details of the instances of the
edge are visited, and there is no need to scan the whole
database. The average I/O complexity is O(logn +
m + 1), where n is the number of distinct edges in the
graph, m is the average number of graph-ids in the
linked lists of edges, and [ is the average number of
blocks occupied by a graph. In many applications, m
is orders of magnitudes smaller than the n, and [ is a
very small number (e.g., 1 or 2).

The algorithms for the above operations are simple. Lim-
ited by space, we omit the details here. As can be seen,
once the ADI structure is constructed, there is no need to
scan the database for any of the above operations. That is,
the A DI structure can support the random accesses and the
mining efficiently.

4.4 Construction of ADI

Given a graph database, the corresponding A DI structure
is easy to construct by scanning the database only twice.

In the first scan, the frequent edges are identified. Accord-
ing to the apriori property of frequent graph patterns, only
those frequent edges can appear in frequent graph patterns
and thus should be indexed in the ADI structure. After the
first scan, the edge table of frequent edges is initialized.

In the second scan, graphs in the database are read and
processed one by one. For each graph, the vertices are en-
coded according to the DFS-tree in the minimum DFS code,
as described in [11] and Section 3. Only the vertices involved
in some frequent edges should be encoded. Then, for each
frequent edge, the graph-id is inserted into the correspond-
ing linked list, and the adjacency information is stored. The
sketch of the algorithm is shown in Figure 4.

Cost Analysis

There are two major costs in the A DI construction: writing
the adjacency information and updating the linked lists of
graph-ids. Since all edges in a graph will reside on a disk
page or several consecutive disk pages, the writing of adja-
cency information is sequential. Thus, the cost of writing
adjacency information is comparable to that of making a



1A >{af2 [>{d]4]
2B >{al1 F>~{b[3]
3D [>{b[2 f>~{d[4]
4|c>{d[3 f>{d[1]

(a) The graph and the adjacency-lists
|1A 2B 3D 4C

1A 0 a 0 d
2B a 0 b 0
3D 0 b 0 d

4C d 0 d 0
(b) The adjacency-matrix

Figure 5: The adjacency-list and adjacency-matrix
representations of graphs.

copy of the original database plus some bookkeeping.

Updating the linked lists of graph-ids requires random
accesses to the edge table and the linked lists. In many
cases, the edge table can be held into main memory, but not
the linked list. Therefore, it is important to cache the linked
lists of graph-ids in a buffer. The linked lists can be cached
according to the frequency of the corresponding edges.

Constructing ADI for large, disk-based graph database
may not be cheap. However, the ADI structure can be built
once and used by the mining many times. That is, we can
build an A DI structure using a very low support threshold,
or even set min_sup = 1.2 The index is stored on disk.
Then, the mining in the future can use the index directly,
as long as the support threshold is no less than the one that
is used in the ADI structure construction.

4.5 Projected Databases Using ADI

Many depth-first search, pattern-growth algorithms uti-
lize proper projected databases. During the depth-first search
in graph pattern mining, the graphs containing the cur-
rent graph pattern P should be collected and form the P-
projected database. Then, the further search of larger graph
patterns having P as the prefix of their minimum DFS codes
can be achieved by searching only the P-projected database.

Interestingly, the projected databases can be constructed
using ADI structures. A projected database can be stored
in the form of an ADI structure. In fact, only the edge table
and the list of graph-ids should be constructed for a new
projected database and the adjacency information residing
on disk can be shared by all projected databases. That
can save a lot of time and space when mining large graph
databases that contain many graph patterns, where many
projected databases may have to be constructed.

4.6 Why Is ADI Good for Large Databases?

In most of the previous methods for graph pattern mining,
the adjacency-list or adjacency-matrix representations are
used to represent graphs. Each graph is represented by an
adjacency-matrix or a set of adjacency-lists. An example is
shown in Figure 5.

2Tf min_sup = 1, then the ADI structure can be constructed
by scanning the graph database only once. We do not need
to find frequent edges, since every edge appearing in the
graph database is frequent.

In Figure 5(a), the adjacency-lists have 8 nodes and 8
pointers. It stores the same information as Block 1 in Fig-
ure 3, where the block has 4 nodes and 12 pointers.

The space requirements of adjacency-lists and ADI struc-
ture are comparable. From the figure, we can see that each
edge in a graph has to be stored twice: one instance for
each vertex. (If we want to remove this redundancy, the
tradeoff is the substantial increase of cost in finding adja-
cency information). In general, for a graph of n edges, the
adjacency-list representation needs 2n nodes and 2n point-
ers. An ADI structure stores each edge once, and use the
linkage among the edges from the same vertex to record the
adjacency information. In general, for a graph of n edges, it
needs n nodes and 3n pointers.

Then, what is the advantage of ADI structure against
adjacency-list representation? The key advantage is that the
ADI structure extracts the information about containments
of edges in graphs in the first two levels (i.e., the edge table
and the linked list of graph-ids). Therefore, in many opera-
tions, such as the edge support checking and edge-host graph
checking, there is no need to visit the adjacency information
at all. To the contrast, if the adjacency-list representation
is used, every operation has to check the linked lists. When
the database is large so that either the adjacency-lists of all
graphs or the adjacency information in the ADI structure
cannot be accommodated into main memory, using the first
two levels of the ADI structure can save many calls to the
adjacency information, while the adjacency-lists of various
graphs have to be transferred between the main memory and
the disk many times.

Usually, the adjacency-matrix is sparse. The adjacency-
matrix representation is inefficient in space and thus is not
used.

5. ALGORITHM ADI-MINE

With the help from the ADI structure, how can we im-
prove the scalability and efficiency of frequent graph pattern
mining? Here, we present a pattern-growth algorithm ADI-
Mine, which is an improvement of algorithm g¢gSpan. The
algorithm is shown in Figure 6.

If the ADI structure is unavailable, then the algorithm
scans the graph database and constructs the index. Other-
wise, it just uses the ADI structure on the disk.

The frequent edges can be obtained from the edge table in
the ADI structure. Each frequent edge is one of the smallest
frequent graph patterns and thus should be output. Then,
the frequent edges should be used as the “seeds” to grow
larger frequent graph patterns, and the frequent adjacent
edges of e should be used in the pattern-growth. An edge
e’ is a frequent adjacent edge of e if €’ is an adjacent edge of
e in at least min_sup graphs. The set of frequent adjacent
edges can be retrieved efficiently from the ADI structure
since the identities of the graphs containing e are indexed
as a linked-list, and the adjacent edges are also indexed in
the adjacency information part in the ADI structure.

The pattern growth is implemented as calls to procedure
subgraph-mine. Procedure subgraph-mine tries every fre-
quent adjacent edge e (i.e., edges in set F.) and checks
whether e can be added into the current frequent graph pat-
tern G to form a larger pattern G'. We use the DFS code to
test the redundancy. Only the patterns G’ whose DFS code
is minimum is output and further grown. All other patterns
G’ are either found before or will be found later at other



Input: a graph database GDB and min_sup
Output: the complete set of frequent graph patterns
Method:
construct the ADI structure for the graph database if
it is not available;
for each frequent edge e in the edge table do
output e as a graph pattern;
from the ADI structure, find set F., the set of
frequent adjacent edges for e;
call subgraph-mine(e, Fe);
end for

Procedure subgraph-mine
Parameters: a frequent graph pattern G, and
the set of frequent adjacent edges Fe
// output the frequent graph patterns whose
// minimum DFS-codes contain that of G as a prefix
Method:
for each edge e in F. do
let G’ be the graph by adding e into G;
compute the DFS code of G’; if the DFS code is
not minimum, then return;
output G’ as a frequent graph pattern;
update the set Fe of adjacent edges;
call subgraph-mine(G', F.);
end for
return;

Figure 6: Algorithm ADI-Mine.

branches. The correctness of this step is guaranteed by the
property of DFS code [11].

Once a larger pattern G’ is found, the set of adjacent edges
of the current pattern should be updated, since the adjacent
edges of the newly inserted edge should also be considered
in the future growth from G’. This update operation can be
implemented efficiently, since the identities of graphs that
contain an edge e are linked together in the ADI structure,
and the adjacency information is also indexed and linked
according to the graph-ids.

Differences Between ADI-Mine and gSpan

At high level, the structure as well as the search strategies
of ADI-Mine and gSpan are similar. The critical difference
is on the storage structure for graphs— A DI-Mine uses ADI
structure and gSpan uses adjacency-list representation.

In the recursive mining, the critical operation is find-
ing the graphs that contain the current graph pattern (i.e.,
the test of subgraph isomorphism) and finding the adjacent
edges to grow larger graph patterns. The current graph
pattern is recorded using the labels. Thus, the edges are
searched using the labels of the vertices and that of the
edges.

In gSpan, the test of subgraph isomorphism is achieved
by scanning the current (projected) database. Since the
graphs are stored in adjacency-list representation, and one
label may appear more than once in a graph, the search can
be costly. For example, in graph G2 in Figure 3, in order
to find an edge (C,d, A), the adjacency-list for vertices 4
and 6 may have to be searched. If the graph is large and
the labels appear multiple times in a graph, there may be

many adjacency-lists for vertices of the same label, and the
adjacency-lists are long.

Moreover, for large graph database that cannot be held
into main memory, the adjacency-list representation of a
graph has to be loaded into main memory before the graph
can be searched.

In ADI-Mine, the graphs are stored in the ADI structure.
The edges are indexed by their labels. Then, the graphs that
contain the edges can be retrieved immediately. Moreover,
all edges with the same labels are linked together by the
links between the graph-id and the instances. That helps
the test of subgraph isomorphism substantially.

Furthermore, using the index of edges by their labels, only
the graphs that contain the specific edge will be loaded into
main memory for further subgraph isomorphism test. Irrel-
evant graphs can be filtered out immediately by the index.
When the database is too large to fit into main memory, it
saves a substantial part of transfers of graphs between disk
and main memory.

6. EXPERIMENTAL RESULTS

In this section, we report a systematic performance study
on the ADI structure and a comparison of gSpan and ADI-
Mine on mining both small, memory-based databases and
large, disk-based databases. We obtain the executable of
gSpan from the authors. The ADI structure and algorithm
ADI-Mine are implemented using C/C++.

6.1 Experiment Setting

All the experiments are conducted on an IBM NetFinity
5100 machine with an Intel PIII 733MHz CPU, 512M RAM
and 18G hard disk. The speed of the hard disk is 10,000
RPM. The operating system is Redhat Linux 9.0.

We implement a synthetic data generator following the
procedure described in [6]. The data generator takes five
parameters as follows.

D: the total number of graphs in the data set

T: the average number of edges in graphs

I: the average number of edges in potentially fre-
quent graph patterns (i.e., the frequent kernels)

L:  the number of potentially frequent kernels

N: the number of possible labels

Please refer to [6] for the details of the data generator.
For example, a data set D10kN4110720L200 means that
the data set contains 10k graphs; there are 4 possible labels;
the average number of edges in the frequent kernel graphs
is 10; the average number of edges in the graphs is 20; and
the number of potentially frequent kernels is 200. Hereafter
in this section, when we say “parameters”, it means the
parameters for the data generator to create the data sets.

In [11], L is fixed to 200. In our experiments, we also set
L = 200 as the default value, but will test the scalability of
our algorithm on L as well.

Please note that, in all experiments, the runtime of ADI-
Mine includes both the ADI construction time and the min-
ing time.

6.2 Mining Main Memory-based Databases

In this set of experiments, both gSpan and ADI-Mine run
in main memory.



6.2.1 Scalability on Minimum Support Threshold

We test the scalability of gSpan and A DI-Mine on the min-
imum support threshold. Data set D100kN30I5720L200 is
used. The minimum support threshold varies from 4% to
10%. The results are shown in Figure 7(a).

As can be seen, both gSpan and ADI-Mine are scalable,
but ADI-Mine is about 10 times faster. We discussed the
result with Mr. X. Yan, the author of gSpan. He confirms
that counting frequent edges in gSpan is time consuming.
On the other hand, the construction of ADI structure is
relatively efficient. When the minimum support threshold
is set to 1, i.e., all edges are indexed, the A DI structure uses
approximately 57M main memory and costs 86 seconds in
construction.

6.2.2 Scalability on Database Size

We test the scalability of gSpan and ADI-Mine on the
size of databases. We fix the parameters N = 30, I = 5,
T = 20 and L = 200, and vary the number of graphs in
database from 50 thousand to 100 thousand. The minimum
support threshold is set to 1% of the number of graphs in
the database. The results are shown in Figure 7(b). The
construction time of ADI structure is also plotted in the
figure.

Both the algorithms and the construction of ADI struc-
ture are linearly scalable on the size of databases. ADI-Mine
is faster. We observe that the size of ADI structure is also
scalable. For example, it uses 28M when the database has 50
thousand graphs, and 57M when the database has 100 thou-
sand graphs. This observation concurs with Theorem 1.

6.2.3 Effects of Data Set Parameters

We test the scalability of the two algorithms on param-
eter N—the number of possible labels. We use data set
D100kN20-5015T20L200, that is, the N value varies from
20 to 50. The minimum support threshold is fixed at 1%.
The results are shown in Figure 7(c). Please note that the
Y-axis is in logarithmic scale.

We can observe that the runtime of gSpan increases ex-
ponentially as N increases. This result is consistent with
the result reported in [11],3 When there are many possible
labels in the database, the search without index becomes
dramatically more costly. Interestingly, both ADI-Mine and
the construction of ADI structure are linearly scalable on N.
As discussed before, the edge table in ADI structure only in-
dexes the unique edges in a graph database. Searching using
the indexed edge table is efficient. The time complexity of
searching an edge by labels is O(logn), where n is the num-
ber of distinct edges in the database. This is not affected by
the increase of the possible labels. As expected, the size of
the ADI structure is stable, about 57M in this experiment.

We use data set D100kN30/5710-30L200 to test the scal-
ability of the two algorithms on parameter T—the average
number of edges in a graph. The minimum support thresh-
old is set to 1%. The results are shown in Figure 7(d).

As the number of edges increases, the graph becomes more
complex. The cost of storing and searching the graph also
increases accordingly. As shown in the figure, both algo-
rithms and the construction of ADI are linearly scalable.

We also test the effects of other parameters. The experi-
mental results show that both gSpan and ADI-Mine are not

3Please refer to Figures 5(b) and 5(c) in the UTUC technical
report version of [11].

sensitive to I—the average number of edges in potentially
frequent graph patterns—and L—the number of potentially
frequent kernels. The construction time and space cost of
ADI structures are also stable. The reason is that the ef-
fects of those two parameters on the distribution in the data
sets are minor. Similar observations have been reported by
previous studies on mining frequent itemsets and sequential
patterns. Limited by space, we omit the details here.

6.3 Mining Disk-based Databases

Now, we report the experimental results on mining large,
disk-based databases. In this set of experiments, we reserve
a block of main memory of fixed size for ADI structure.
When the size is too small for the A DI-structure, some levels
of the ADI structure are accommodated on disk. On the
other hand, we do not confine the memory usage for gSpan.

6.3.1 Scalability on Database Size

We test the scalability of both gSpan and A DI-Mine on the
size of databases. We use data set D100k-1mN3015720L200.
The number of graphs in the database is varied from 100
thousand to 1 million. The main memory block for ADI
structure is limited to 250M. The results are shown in Fig-
ure 8(a). The construction time of ADI structure is also
plotted. Please note that the Y-axis is in logarithmic scale.

The construction runtime of ADI structure is approxi-
mately linear on the database size. That is, the construc-
tion of the ADI index is highly scalable. We also measure
the size of ADI structure. The results are shown in Fig-
ure 8(b). We can observe that the size of the ADI structure

is linear to the database size. In this experiment, the ratio
size of ADI structure in megabytes is about 0.6. When the

number of graphs in thousands
database size is 1 million, the size of ADI structure is 601M,

which exceeds the main memory size of our machine. Even
in such case, the construction runtime is still linear.

As explained before, the construction of ADI structure
makes sequential scans of the database and conducts a se-
quential write of the adjacency information. The overhead
of construction of edge table and the linked lists of graph-
ids is relatively small and thus has a minor effect on the
construction time.

While gSpan can handle databases of only up to 300 thou-
sand graphs in this experiment, ADI-Mine can handle
databases of 1 million graphs. The curve of the runtime
of ADI-Mine can be divided into three stages.

First, when the database has up to 300 thousand graphs,
the ADI structure can be fully accommodated in main mem-
ory. ADI-Mine is faster than gSpan.

Second, when the database has 300 to 600 thousand graphs,
gSpan cannot finish. The A DI structure cannot be fully held
in main memory. Some part of the adjacency information is
put on disk. We see a significant jump in the runtime curve
of ADI-Mine between the databases of 300 thousand graphs
and 400 thousand graphs.

Last, when the database has 800 thousand or more graphs,
even the linked lists of graph-ids cannot be fully put into
main memory. Thus, another significant jump in the run-
time curve can be observed.

6.3.2 Tradeoff Between Efficiency and Main Memory

Consumption

It is interesting to examine the tradeoff between efficiency
and size of available main memory. We use data set
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Figure 8: The experimental results of mining large disk-based databases.

D100kN30I5720L200, set the minimum support threshold
to 1%, vary the main memory limit from 10M to 150M for
ADI structure, and measure the runtime of ADI-Mine. The
results are shown in Figure 8(c). In this experiment, the
size of ADI structure is 57M. The construction time is 86
seconds. The highest watermark of main memory usage for
gSpan in mining this data set is 87M. gSpan uses 1161 sec-
onds in the mining if it has sufficient main memory.

When the ADI structure can be completely loaded into
main memory (57M or larger), ADI-Mine runs fast. Further
increase of the available main memory cannot reduce the
runtime.

When the ADI structure cannot be fully put into main
memory, the runtime increases. The more main memory,
the faster ADI-Mine runs.

When the available main memory is too small to even
hold the linked lists of graph-ids, the runtime of ADI-Mine
increases substantially. However, it still can finish the min-
ing with 10M main memory limit in 2 hours.

6.3.3 Number of Disk Block Reads

In addition to runtime, the efficiency of mining large disk-
based databases can also be measured by the number of disk
block read operations.

Figure 9(a) shows the number of disk block reads versus
the minimum support threshold. When the support thresh-
old is high (e.g., 9% or up), the number of frequent edges
is small. The ADI structure can be held into main memory
and thus the I/O cost is very low. As the support threshold
goes down, larger and larger part of the ADI structure is
stored on disk, and the I/O cost increases. This curve is
consistent with the trend in Figure 7(a).

Figure 9(b) shows the number of disk block reads versus

the number of graphs in the database. As the database size
goes up, the I/O cost increases exponentially. This explains
the curve of ADI-Mine in Figure 8(a).

We also test the I/O cost on available main memory. The
result is shown in Figure 9(c), which is consistent with the
trend of runtime curve in Figure 8(c).

6.3.4 Effects of Other Parameters

We also test the effects of the other parameters on the
efficiency. We observe similar trends as in mining memory-
based databases. Limited by space, we omit the details here.

6.4 Summary of Experimental Results

The extensive performance study clearly shows the fol-
lowing. First, both gSpan and ADI-Mine are scalable when
database can be held into main memory. ADI-Mine is faster
than gSpan. Second, ADI-Mine can mine very large graph
databases by accommodating the ADI structure on disk.
The performance of ADI-Mine on mining large disk-based
databases is highly scalable. Third, the size of ADI struc-
ture is linearly scalable with respect to the size of databases.
Fourth, we can control the tradeoff between the mining effi-
ciency and the main memory consumption. Last, ADI-Mine
is more scalable than gSpan in mining complex graphs—the
graphs that have many different kinds of labels.

7. RELATED WORK

The problem of finding frequent common structures has
been studied since early 1990s. For example, [1, 7] study the
the problem of finding common substructures from chemi-
cal compounds. SUBDUE [4] proposes an approximate al-
gorithm to identify some, instead of the complete set of,
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Figure 9: The number of disk blocks read in the mining.

frequent substructures. However, these methods do not aim
at scalable algorithms for mining large graph databases.

The problem of mining the complete set of frequent graph
patterns is firstly explored by Inokuchi et al. [5]. An Apriori-
like algorithm AGM is proposed. Kuramochi and Karypis [6]
develop an efficient algorithm, FSG, for graph pattern min-
ing. The major idea is to utilize an effective graph repre-
sentation, and conduct the edge-growth mining instead of
vertex-growth mining. Both AGM and FSG adopt breadth-
first search.

Recently, Yan and Han propose the depth-first search ap-
proach, gSpan [11] for graph mining. They also investigate
the problem of mining frequent closed graphs [9], which is
a non-redundant representation of frequent graph patterns.
As a latest result, Yan et al. [10] uses frequent graph pat-
terns to index graphs.

As a special case of graph mining, tree mining also re-
ceives intensive research recently. Zaki [12] proposes the
first algorithm for mining frequent tree patterns.

Although there are quite a few studies on the efficient min-
ing of frequent graph patterns, none of them addresses the
problem of effective index structure for mining large disk-
based graph databases. When the database is too large to
fit into main memory, the mining becomes I/O bounded,
and the appropriate index structure becomes very critical
for the scalability.

8. CONCLUSIONS

In this paper, we study the problem of scalable mining
of large disk-based graph database. The ADI structure, an
effective index structure, is developed. Taking gSpan as a
concrete example, we propose ADI-Mine, an efficient algo-
rithm adopting the A DI structure, to improve the scalability
of the frequent graph mining substantially.

The ADI-Mine structure is a general index for graph min-
ing. As future work, it is interesting to examine the effect of
the index structure on improving other graph pattern mining
methods, such as mining frequent closed graphs and mining
graphs with constraints. Furthermore, devising index struc-
tures to support scalable data mining on large disk-based
databases is an important and interesting research problem
with extensive applications and industrial values.
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