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Abstract—Whereas data mining in structured data focuses on frequent data values, in semistructured and graph data mining, the

issue is frequent labels and common specific topologies. Here, the structure of the data is just as important as its content. We study the
problem of discovering typical patterns of graph data, a task made difficult because of the complexity of required subtasks, especially
subgraph isomorphism. In this paper, we propose a new Apriori-based algorithm for mining graph data, where the basic building blocks
are relatively large, disjoint paths. The algorithm is proven to be sound and complete. Empirical evidence shows practical advantages

of our approach for certain categories of graphs.
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1 INTRODUCTION

DUE to increasing amounts of structured and unstruc-
tured data collected by various companies and
institutions, the importance of data mining has grown
significantly over the last several years. Whereas, in the
past, data mining was mainly applied to structured data
and flat files, there is growing interest in mining and
discovering frequent patterns in semistructured data such
as Web data ([23], [35], [2]), chemical compounds data [8],
[27], or biological data [29]. The focus of this paper is on
discovering such frequent patterns in the form of (possibly
labeled) graphs and a new algorithm for this difficult task.

Semistructured data appears when the source does not
impose a rigid structure on the data, such as the Web, or
when data is combined from several heterogeneous sources.
Unlike unstructured raw data (like image and sound),
semistructured data does have some structure, but unlike
structured data (such as relational or object-oriented
databases), semistructured data has no absolute schema or
class fixed in advance. For example, in the Internet Movie
Database [28], some movies have more actors than others,
some fields (e.g., Award) are missing for some movies, some
actors have birthdays recorded and some do not, etc. As a
result, the structure of objects is irregular and a query over
the structure is as important as a query over the data. This
structural irregularity, however, does not imply that there is
no structural similarity among semistructured objects. On
the contrary, it is common for semistructured objects
describing the same type of information to have similar
structures. For example, every movie object has Title and
Director labels, every Actor object has a Name label,
50 percent of Actor objects have a Nationality label, etc. This
phenomenon is common in other types of semistructured
data as well [19].
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While, in the field of structured data mining, frequent
data values and their common appearances are of interest, in
mining semistructured data, the focus is on frequent labels
and common appearances of subsets of such labels (in terms
of XML, one would look for frequent occurrences of
structures of elements or attributes, disregarding the
attribute values). Therefore, frequently, a common model
is a graph, with labels on nodes, on edges, or on both (the
transformation between these types of model is quite
simple). In this paper, we assume the model of a directed
or undirected graph (or set of graphs) with node labels and
our task is to find frequent patterns in such a graph. For
example, see Fig. 1, depicting some frequent graph patterns
found by our algorithm in an XML movie database [28].

1.1 Graph Mining Applications

Discovering and understanding frequent patterns that
represent a sufficiently large part of a semistructured
database can be useful in several application areas:

Improving Database Storage and Design [10], [31].
Semistructured data sets (a typical example being XML
data), carry their own schema information. Though re-
quired for data exchange and integration, such schema
incorporation entails considerable space overhead, since the
schema information is stored with the data (e.g., element
names in XML). Because of this overhead, commercial
database management systems often store XML data in
relational databases. Semistructured data can always be
stored as a ternary relation, since the data is an edge-labeled
graph, but this is no better than storing the schema with the
data. A “good” mapping (in terms of disk space or
fragmentation) from a semistructured data instance into a
relational schema is desirable. Frequent patterns discovered
in the semistructured data can be used for that purpose
since they can help generate the basic relations, while the
nonfrequent patterns would be stored as “overflow”
relations (see [10]).

Efficient Indexing and Querying. Querying a semi-
structured database is an important and common activity.
Numerous query languages were proposed for this purpose
(see [9], [3]). To speed up query processing, several
indexing techniques were proposed for semistructured
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Fig. 1. Pattern examples.

and XML data [13], [25]. Recently, it was realized that full
indexing on all possible labels and paths in a semistruc-
tured data is not practical. The APEX indexing scheme [5]
suggests indexing mainly on frequent paths, where the
frequent paths are found by data mining techniques. This
idea of using mining for indexing can naturally be general-
ized to general graphs, as proposed in [31], where paths are
used for finding all occurrences of a query graph in the
database.

User Preference-Based and User Modeling Applica-
tions [11], [38]. An important goal for Web-page design is to
provide viewer-oriented personalization of Web-page con-
tent. Designers often strive to condition Web-page content
and appearance on the current preferences of the viewer and
probably on some underlying structure of the Web-page
content. In order to optimize such content, one often refers to
data mining. When the semistructured database is a
collection of user traversal patterns, one can derive expected
user behavior from knowledge about frequent traversal
patterns of the same user collected over a certain period of
time. This results in useful applications, e.g., placing
advertisements in proper places and better customer/user
classification and behavior analysis. In past work, Web
navigation patterns were usually represented as paths or
trees and, for this type of problem, tree and path mining are
most relevant [4]. However, if one looks at sets of related
Web navigation patterns or at behavior over time, one gets
more complex patterns which can be represented by graphs,
motivating the use of graph mining. Another application
related to user behavior is the area of social networks,
analyzing which is an important field in communication
and in security applications [12]. An example of a social
network database based on e-mails is used in our study.

1.2 Categories of Graph Mining Problems

In the past, most work done in this field dealt with either
single path patterns [2] or treelike patterns [23], [35], [4].
However, much of the data on the web is graphlike, either
cyclic or acyclic, motivating the mining of general graph
data. The field of graph mining received much attention in
recent years and several well-known algorithms were
developed, such as AGM [17], FSG [20], gSpan [39],
CloseGraph [40], and AdiMine [34]. In this paper, we
present a new algorithm for mining frequent patterns in
semistructured data, where the data is modeled as a labeled
graph. Our algorithm handles general unrestricted graphs,
directed or undirected.

There are two distinct problem formulations for frequent
pattern mining in graph data sets. In the first, known as the
graph-transaction setting, the input to the pattern mining
algorithm is a set of (usually) relatively small graphs and a
pattern is considered frequent if it appears in a large
number or fraction of the graphs. Note that a pattern
occurrence is counted only once per transaction, indepen-
dent of possible multiple occurrences in the same transac-
tion. A typical application for this formulation is finding
frequent subgraphs in molecular transactions [20].
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In the second setting, the frequency of a pattern is based
on the number of its occurrences (i.e., embeddings) of a
pattern in all the data, counting multiple occurrences per
transaction. For this setting, one can assume without loss of
generality that the input is a single graph because one can
always treat multiple graphs as a single graph with
disconnected components. For historical reasons, we refer
to this formulation as the single-graph setting [21], although
neither the problem formulation nor the algorithms are
limited in this manner. Due to the inherent differences in
characteristics of the problem formulation, algorithms
developed for the graph-transaction setting cannot handle
the single-graph setting, whereas the latter algorithms can
be used to solve the former problem. In recent years, a
number of efficient and scalable algorithms have been
developed to find patterns in the graph-transaction setting
[19], [20], [39], [18], [15], [16], [6]. These algorithms are
complete in the sense that they are guaranteed to discover
all frequent subgraphs and were shown to scale to very
large graph data sets. However, developing algorithms that
are capable of finding patterns in cases where each
transaction is a large graph, and especially the single-graph
setting, has received much less attention, despite the fact
that this problem setting is more generic and applicable to a
wider range of data sets and application domains than the
former problem. Other than our own papers [32], [33], the
most recent paper dealing with the single-graph setting is
[22], discussed in Section 5.

1.3 Overview of the Proposed Algorithm

The algorithm presented in this paper uses breadth-first
enumeration and is based on the Apriori algorithm [1]. These
algorithms use an admissibility property (defined below) of
the support measure in order to prune candidate patterns
without checking their support directly, while ensuring
completeness. Since a pattern is considered to be frequent in a
data set graph if its support measure is greater than a user-
provided threshold, then once a pattern has support smaller
than the threshold, all of its superpatterns can be pruned or
potentially not even be generated in the first place.

Let the support measure S be a function from graph
patterns and data set graphs to real numbers (usually in
[0, 1]). As usually the data set graph is understood, this
argument to S is omitted. S obeys the admissibility
constraint (also called antimonotonicity, or downward
closure) if every subgraph of a frequent pattern is also
frequent [1], [14]. Formally:

Definition (admissible support measure). A support measure
S is admissible if, for every pattern P, S(P) > 0 and for all
patterns Py, Py such that Py C P, we have S(P;) > S(Ps).

Apriori-based algorithms compose candidate patterns
from building blocks that vary between algorithms. In our
algorithm, the building block is a complete path (see the
next section for precise definitions)—as seen in the
following (extremely simplified) outline of our algorithm:

1. Find all patterns composed of a single path by
directly counting the number of occurrences of these
patterns in the data set. Eliminate the nonfrequent
patterns.

2. Find all candidate patterns composed of two
frequent paths and eliminate the nonfrequent
patterns.
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3. At each successive step n:

a. Construct candidate patterns from smaller fre-
quent ones that have a common “core.” Speci-
fically, generate patterns with n + 1 paths by
merging two patterns with n paths that have a
common core with n—1 paths. A simple
example for n =2 is shown in Fig. 8 Two
graphs, each consisting of two paths, with an
identical core consisting of one path, are merged
to create a graph with three paths. In general,
this construction, the heart of the algorithm, is
quite complex.

Prune candidates that are not frequent.

c. Stop when no more frequent patterns can be
generated.

The above outline is precisely the same as for most Apriori-
based algorithms, the crucial difference being that while for
itemset mining, the building blocks are items, and for most
graph mining algorithms (such as FSG or gSpan), the
building blocks are edges or nodes, in our algorithm, the
building blocks are the (typically much larger) edge-disjoint
paths. Making the building block larger allows for a smaller
number of iterations, as well as for a smaller number of
candidate patterns that need to be tested for support—the
main goal of our scheme. Since testing support of a pattern
is expensive, especially for graph data, it is important to
improve pruning, even if it entails considerable overhead
over the naive methods of generating and testing patterns.
Another complication is that achieving completeness
becomes nontrivial, and considerable space is devoted in
this paper to how completeness can be provably
maintained.

1.4 Contributions and Outline of the Paper

The idea of using paths as building blocks in a graph
mining algorithm was presented briefly in an earlier,
conference version of this paper [32]. The operators used
to define graph composition, which allow for efficient
implementation of the graph merge in practice, are a new
contribution of this version. A major issue in this respect is
proving that our edge-disjoint path-based algorithm is
complete. This proof of correctness (Section 3) is a
previously unpublished, nontrivial main contribution of
this paper.

In attempting to find frequently occurring subgraph
patterns within a graph, computing the frequency of
occurrence of the pattern in the larger graph (the database)
and the support measure is an intensive computational
step. This involves multiple computations of the subgraph
isomorphism problem, which is a hard problem. In order to
decrease the number of extremely expensive support
computations, we must discard, as early as possible, as
many candidate patterns as possible. This is a general
property of our algorithm. Minimizing the number of
expensive support computations is the second major
contribution of this paper. This advantage is more promi-
nent when the transaction graphs are large, and even more
so in the “single-graph” setting, where the support
computation tends to be extremely hard.

To prove the feasibility of our scheme, we implemented
the proposed algorithms, tested them on some XML
databases and synthetic graphs, and compared them to
other approaches for counting graphs patterns, mainly the
naive and the FSG algorithms. Note that the algorithm
presented here is orthogonal to the support measure and
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therefore can be used for both cases and is compared
experimentally to FSG in both cases. The results show that,
while in the transaction setting the two algorithms are
comparable, in the “single-graph” setting our algorithm
shows a significant reduction in the number of candidates
generated and therefore in the number of support computa-
tions. In our experiments, we dealt with medium-size graph
databases (up to 20,000 nodes) since for larger sizes the
single-graph case support computation was too heavy
computationally for both the FSG algorithm and ours. The
experimental evaluation of our algorithm (Section 4) is the
third contribution of this paper.

The rest of this paper is organized as follows: We begin
with revisiting some graph theoretic notation and results
(Section 2), followed by a formal definition of our graph-
mining problem and new definitions used in specifying the
algorithm. The graph mining algorithm and its correctness
proof are then presented (Section 3). Empirical evaluation of
our algorithm on both synthetic and real data is examined
in Section 4. Section 5 discusses related work, as well as the
applicability of our algorithm to other settings.

2 PRELIMINARIES

We begin with revisiting standard terms from the literature.
A formal statement of our graph-mining problem is made,
followed by a definition of composition operators essential for
generating candidate graphs in the algorithm. Important
basic properties of the operators are stated and proved.

2.1 Paths and Path Covers

We begin by revisiting some graph-theoretic terms and
properties. Notation needed later on is also introduced.

A path is an alternating sequence of nodes and (their
incident) edges that begins and ends with a node and that
does not contain any edge more than once. For directed
graphs, we require a path to respect the direction of the
edges, resulting in a directed path. A set P of edge-disjoint
paths covering all edges of a graph G exactly once is
called a path cover of G. A path cover P is called minimal
if it has the smallest cardinality of all path covers of G.
Clearly, in general, the minimal cover is not unique. The
path number p(G) is the cardinality of any minimal path
cover of G.

In this paper, we use paths as the building blocks in
order to create larger graphs, but we are not concerned
about how to traverse the paths once they have been
created. Henceforth, we ignore the ordering inherent to the
path definition and represent a path simply as the set of
nodes and edges in the path, i.e., as a graph. Two different
paths that have the same set of nodes and edges are thus
indistinguishable in our method. Note that we still require
that such a graph be traversable as a single path, even
though the traversal does not have to be unique.

Removing path P from graph G, denoted by G\ P,
consists of removing all edges of P from G, followed by
removing all stand-alone nodes. To compute the path
number, we rely on well-known facts:

1. A connected undirected graph G = (V, E) is Eulerian
(can be covered by a single cyclic path) iff for every
v €V, d(v) is even. A connected digraph G = (V, E)
is Eulerian (can be covered by a single directed cyclic
path) iff for every v € V, d*(v) = d~ (v). (Throughout,
we denote the in-degree of v by d*(v), and the out-
degree by d~(v).)
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Fig. 2. Representing tuples.

2. For every connected undirected graph G = (V,F),
p(G)=1 if G is Eulerian, and p(G)=|{v]ve
V,d(v) is odd}|/2 otherwise. For every connected
directed graph G = (V, E), p(G) =1 if G is Eulerian
and p(G) = (¥,ey |4 (v) - d (v)])/2 otherwise.

Observe that the path number of a graph is never greater

than the number of edges, being in fact much smaller in
most cases—especially for undirected graphs. Thus, paths
as building blocks should decrease the number of iterations
in the algorithm, as well as improve the pruning.

2.2 Problem Statement

A labeled graph is a graph that has a label associated with
each node v, denoted by label(v). We assume without loss of
generality that the data set (as well as the pattern) graph is
labeled (otherwise, assign to all nodes in the graph the same
arbitrary label). Given two graphs G' = (V',E’) and
G"= (V" E"), a label-preserving isomorphism between G’
and G” is a graph isomorphism ¢ : V' — V" such that, for
every v e V', label(v) = label(¢(v)). When such an iso-
morphism exists, denote by G' ~ G” the fact that the graphs
are isomorphic. P is a graph pattern in graph G if it is
isomorphic to a connected subgraph of G.

Our problem is formally defined as follows. Given a data
set labeled graph G, a support measure S over pattern
graphs, and a support threshold o, find all pattern graphs P
with support S(P) > o in G. Recall that the input can be a
set of graphs as well as a single graph without loss of
generality throughout.

2.3 Lexicographic Ordering

To facilitate efficient indexing of path covers in a graph, we
use a canonical representation of paths and path sequences.
The lexicographical ordering over paths uses node labels
and degrees of nodes in paths, as follows:

A path P uniquely defines the graph (V(P), E(P)): the
nodes traversed by the path, and the edges traversed by the
path, respectively. For node v € V(P), the path degrees d},(v)
and dz(v) are the in-degree and out degree, respectively, of
v in (V(P),E(P)). For undirected paths, the path degree
dp(v) of v is simply the degree of v in (V(P), E(P)).

Let P be a directed path and let v € V(P). A node in a
path is represented by a representing tuple (see Fig. 2),
defined as follows:

RTp(v) == (label(v), d}(v), dp(v)).

For undirected paths, the representing tuple is likewise
defined as

RTp(v) := (label(v), dp(v)).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

NOVEMBER 2006

Assuming a natural complete ordering between labels, as
well as the natural complete ordering between integers, a
lexicographical ordering between the node representation
tuples of v and v, denoted v <y, u, is understood. Likewise,
equality operator v =, u denotes equality of the respective
representing tuples.

Paths are indexed by a path descriptor, defined as follows:
Given a path P, sort V(P) using the order <, . The resulting
sorted sequence, denoted by de(P), is the path descriptor of
P. The order <, between paths is a lexicographic ordering
between path descriptors, using <; for elementwise
comparison. When the path descriptors of P and @) are
lexicographically equal (which occurs just when the
sequences are equal), we write P =, Q. If de(P) and de(Q)
are sequences of unequal length, such that the shorter
sequence (let it be de(P) without loss of generality) is a
prefix of the longer sequence, we will use the convention
that, in this case, P <, Q. Note that P = @ entails P =, @,
but not vice versa.

Fig. 2 shows a path cover of size 2 of a graph, where the
paths are P = vy, v9,vs5,v4,v3 and @ = vy,v3,v2. The path
descriptors are

de(P) = (a,0,1),(a,1,1),(b,1,0),(c,1,1),(d,1,1),

and

de(Q) = (a,0,1), (a,1,0), (b,1,1).

Since de(Q) <ier de(P) (because (a,0,1) =, (a,0,1) and
(a,1,0) <jey (a,1,1)), we have Q <, P.

Observation 1. <, is transitive and complete (that is, every pair
of paths is comparable).

Finally, multisets of paths (which are used to represent a
decomposition of a graph into paths) are indexed by
composition descriptors, defined as follows: Let P be a
multiset of paths. The decomposition descriptor of P,
denoted dc(P), is the sorted sequence of the elements of
the multiset {de(P)|P € P}, sorted according to the order-
ing <, . The ordering <., over multisets of paths is defined
as a lexicographic ordering of their composition descriptors.

A minimal path cover P of a graph G is called P —
minimal if there is no minimal path cover Q for which
Q ez P. Observe that there may be more than one P —
minimal path cover for a given graph G, but the
composition descriptors of all the minimal path covers of
G are equal.

2.4 Properties of Path Covers

In our data mining algorithm, we intend to keep in the
nth frequent candidate set only graphs with path number n.
The path number of a graph can be computed in linear time,
as it can be determined uniquely from the multiset of node
degrees. In order to correctly produce candidates with path
number (n+ 1) by combining graph pairs with path
number n, several basic properties of the path covers must
be shown to guarantee completeness of our algorithm:

1. Removing a path (in a minimal path cover) from a
graph reduces the path number by 1.

2. For every connected graph G and minimal path
cover of size n > 2, there are at least two paths in the
cover, each of which can be subtracted from G,
leaving the resulting graph connected.

3. If path number is greater than 1, all paths in a
minimal cover are noncyclic.
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These properties are stated and proved below.

Theorem 1. Let G be a graph (directed or undirected) with path
number n > 1, and let P be a minimal path cover of G. Then,
for every path P € P, the graph G' =G\ P has path
number n — 1.

Proof. Clearly, P\ P is a path cover of G\ P and, thus,
p(G\ P) <n—1.Now, let P be a path cover of G \ P of
sizen’ < n — 1. Then, P’ U {P} is a path cover of G of size
n' +1 < n, a contradiction. O

Theorem 2. Let G = (V, E) be a connected graph with p(G) =
n > 2and let (Py,...,P,) be a minimal path decomposition
(assuming any arbitrary ordering on the paths). Then, there
exist 1 <i < j<mn such that graphs G\ P; and G\ P; are
connected.

Proof. Define the undirected “decomposition graph” G’ =
(V',E') of the decomposition, as follows:

=Y SZSTL?
V! 1<

and {v;,v;} € E' just when P, P; have at least one node
in common. Clearly G is connected if and only if G’ is
connected. This property also holds for any G \ P; and its
corresponding decomposition graph, where the latter
decomposition graph is equal to G’ with node v; and its
incident edges removed. Since G is connected, so is the
decomposition graph G’. It is well known that every
connected graph with more than two nodes has at least
two nodes, each of which can be removed (together with
their incident edges), leaving the graph connected. Let
v;,v; be two such nodes in G’ (with i # j). By construc-
tion, this implies that G\ P, and G\ P; are both
connected graphs. ]

Finally, a minimal path cover of a connected graph with
a path number greater than 1 consists only of noncyclic
paths, i.e., paths whose start and end vertices are different.
That is because any cycle P can be at any point v where it
intersects another path @ and merges into path Q—thereby
reducing the size of the cover (contradicting the minimality
of the path cover). Thus, we can construct all graphs with
path number n < 1 just from noncyclic frequent paths. For
undirected graphs, we also can show this:

Lemma 1. Let G = (V, E) be an undirected graph with minimal
path cover P, with p(G) > 2. Then, every path P € P starts at
a node v of odd degree and ends at a node w of odd degree, and

v # U

Proof. From the above result, all paths in the path covers are
noncyclic. Let P € P and let node v be the start of P
(alternately, P ends at v, but not both), implying that P
has an odd number of edges incident on v. Then, for all
Q € P, path Q # P contains an even number of edges
incident to v (because, otherwise, () either starts or ends
at v and can be merged with P into a single path, again
contradicting minimality of P). The degree of v is the
sum of the number of edges incident on v over all paths
in the cover, which (being the sum of even numbers plus
exactly one odd number) is odd. 0

2.5 Compositions and Graph Merging—Notation
and Definitions

In this section, we define the basic operations used to

combine graphs with a common core, preceded by some

required notation.
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TABLE 1
Composition Tuple-Set 7 on Py, P, P
Node P1 P2 P3
U1 aiq 1 1
(%) asg b2 1
Vs as 1 L
Vg 1 b1 1
Vs 1 b3 C3
Vg 1] L |
vy L] L |eco

2.5.1 Notation

For sequences and tuples, we use the following standard
notation. Let ¢ be a sequence of length n (or n-tuple). Then,
for 1 <i < j < n we denote the ith element of ¢ by ¢[¢], and
t[i : j] denotes the subsequence (subtuple) of ¢ starting at ¢
and ending at j, inclusive. The above subscripting and
subsequence operators are also applied to sets of tuples.
Thus, if T is a set of tuples, then T[i : j] = {t[i : jllt € T}. A
set subtraction operator inside the square brackets indicates
removal of the subtracted elements from the tuple
(respectively, set of tuples). Thus, t[1:n\ j] indicates an
(n-1)-tuple consisting of all the elements of ¢ except ¢[j], in
the same order as in t.

We use the dot operator as a sequence (respectively, tuple)
concatenation operator. Applied to a simple element, we
mean concatenation with the respective 1-tuple. For exam-
ple, when e is a simple element, t.e denotes an (n+1)-tuple,
with (t.e)[1 :n] =t¢, and (t.e)[n + 1] = e. When referring to
graph elements, we use L to denote a null element. By ¢ = L,
we mean that in tuple ¢ all elements are equal to L. We define
a composition operator (denoted as +) between graph
elements as follows: Let a be a non-null graph element.
The operator is defined as follows:

at+a=a+1l=14+a=a
1l+1L=1.

The composition of two different, non-null elements is
undefined (as used in this paper, such a composition is
called inconsistent). The composition operator is also
applied as a vector operator, to pairs of n-tuples, denoting
elementwise composition, thus:

(a7 J" b? J‘) + (a7 b7 J‘? J‘) = (a7 b? b? J‘)'

A vector composition where any of the elementwise
compositions is undefined is also undefined (inconsistent).

2.5.2 Graph Compositions

As one of the steps of our algorithm, two graphs (each
composed of a set of paths) are merged to create a larger
graph. In order to facilitate operations on such composite
graphs, we define the notion of composition tuple-set (a
composition for short). See Table 1 for an example.

Definition 1. Let G be a set of graphs. A composition tuple-set T
of width n over G is a pair (G(7), tuples(r)), where G(7) is an
n-tuple with each element designating a graph in G, and T =
tuples(T) is a set of n-tuples, where, for every tuple t € T and
every 1 < i < n, the element t[i] designates either a node in the
graph G(T)[i] or L. A tuple t is label-consistent if, for all
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4 @) //® b1
a)(b) (b by
3-3 © b3
P P P
Fig. 3. Graph G composed from three edge-disjoint paths: P;, P, Ps.

1 <4,5 <n for which t[i] and t[j] are non-null, the nodes

designated by t[i] and t[j] have the same label.

The number of elements in each tuple in tuples(7) will be
denoted by width(r). Observe that G(r) may have more
than one element referring to the same graph. In our
algorithm, the set G will always contain single paths, i.e.,
graphs that have a path number of 1, but the notation can
also be used for composition of other types of graph. We
will henceforth assume that G is the set of paths in our data
set graph and thus omit reference to G. (In practice, we
actually take this set to be the set of just the frequent paths,
for reasons of efficiency.) The semantics of a composition is
a (composite) graph, called the induced graph, which has one
node for every tuple in 7. In order to define the induced
graph, we first wish to make sure that the composition
tuple-set defines an edge-disjoint composition of subgraphs
that does not distort the subgraphs of which it consists.

Definition 2. A composition T (over G) is consistent if all the
following conditions hold:

1. Forevery 1 < i < width(T) and every node
ve V(G(T)[).

there exists a unique t € T such that t[i] = v. (The
node consistency condition: There is a unique
representing tuple for every node.)

2. Every t € T is non-null and label-consistent.

3. For every pair of tuples t,t, € T, we have

i | (hld], a[i]) € E(G(T)ED} < 1.

(The edge disjointness condition: Each pair of
(induced) vertices has an edge in at most one of the
graphs participating in T'.)

Two composition tuple sets are equivalent if they are
equal or one is equal to the other under a permutation of the
indices. (By “under a permutation,” we mean any arbitrary
permutation, but with the same permutation applied to all the
tuples in tuples(t) and to G(7).) The graph induced by a
composition tuple-set 7 = (G(7),T) is denoted by Q(7) and
defined as follows:

Definition 3. Q(7) = (V, E), with V. = {v(t)|t € T} (where v
is an arbitrary function that assigns a unique node to every
tuple t), and

E ={(v(t1),v(t2))|t1,t2 € T A Fi(t1[i], t2[d)) € E(G(7)[i])}-

That is, the induced graph has a node for every tuple in
T and an edge between a pair of nodes just when one of the
subgraphs composing 7 has an edge between these nodes.
Observe that the edge disjointness condition ensures that
this subgraph is unique. When used to compose new
graphs, the function v evaluates to a new unique node, i.e.,
one that does not appear elsewhere in the system.
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Fig. 3 shows a graph consisting of three paths, P, P, P,
and Table 1 presents a corresponding composition tuple-set,
i.e., the graph is an induced graph of the tuple-set.

Observation 2. Let graph G be covered by n mutually edge-
disjoint subgraphs G1,Gs, . .., G,. Then, G is identical to the
graph induced by the composition tuple-set T = (G(T),T)
constructed as follows: G(T) = (G1,Ga,...,Gy), and
tuples(T') consists of |V(G)| tuples, one unique tuple t for
each node in v € G. Denote the bijection from tuples to nodes
by w and let t[j] = p(t) if u(t) € V(G(T)[j]) and, otherwise,
t[j] = L. A composition tuple-set defined as above is called a
natural composition tuple-set with regard to G and its cover.

Proposition 1. The composition tuple-set T is consistent and
QUT) is isomorphic to G under the “natural” isomorphism,
where v(t) ~ u(t) forall t € T.

Proof. Observe that T' obeys the node-consistency condi-
tion by construction. Since the graph cover of G is
edge-disjoint, an edge in G implies an edge in exactly
one of the subgraphs and, thus, T" observes the edge-
disjointness condition. Clearly v(t) ~ u(t) as defined
above is an isomorphism between Q(T) and G, by
construction. 0
Until this point, we did not constrain the type of

subgraphs G(7) in a composition. Henceforth, we will

assume that all these subgraphs have a path cover of size 1,

ie,, each such subgraph is a single path. Finally, we

introduce the notion of P-minimal compositions; as an
extension of this notion in path covers, a composition tuple-
set 7 is P-minimal if there is no 7’ such that Q(7') = Q(7) and

G(7') <iex G(7).

2.5.3 Operators on Compositions

We proceed to define operators on composition tuple-sets,
and the respective operations on the induced graph. The
first desired operation is a projection operator—keeping
only certain parts of all tuples (corresponding to keeping
only some parts of the induced graph). This operation uses
our previously defined index range notation. Thus, by

7 =rli j)(= (G()i : 4], tuples(r)[i : 5]\ 1)),
we indicate that 7’ is a projection of the composition 7 onto
columns i to j inclusive. Observe that removing some
elements of a non-null tuple may result in a null tuple and
that such tuples are dropped by the projection operation.
Likewise, to indicate removal of subgraph ¢ from a
composition 7' of width n:

T =T[1:n\1
(= (G(T)[(1 :n \ i), tuples(T)[1 : n \ i]) \ L).

The resulting 7’ is a composition of width n — 1.
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Fig. 4. Induced graph of a bijective sum.

In general, projection operations can cause projected
tuples to become equal, thus reducing the number of tuples
in the resulting composition. However, for consistent
compositions, this can occur only for tuples which then
become null and are dropped in the projection. This is due
to the following property, which follows immediately from
the node consistency condition:

Proposition 2. Let R € [1,n] be an arbitrary sequence of
indices, T a consistent composition, and ti,ty € tuples(T)
with t1 7& to. T]/lt’l’l, tl[R] =19 [R] lmplzes tl[R} =19 [R} = 1.
Having defined the required notation, the main opera-

tors used in our algorithm are defined below. Creating a

larger graph from two smaller graphs is done using the

bijective sum operator, defined as follows:

Definition 4 (Bijective Sum). Let 7 =1 be compositions,
each of width n — 1, such that

n[l:(n—2)]=mnl:(n-2)].

Let T = tuples(m) and Ty = tuples(ry). The bijective sum of
71 and o, denoted BS(m, 1), is a composition T of width n
with G(1) = G(11).G(12)[n — 1] and with tuples(r) being
(the union of) the following sets of tuples:

1.
{tl.tg[n — 1} ‘ t1 € Tl,tQ S TQ,
ti[l: (n—2)]=ta[1: (n—2)] # L}.
2.
{1"24n—1].L|teT,tl: (n—2)] =1}
(where 1* means an all-1 i-tuple).
3.

{1" 2 Ltln—1] |t € To,t[l: (n—2)] = L}.

The intuition for this definition is as follows, by
considering the induced graphs of the composition tuple-
sets (see Fig. 4). Now, map (and consider as the same node)
the nodes in the induced graphs standing for the tuples that
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TABLE 2
Bijective Sum
Ty T,
Node Pl P2 P3 Node P1 P2 P4
U1 a1 U a1
Vo as | bo Us az | by
U3 as Uug as
Vs by Uy by | dy
Us bs | c3 Us b3
Vs 1 Ug dy
U7 Co Uz ds
T3
Node P 1 P 2 P 3 P 4
wy ay
wy | ag | by
w3 as
Wy by dy
Wy b3 | c3
We C1
wr Co
wg dy
Wy ds

include T3[1: (n —2)] to those induced by T5[1: (n —2)],
basing the mapping on tuple equality. Tuples in (1)
correspond to nodes appearing in the induced graphs of
both 7 and 7. Tuples in (2) correspond to nodes that
appear in the graph induced by 7, but do not appear in 7.
Likewise, tuples in (3) correspond to nodes that appear in
the graph induced by m, but do not appear in 7.
Henceforth, the construction (1) above will be called type 1
construction and the respective generated tuples are called
type 1 tuples. Likewise for items (2) and (3) above. Observe
that in some cases the result of a bijective sum may be
inconsistent due to a violation of the edge disjointness
condition. Our algorithm will discard the results of such
inconsistent bijective sums.

The definition of bijective sum can easily be general-
ized to allow for the equivalent part of 7, and 7 to be
any subset of indices of size m —2, not necessarily [1:
(n — 2)] and not necessarily in sorted order. However, this
would make the notation exceedingly cumbersome.
Equivalently, one can view this generalized definition as
permuting the element positions of 7 and 7 in order to
get 71[1: (n —2)] = m[l: (n —2)], performing the bijective
sum, and arbitrarily permuting the positions of 7. In the
description of the algorithm, we use this permutation
scheme in order to simplify the notation.

Table 2 demonstrates a bijective sum T3 = BS(T3,T») of
two composition tables 7} and 75, and in Fig. 4 the
respective induced graphs G; = Q(T1),G2 = Q(T>) and
G35 = Q(T3). Null values are shown as blanks.

Observe that lifting the restriction that the width of the
composition sets be equal results in a meaningful (as far as
the induced graph is concerned) and potentially useful
operator. But since our algorithm does not use such a
generalization, we shall not discuss this issue further.

Our algorithm also requires an operator that allows
nodes induced by tuples of types (2) to be merged with
nodes induced by tuples of type (3) after a bijective sum.
The merged nodes are determined by a composition of
width 2. For this purpose, we define the splice operation, as
follows (refer to Fig. 5 as an example).
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Fig. 5. Induced graph of a splice.

Definition 5 (Splice). Let 7 be a composition of widthn > 3, and
S be a composition of width 2, with G(S) = G(7)[(n — 1) : n].
The result of splicing 7 by S, denoted Splice(t,S), is a
composition 7' with G(7') = G(r), and T = tuples(r’)
defined as follows: Denote T = tuples(t),s = tuples(S), and
let M be a set of “merged” tuples:

M:{ ‘t1+t2|t1,t26T,ﬂS€S
( tlo-1=sl]# LAt =s2£L (1
A tn] + s2] = s[2] Ata[n — 1] + s[1] = s[1])}.

Let M’ be the set of all tuples ty,ty from T being merged
above (i.e., that participate in the sum t, +ty in the above
definition of M). The tuples in the resulting composition are
T =MUT\ M.

Observe that t; = 5 is allowed in (1). Also, note that it is
possible to have S and T such that some of the ¢, + ¢, are
undefined. In this case, the splice operation is undefined
(inconsistent). For example, Table 3 describes composition
tuple-sets 17, Ty and their splice T3 = Splice(T,T3). Fig. 5
shows the corresponding induced graphs G| = Q(T1), G =
Q(T3) and G5 = Q(T3). In this figure, the paths P, and P; in
G are spliced using information on nodes common to these

paths in Gb.

3 THE GRAPH MINING ALGORITHM

This section presents our algorithm pseudocode for mining
frequent graph patterns, which works for both directed and
undirected graphs. A proof of correctness and a partial
complexity analysis are then developed.

TABLE 3
Splice
T T Ty
Node P1 Pz P3 Node Pz P3 Node P1 Pz P3
m a; Uy bl (] wq (5]
Vo asg b2 Uy b2 Wo ag bg
Vs as Uus b3 C3 ws as
Uy by Ug C2 Wy by | a
Us bs | c3 Ws bs | ¢c3
Ve 1 We C2
(%4 Co
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Fig. 6. Phase 1 example. (a) Adding edge to a noncyclic path. (b) Adding
edge to a cyclic path.

3.1 Description of the Algorithm

The algorithm consists of three phases. In phase 1, we find
all frequent paths (including paths with cycles), starting
with frequent nodes and frequent edges. In phase 2, we find
all graphs composed of two paths, in other words, we find
all possible intersections between pairs of paths from
phase 1. In phase 3, we merge pairs of frequent graphs,
each consisting of n — 1 paths, such that the graphs have a
common core of n —2 paths in an attempt to produce
graphs with n paths. Throughout, we assume that some
admissible support measure is used. In phases 1 and 3, we
construct frequent graph patterns recursively, using the
Apriori approach [1].

Phase 1 (see Algorithm 1) constructs the frequent paths
considering all frequent paths found in the previous
iteration, and potentially adding a frequent edge. Adding
the edges is done using the ExpandPath function. First,
consider the case for directed graphs in ExpandPath, which
considers adding an outgoing edge from some nodes in the
path. If the path is cyclic (not necessarily a simple cycle) we
can add the outgoing edge anywhere, provided the node
labels match (see Fig. 6b for examples). Otherwise, we can
only add an outgoing edge at a node that has an in-degree
greater than the out-degree—there can be only one such
node if P is a path (Fig. 6a). We use the node set X to denote
the nodes where an edge can be added. There are now two
cases: adding an additional node to the path (step 1, and see
Fig. 6 (a and b2) for an example), and adding an edge to a
node already on the path (step 2, see Fig. 6bl for an
example) In the graph, one could add an edge at any node
that has unequal in-degree and out-degree (an unbalanced
node), but it is sufficient to add just the outgoing edge, as
shown in the proof of correctness later on.

Algorithm 1 Frequent paths—Phase 1.

Notation: F; is a set containing frequent graph patterns that
are paths with ¢ edges;

1(.) is a function that creates a new node with the same
label as its argument.

C; is a candidate set for 1-path patterns with ¢ edges.
Output: L, a sorted set containing the frequent paths.
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1. Find all frequent nodes and add them to Fy.
2. Find and add to F; all frequent edges by
scanning the data set and set k:= 2.
3. set C}:=0, F, := 0.
4. For every path P=(V,E) € F},_,
and for every e € I do:
C) := C, UExpandPath(P,e).
5. Forevery G € C,add G to F, if G is frequent,
and F}, contains no graph isomorphic to G.
6. If F;, # ) set k:=k+ 1 and goto step 3.
7. Output L; = Uf;ll F; sorted according to <, .

Function ExpandPath(P, e) for directed graphs
Let Result = (). Denote e by (v,u).

If thereisanodexecVs.t.

d™(z) < d"(z), let X = {a}.

Otherwise (i.e., P is cyclic), let X=1V.

1. Foreveryrz € X s.t.
label(z) = label(v) add
G={VU{(u}, EU{(z,¥(u))}) to Result.
2. For every z € X s.t. label(z) = label(v),
and everyye V\z s.t.
label(y) = label(u) and (z,y)¢E,
add graph G = (V,EU{(z,y)}) to Result.

Function ExpandPath (P,e) for undirected graphs

Let Result = (). Denote e by {v,u}.

Let X be the set of nodes of odd degree in P. If X
is empty, (i.e., P is cyclic), let X=1V.

1. For every z € X s.t. label(z) = label(v), add
G=VU{yp(u} EU{{z,¥(u)}}) to Result.

2. Foreveryz € X, s.t.
label(z) = label(u) add
G=VU{y} EU{{z,¥(v)}}) to Result.

3. Foreveryz,ye€V,x#£ys.t. {z,y}¢FE,
label(x) = label(v), label(y) = label(u)
s.t. at least one of z,y is in X,
add G = (V,EU{{z,y}}) to Result.

The treatment of undirected graphs is practically the
same, differing only in that ExpandPath for undirected
graphs considers adding an undirected edge. Here, an edge
can be added anywhere if the path is cyclic or at one of the
two odd-degree nodes if the path is noncyclic. When adding
an additional node (steps 1 and 2 in Algorithm 1,
ExpandPath for undirected graphs) the new node can be
at either end of the edge. Observe that only in phase I does
there exist a significant difference between directed and
undirected graphs, except for code hidden in computing the
number of paths (which is a simple counting of node
degrees) and in the support measure (which is external and
largely independent of our algorithm).

Phase 2 (see Algorithm 2) constructs the frequent graphs
with path number 2, by combining one-path graphs. The
nontrivial steps are steps 2, 3, and 4, where, in step 2, all
possible compositions of the two paths are considered and,
in step 4, both the path number and the support measure
are calculated; in step 3, all non-P-minimal isomorphic
graphs are removed. Fig. 7 shows (in terms of the
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lexicographic order we defined earlier) how several
different 2-path graphs are constructed from two paths.

Algorithm 2 Frequent path pairs—Phase 2

Notation: L, is a set that contains composition tuple-sets of
frequent graph patterns with\path number 2.
C, is a candidate set for the above composition tuple-sets.

1. Let CQ = @, L2 = @

2. For every pair of paths P, P, € I
and every consistent composition
tuple-set 7 with G(7) = (P, P»),

s.t. Q(r) is connected and p(Q(7)) =2,
add tuple-set 7 to (.

3. Remove from (3 all tuple-sets that
are not P-minimal.

4. For every tuple-set 7€ (y,
if Q(7) is frequent, add 7 to Lo.

5. output graphs {Q(7) | 7 € Lo}.

Phase 3 (see Algorithm 3) constructs the frequent graphs
with path number n from graphs with path number n — 1.
The nontrivial step is step 2. In case 2a, the graph is
constructed by finding the common n —1 subgraph
structure and adding the remaining two paths P, P» (one
from each graph), using the bijective-sum operation. Note
that the specification of an “arbitrary permutation” is just a
notational convenience, and is not actually implemented
this way (it would require an exponential number of tests).
Instead, the composition tuple-sets 7; are represented in
sorted order of the paths in G(7;), where each path is
represented by its index in the sorted L. To check whether
two compositions can undergo bijective sum, simply
compare the strings of sorted indices of paths in G(rl),
G(12), allowing for up to one substitution, which can be
done very efficiently. The number of cases meeting this
requirement is typically many orders of magnitude smaller
than the number of possible permutations, which are not
explicitly generated.' Only after the above test passes do we
need to compare the tuples in the projected tuple-sets.

Algorithm 3 Frequent graphs—Phase 3
Notation: L,: set of composition tuple-sets of width n.
C, is a candidate set for these compositions.

1. Set n=3,C,=0, L, =0.

1. The fact that nonisomorphic paths can have the same descriptor is a
complication, but not a serious problem, especially in labeled and directed
graphs, where such cases are less likely to occur.
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common path

2. For every pair 7, » of (arbitrarily
permuted) composition tuple-sets from L,
s.t.nl:n—-2]=mnl:n-2|, do:

(a) Construct 7= BS(r, 7).
If Q(7) is connected and has
path number n, add 7 to C,.

(b) For every composition tuple-set S € Lo,
if Q(Splice(r,S)) is connected and has
path number n, add Splice(r, S) to C,.

3. Remove from C),, all composition tuple-sets
that are not P-minimal.

4. For every 7€ C,, add 7 to L,
if Q(7) is frequent.

5.1f L, =0, halt.

6. output {Q(7)|r € L,}, then set n:=n+1 and
go to step 3.

In case 2b, any combination S of the two paths P, P
that is frequent and isomorphic to the remaining paths is
found from L,. Although not stated in the pseudocode, this
step is fast because L, can be indexed for fast retrieval of
compositions containing specific paths. The paths P;, P, in
the graph are combined (using Splice) with the generated
candidate. This latter step is needed because merging two
patterns directly (using bijective sum) may overlook cases
where some nodes in the remaining paths are shared.
Step 3 removes redundant isomorphic graphs, while step 4
checks the support of the candidates, as in phases 1 and 2.

An optional final step in the algorithm (not shown here)
is removing all frequent subgraphs which are not maximal,
i.e., contained in larger frequent graphs. Fig. 8 demonstrates
merging two 2-path graphs that have one path in common
into one 3-path graph.

3.2 Proof of Correctness

It is obvious by construction that our algorithm is sound
since (in all phases) only frequent patterns are kept at the
end of the computation. Therefore, showing completeness
of the algorithm, i.e., that all frequent patterns are indeed
found by the algorithm, is sufficient to prove correctness.
Since all phases of the algorithm are separate (and run
sequentially), completeness of each will be formally stated
and proved separately.

Theorem 3. When phase 1 (Algorithm 1) completes, L, contains
all frequent single-path graph patterns.

Proof outline. Note that from every path with k edges, an
edge can be removed so that the remaining graph is a
path with £ —1 edges. Using the admissibility of the
support measure, and the assumption that all frequent
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paths with k—1 edges were found in the previous
iteration, the theorem follows by induction. O

Theorem 4. Phase 2 (Algorithm 2) outputs all connected
frequent graphs patterns with path number 2. Additionally,
at the end of phase 2, the set Lo contains all P-minimal
composition tuple-sets, for every connected frequent graph
pattern with path number 2.

Proof. Let G be a frequent graph pattern with p(G) = 2.
Then, G can be decomposed into two edge-disjoint paths
and has a P-minimal decomposition Py, P». Since we are
using an admissible support measure, P, and P, are
frequent and, by Theorem 3, an isomorphic copy of each
of them is in L; at the end of phase 1. Denote the
isomorphisms of P, P, by P|, P, respectively. During
phase 2, all possible consistent composition tuple-sets 7
with G(r) = (P}, P;) are constructed, including the
composition 7 for which (7) is isomorphic to G under
the natural isomorphism. Since the path descriptors are
invariant under isomorphism and the decomposition of
G into P, P, is P-minimal, then 7 is also P-minimal and
thus not pruned from C at step 3. Since G is frequent, 7
is stored in L in step 4, and G is output at step 5. O

Theorem 5. Phase 3 outputs all frequent connected graph
patterns G with path number p(G) > 3.

Proof outline. We show the invariant that, at the end of
each iteration n, if G is a frequent graph with path
number 7, then there is a P-minimal composition 7 € L,,
such that (7) is isomorphic to G. Proof of the invariant
is based on the invariant holding for graphs with path
number n — 1 at the beginning of the iteration, which
holds for n =2 due to Theorem 4. Using the admissi-
bility of the support measure, we show that if G is
frequent, then there exist P-minimal compositions in
L,_1 with a common core of width n — 2. These
compositions induce frequent subgraphs G, G, with
path number n — 1 that are composed in the iteration by
using bijective sum and splice to form G. 0

3.3 Complexity Discussion

The complexity of our algorithm is composed of two
components. The first component has to do with the
problem definition and not with the specific algorithm. This
complexity is exponential in the size of the pattern, and
inherent to Apriori-like algorithms. The complexity of
Apriori is due to the fact that the number of frequent patterns
can be exponential and the complexity of any graph mining
algorithm is constrained by the need to find all subgraphs of
a database isomorphic to a given pattern in order to evaluate
its support. The main goal of a mining algorithm should
thus be to decrease the number of candidate patterns and, by
doing so, decrease the number of support computations.
Our approach is feasible because the number of patterns
remaining from one phase to the next is reduced consider-
ably, according to our experiments. The generation of
candidate set C,,_; in the worst case, takes time:

L)’
O(%*nQ * |L2).

In real-life cases, frequent patterns from the set L,
usually have different path structure and labeling and the
number of candidate patterns created is much smaller. Even
though the complexity is bounded by an exponential in n, in
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reality, for large databases, the scan of the database whose
complexity is n* N may be worse and, in these cases, the
approach of Apriori-TID may be beneficial.

3.3.1 Support Computation

The second component of complexity is due to the need to
find all subgraphs isomorphic to the given pattern, which is
exponential in the size of the pattern as well. While the large
number of support computations is inherent to the basic
Apriori algorithm ([1]), complexity of a single support
computation is significantly higher for semistructured
databases. Such computation requires 1) finding all sub-
graphs of a database isomorphic to a given graph pattern
and 2) evaluating support using an admissible support
measure. Finding all subgraphs of a database graph
isomorphic to a given pattern depends strongly on the
topology of a database graph. For a dense graph, the
number of such subgraphs can be exponential to the size of
a pattern. For a complete graph and an appropriate support
value, every subgraph of a complete graph can be frequent!
However, for a sparse graph (or the case for the real-life
semistructured databases), the number of instances of a
pattern is much smaller. In addition, a database graph with
a large number of different labels is likely to produce a
smaller number of pattern instances than a similar graph
with a small number of different labels.

A formal complexity analysis of the entire algorithm is
very difficult and thus not pursued here. Although the
complexity is exponential in the worst case, the experiments
in the next section suggest that, for nondense graphs, the
algorithm is still reasonable for large graphs.

4 EMPIRICAL EVALUATION

In the empirical evaluation, two sets of experiments were
performed. The first set of experiments compares our
algorithm to an edge-based algorithm. Two types of
databases were used: synthetic, where we can control both
the topology and labeling of graphs, and a real-life XML
“movies” database [28]. Only the single graph setting was
tested in this set of experiments. The second set of experi-
ments compared our algorithm to FSG for both transactions
and single graph settings. This set of experiments used also
two databases, one synthetic, and one a real-life social
network composed of electronic mails. The database records
e-mails over a period of a week among users of the Ben-
Gurion University e-mail system. The source, destination,
and size of the message were recorded. The message size is
used as an approximate “label” on the edge.

4.1 Experimental Setting

The experimental environment is a Sun Ultra-30 work-
station running at 247 MHz and with 128 MB of main
memory. The real XML file we used is a portion of the
“movies” database. XML elements are treated as nodes and
inheritance relationships and references as edges.

4.1.1 The Support Measure

The standard measure of support for transaction databases
in the literature is as follows: The support S for an item set
I = {(i,...,ix) in a data set of transactions D is

_ Htlte D, <y, ... ix >€ t}]

S(I) D]

(2)
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However, if the application makes it necessary to count
the total number of occurrences of a pattern, the above
scheme is inappropriate. An alternate definition of support,
taking the multiple occurrences into account, must be
defined, a nontrivial issue due to possible overlaps between
instances.

For example, one trivial support measure is the number
of instances of a frequent pattern. This measure, however, is
not admissible. Fig. 9 shows a database that contains three
instances of pattern A and only one instance of pattern B,
while B C A. Another approach is to take into account all
automorphisms of a pattern in question. Again, the
database in Fig. 9 is a counterexample, since |Aut(B)| =6
and |Aut(A) = 4|, making the total count of A’s instances 12,
which is still greater than six.

The only nontrivial provably admissible measure we
could find for the single graph setting is defined as follows
[32]: Let D be a database graph and G be a graph pattern for
which we wish to compute support. Let A, Ay, ... A, be all
instances of G in D. We create a new graph called the
instance graph, in which each of the 4; is a node and there is
an edge between A; and A if the two subgraphs A; and A;
have at least one common edge. The maximum indepen-
dent set (MIS) measure is defined as the size of the
maximum independent set over the instance graph and
was shown in [32] to be admissible.

Using the MIS measure, we must compute the maximum
independent set of the instance graph I¢. Theoretically, this
can take time exponential to the size of I;, since the
independent set problem is NP-hard. However, for real-life
cases of sparse database graphs with a reasonable number
of labels, this task is usually much easier. In our experi-
ments, time for computing the maximum independent set
was actually negligible compared to the time to find the
instances. Therefore, the performance of the algorithms is
not strongly dependant on the specific (MIS) support
measure. In addition, approximation techniques can be
used in this case (see [14] for details) as a user usually does
not care about a precise support value.

4.2 The Implemented Algorithms

We implemented the mining algorithm for fully labeled
graphs described in Section 3, as well as the two types of
edge-based algorithms discussed below. The latter were
used in order to compare the number of generated
candidate patterns with our algorithm.> The same admis-
sible MIS support measure was used for all algorithms.

2. The reason our comparison is done opposite simple edge-based
algorithms, rather than to FSG or GSPAN, is that the latter algorithms use
the transaction-graph setting, making a direct comparison inapplicable.
Additionally, little research exists on algorithms that use the maximum
independent set (MIS) support measure, the only non-trivial admissible
support measure we know for the single-graph setting (see Section 5).
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TABLE 4
Notation Used in Results Tables
N, E, L | # of nodes, edges and labels in the database
S support threshold in %
C, FP | # of candidate and frequent patterns
I, SC | # of isomorphism and support computations
TT total time (seconds) spent on data mining
ST time in sec. of support computations
EA edge addition algorithm
PM Path Mining, denotes our algorithm
# serial number of a database graph
CR candidate ratio

Tests were conducted multiple times and time averages
were taken to eliminate factors of system load.

The first algorithm is based on finding all frequent
graphs G with k edges and then extending each graph G
into graphs with k + 1 edges by either adding a new node
and an edge to G frequent graph or by adding an edge
between two existing nodes of G. The process is repeated
until no graphs extended in this manner are frequent. For
the comparison with FSG, we have implemented a version
of FSG for the single graph setting, based on [20].

4.3 Experimental Results
4.3.1 First Set

We investigated the behavior of the algorithms using the
following performance parameters: 1) number of candidate
patterns produced by an algorithm during data mining,
2) number of isomorphism computations during data mining
and overall number of support computations, and 3) total
time spent on data mining (not CPU time) and on support
computations. Table 5 presents results for testing on
synthetic trees and synthetic sparse graphs. The notation
used in all three tables is explained in Table 4. For our
algorithm, the number of candidate patterns can sometimes
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be less than the number of frequent patterns since frequent
nodes and edges are computed directly without generating
candidate patterns. Our implementation needs to generate
all appropriate subgraphs of a database graph, find among
them all subgraphs that are isomorphic to the pattern in
question, and build an instance graph and find its
maximum independent set size. Thus, testing our algorithm
on dense graphs seems to be extremely time consuming. An
additional consideration was the fact that most real-life
databases represent sparse graphs rather than dense ones.
Therefore, we decided to limit our tests to trees and sparse
graphs and to choose a support threshold that, on the one
hand, will not limit the output to trivial graphs (nodes and
edges) and on the other hand, will not make every
connected subgraph of the database frequent.

From Table 5, we conclude that our algorithm runs faster
even though it conducts more isomorphism checks than the
edge addition algorithm. The latter occurs because our
algorithm produces fewer candidate patterns and, thus, less
time is wasted on support computation.

Table 6 contains the number of frequent patterns found in
six different subsets of the movie database with different
support values. The structure of the database (a tree as in set
number 6 or a sparse graph) can be seen to have more impact
on the number of frequent patterns than the support value.

As seen from Table 6, for the same values of support, the
number of frequent patterns is smaller and thus the
execution time is much smaller in the movie database than
in the synthetic data set. This indicates the feasibility of our
algorithm in real-life cases. As the graph becomes larger,
the number of frequent patterns for the same support value
decreases since a larger number of edge-disjoint instances is
required for each pattern in order to pass the support
threshold. Note that these patterns do not contain titles of
movies or names of directors, since these are present only as
attributes and not as tags in the XML database. Related
research [25] attempts to treat attributes and values of an
XML database as well.

TABLE 5
Experimental Results for Trees and Sparse Graphs

Trees Sparse graphs
#|NLSFP Ag| C1SC | ST [ TT | N,E L,S,FP Alg| CISC | ST |TT
1[4047%15 EA [ 1002492 | 41 | 44 [[ 405047% 14 EA| 603352 [ 19 | 24
PM || 524752 | 12 | 20 PM | 495542 | 14 | 23
2| 5047%16 EA | 11041102 | 676 | 682 || 4050 65% 17 EA | 844876 | 33 | 40
PM | 454542 | 22 | 29 PM | 597054 | 15 | 26
3|5063%37 EA | 47082458 | 326 | 340 | 50606 5% 28 EA | 35574343 | 314 | 326
PM | 202239205 | 68 | 106 PM | 117185143 || 41 | 70
4| 5083%27 EA | 30662200 | 280 | 200 || 608044% 16 EA | 1013193 | 609 | 614
PM || 11991111 | 12 | 39 PM | 565856 | 123|132
5|6045%15 EA | 1002492 | 220 | 224 || 608063%27 EA | 26586253 | 842 | 857
PM || 524752 | 56 | 63 PM | 120102110 || 41 | 57
6 | 6065%44 EA | 728203716 | 3493 | 3537 | 70908 3% 27 EA | 25277236 | 44 | 57
PM | 175 868 276 | 238 | 376 PM | 12698110 || 21 | 37
7|6085%14 EA | 1031887 | 19 | 22 | 8010083% 32 EA | 40374387 | 160 | 172
PM | 412926 | 4 | 9 PM | 149127141 || 41 | 60
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TABLE 6
Movie Database: Support versus Frequent Patterns
Data set | Nodes | Edges | Labels || S 50% | 40% | 30% | 20% | 10% | 9% | 8% | ™% | 6% | 5%
#1 12656 | 13878 | 112 FP | 5 6 7 8 15 16 |16 | 18 |21 | 22
#2 8337 9416 25 FP | 3 4 5 6 12 12 |12 |12 |13 | 14
#3 7027 7851 22 FP | 3 4 4 5 10 10 (10 (10 | 11 |11
#4 4730 4813 90 FP | 5 5 8 9 11 11 (12 |12 |12 | 16
#5 2757 2794 76 FP | 2 2 5 6 7 7 8 9 10 |11
#6 1293 1292 91 FP | 21 32 34 46 79 79 |84 |84 | 8 | 86

We deduce the following facts from our experiments:

1. Our algorithm produces fewer candidate patterns
and therefore performs fewer support computations
than the edge addition algorithm.

Support computation is easier if the database is a
tree due to fewer candidate patterns.

Synthetic graphs are not very regular. As the
number of distinct labels in synthetic database
increases, the chance of finding nontrivial frequent
patterns in that database decreases drastically.
Large real-life graph databases are highly regular
and contain complex patterns.

4.3.2 Second Set—Comparison with FSG

In this set of experiments, we compared FSG with our
algorithm for both transaction setting and single graph
setting. For the transaction setting, the results were
comparable and are not shown here. For the single graph
setting, we measured both the time and the number of
support computations. Since the running time was domi-
nated by the number of support computations, we decided
not to report it at all and, instead, report the number of
support computations, which is equal to the number of
candidates generated. Therefore, in all the tables and graphs
below, the measure of efficiency is the number of
candidates generated.

Table 7 shows numbers of candidates and frequent
patterns generated by both algorithms for various support
values on two subsets (5,000 and 2,000 nodes) of a Ben-
Gurion University e-mail traffic database. The entire
database is large (over 50,000 nodes) and quite dense,
which makes it difficult to mine. In all tables, PM stands for
Path Mining and denotes results achieved by our algorithm.

TABLE 7
BGU E-Mail Database Results
5000 nodes 2000 nodes

S [CFSG[CPM | FP | CR S CFSG [CPM | FP | CR
1% 54 45 9 | 1.2 [ 0.1% | 209 190 | 19 [ 1.1
0.9% | 54 45 9 | 1.2 || 0.09% | 252 231 | 21 | 1.09
0.8% | 65 55 10 | 1.18 || 0.08% | 252 231 | 21 | 1.09
0.7% | 65 55 10 | 1.18 || 0.07% | 275 253 | 22 | 1.09
0.6% | 65 55 10 | 1.18 || 0.06% | 275 253 | 22 | 1.09
0.5% | 65 55 10 | 1.18 || 0.05% | 405 378 | 27 | 1.07
0.4% | 77 66 | 11 | 1.17 || 0.04% | 405 378 | 27 | 1.07
0.3% | 77 66 | 11 | 1.17 || 0.03% | 527 406 | 31 | 1.06
0.2% | 119 105 | 14 | 1.13 [ 0.02% | 527 496 | 31 | 1.06
0.1% | 230 210 | 20 | 1.1 || 0.01% | 1034 090 | 44 | 1.04

Table 8 shows numbers of candidates and frequent
patterns generated by both algorithms for various support
values on random graphs with 3,000 nodes, 4,000 edges
and different numbers of labels: 30, 40, and 50. These
results show that our algorithm produces fewer candidate
patterns than FSG and therefore performs fewer support
computations.

Fig. 10 shows numbers of candidates generated by both
algorithms for various support values on random graphs
with 1,000 nodes, 2,000 edges and different numbers of
labels: 10 and 20, respectively. We learned from our
experiments that support computation is the factor having
the most impact on the computation time because of the
need for multiple subgraph isomorphism computations in
both single and multiple graph settings. Reducing support
computation is significantly more important than comput-
ing a DFS code of a pattern or eliminating isomorphic
candidates, since frequent patterns are not very large
compared to the database size.

5 DiscussioN AND RELATED WORK

This section briefly presents related work and discusses our
contribution in the context of prior research in the field. As
mentioned in the introduction, most of the work done on
graph mining is comparatively recent. The basic work
related to this subject is frequent itemset mining in
structured databases and the Apriori algorithm and its
variations [1]. For conciseness, reference to the significant
body of existing work on transaction database mining is
omitted. Papers that deal with mining topologically simple
patterns, such as paths and trees, are directly related to our
work and thus reviewed below.

Paper [2] presents two algorithms for mining frequent
directed simple path patterns in a Web environment. Both
algorithms are based on an algorithm called MF that finds
all maximal forward references in a set of traversal
sequences contained in the database. The goal of the two
mining algorithms is to find frequent sequences in these
paths. The main differences between the algorithm of [2]
and ours is that the former handles only linear paths,
making its support measure computationally simple.

The simple paths mining problem is generalized in [36],
which describes an algorithm for finding maximal frequent
treelike patterns in semistructured documents, represented
in the standard OEM model. Although this algorithm
searches only for treelike patterns, it can also handle
patterns containing cycles by transforming them into trees.
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TABLE 8
Random Graph with 3,000 Nodes and 4,000 Edges
50 labels 40 labels 30 labels

S |CFSG | CPM | FP S | CFSG | CPM | FP S | CFSG | CPM | FP
0.2 113 83 28 0.3 28 20 8 0.5 3 2 1
0.19 113 83 28 || 0.25 187 152 35 || 0.45 9 6 3
0.18 113 83 28 || 0.24 187 152 35 0.4 40 29 11
0.17 | 306 244 58 || 0.23 187 152 35 || 0.35 185 147 | 32
0.16 306 244 58 || 0.22 408 339 63 0.3 884 707 92

0.21 408 339 63

0.2 1216 1020 | 126

One important restriction in this paper is that only rooted
trees are considered, i.e., trees whose root is the same as the
root of the entire Web database. Chi et al. handle the
problem of tree mining in a wider sense in [27].

Work on mining general graph patterns began in the
1990s. A recent survey of graph mining, by Washio and
Motoda [37], presents some of the earlier works on the
subject like SUBDUE [7] and GBI [41]. It then classifies the
mining algorithms into two major categories: Greedy search
algorithms, which search exhaustively for all the frequent
graph patterns, and Inductive (ILP) approaches, which
pregenerate many graph patterns according to some logic
constraints and background knowledge and then use a
query language to retrieve the interesting patterns [26].
Since our paper uses the greedy approach, we do not
further discuss ILP here.

Regarding the greedy approach, two categories of
algorithms were mentioned in the introduction: transaction
graphs and single graph settings. To date, most work has
been on the transaction graph setting, with algorithms
divided roughly into two classes: breadth-first search (or
Apriori-based) and depth-first search.

Most BFS algorithms use the basic idea employed in the
Apriori algorithm. The main difference between the various
algorithms of this category is in the type of the building block
used to generate the item of level K. Inokuchi et al. [17] use

vertices. An algorithm by Kuramochi and Karpis [19] uses
edges as the main building block and was extended and
improved in [20] by adding several clever heuristics that
make mining and support computation more efficient. This
latter version, called FSG, is currently one of the best known
and often compared to a version of the BFS graph mining
algorithms for the graph-transaction setting case. FSG
introduces the definition of a canonical labeling of graphs
based on the adjacency matrix, used to eliminate iso-
morphic candidates. To increase the efficiency of deriving
the canonical labels, the approach uses some graph vertex
invariants, such as the degree of each vertex in the graph.
FSG also increases the efficiency of the candidate frequent
subgraph generation by introducing the transaction ID
(TID) method. Furthermore, FSG limits the class of the
frequent subgraphs to connected graphs. Under this
limitation, FSG introduces an efficient search algorithm
using a “core,” which is a shared part of size k£ — 1 in the
two frequent subgraphs of the size k. FSG increases the
joining efficiency by limiting the common part of the two
frequent graphs to the core. Once the candidates are
obtained, their frequency counting is conducted by check-
ing the cardinality of the intersection of both TID lists. FSG
is fast due to the introduction of numerous techniques, but
its memory consumption is heavy (storage for TID lists of
massive graph data). Some ideas similar to those in FSG,
e.g., those related to joining of two subgraphs, are present in

1400
1200 /f
1000
3 800 / ——FSG, 10 labels
3 PM, 10 labels
5 —A—FSG, 20 labels
S 600+ / —8—PM, 20 labels
400 /
200 -

2.0% 1.9% 1.8% 1.7% 1.6% 1.5% 1.4% 1.3% 1.0% 0.9% 0.8% 0.7% 0.6% 0.5%

Support

Fig. 10. Random graph with 1,000 nodes and 2,000 edges.
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this paper as well. However, the method in this paper was
derived independently and our use of edge-disjoint paths as
a building block is new. Other works which use the BFS
approach are [18], [15], [16], [6].

The second approach, called gSpan [39], grows patterns
from a single graph directly, by using a depth-first search
strategy. The algorithm maps each pattern to a unique
canonical label and assigns each graph a unique minimum
DEFS code. By using these labels, a complete order relation is
imposed over all possible patterns. This lexicographic order
is also used to impose a tree-hierarchy order over all
patterns, resulting in a hierarchical search tree. This search-
tree is traversed in a DFS manner, pruning on the way all
subgraphs with nonminimal DFS code. This algorithm also
uses the TID approach. Since the algorithm explores the
search space in DFS manner, it enables the use of several
mining techniques which are especially applicable to DFS
algorithms, such as maintaining an embedding set for each
frequent subgraph, like [53]. Yan and Han [39] also present
an experimental evaluation, where they compare gSpan
with FSG and show the better performance of gSpan on
several molecular databases. Several of the ideas of [39]
were used later, in an approach which is intermediate
between BFS and DFS, in [17].

In summary, the ideas presented in the above papers
have influenced our work considerably. However, using
paths as building blocks and an efficient method for
merging graphs represented as compositions of paths are
original contributions of this paper. From our experiments,
we did not see an inherent problem of scaling up the
algorithm to very large graphs, other than memory
requirements encountered with large graphs. These may
be handled similarly to [34].

6 CONCLUSION

An Apriori-like algorithm for retrieving frequent graph
patterns from a given set of graphs is the central issue in
this paper. In contrast with most existing work, the pattern
can be either a directed or an undirected graph and may
contain cycles. The added functionality can support data
mining on the increasing fraction of online documents that
consist of blocks connected by references. Knowledge about
typical structure of documents is helpful in analyzing
complex repositories of semistructured data (e.g.,, XML
databases, the Web) and is potentially useful for querying
data, indexing it, and storing it efficiently. In searching for
frequent patterns, candidates are constructed using fre-
quent paths. The scheme is evaluated empirically and is
promising as it shows a decided advantage over other
algorithms. The scheme proposed here can be extended in
several ways, such as using partially labeled patterns, using
more complex building blocks (trees), adapting the algo-
rithm to the dynamic database model, and using the
Apriori-TID technique.
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