
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300 fax 415 969-9131

A Division of Sun Microsystems, Inc.

Java™ Servlet API

Specification

Version 2.1a

James Duncan Davidson
with Suzanne Ahmed

November 1998

Java Software Division



Copyright Information

 1998, Sun Microsystems, Inc. All rights reserved.

901 San Antonio Rd., Palo Alto, California 94303 U.S.A.

This document is protected by copyright. No part of this document may be reproduced in any form by any means without

prior written authorization of Sun and its licensors, if any.

The information described in this document may be protected by one or more U.S. patents, foreign patents, or pending

applications.

LICENSE

Sun Microsystems, Inc. (SUN) hereby grants you at no charge a nonexclusive, nontransferable, worldwide, limited license

(without the right to sublicense) under SUN’s intellectual property rights that are essential to use the JavaTM Servlet API

Specification (“Specification”) for internal evaluation purposes only. Other than this limited license, you acquire no right, title,

or interest in or to the Specification and you shall have no right to use the Specification for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-

19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, Sun Microelectronics, SunXTL, Solaris, Java, JavaSoft, the JavaSoft logo, JavaOS,

JavaBeans, JDK, HotJava, HotJava Views, JavaChip, picoJava, microJava, UltraJava, JDBC, Visual Java, Solaris, NEO, Joe,

Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava, PersonalJava, SNM, SunNet Manager, Solaris sunburst

design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra,

Ultracomputing, Ultraserver, Where The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo,

the Java Cup and Steam Logo, “Write Once, Run Anywhere”, JavaServer, and JavaServer Pages are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Adobe is a registered trademark of Adobe Systems, Inc.

Netscape Navigator is a trademark of Netscape Communications Corporation.

All other product names mentioned herein are the trademarks of their respective owners.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW

EDITIONS OF THE DOCUMENT. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN

THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Please send all comments to servletapi-feedback@eng.sun.com.



Contents iii

Contents

1. About Java Servlets 9

Overview of Java Servlets 10

Servlet Lifecycle 10

Servlet Mapping Techniques 14

The Servlet Context 14

HTTP Sessions 15

2. API Class Reference 17

Interface RequestDispatcher 19

Interface Servlet 21

Interface ServletConfig 23

Interface ServletContext 24

Interface ServletRequest 29

Interface ServletResponse 33

Interface SingleThreadModel 35

Class GenericServlet 36

Class ServletInputStream 39

Class ServletOutputStream 40

Class ServletException 42

Class UnavailableException 43



iv Java Servlet API Specification • November 1998

Interface HttpServletRequest 45

Interface HttpServletResponse 50

Interface HttpSession 55

Interface HttpSessionBindingListener 59

Interface HttpSessionContext 60

Class Cookie 61

Class HttpServlet 65

Class HttpSessionBindingEvent 69

Class HttpUtils 70



Preface v

Preface

This document, the JavaTM Servlet API Specification, describes Version 2.1 of the Java

Servlet API. In addition to this specification, the Java Servlet API has Javadoc

documentation and a reference implementation available for public download at the

following location:

http://java.sun.com/products/servlet/index.html

Who Should Read This Specification

This specification is intended as the definitive description of the Java Servlet API,

Version 2.1. As such, it will be of interest to both servlet developers and servlet

engine developers.

Parts of the Java Servlet API

The Java Servlet API is divided into two packages—an HTTP-specific package and a

generic, non-HTTP-specific package. The two packages will allow the Java Servlet

API to be adapted to other request-response protocols in the future.

The two packages are described in this specification, as well as in the Javadoc

documentation and the reference implementation. The Javadoc documentation

describes how you use each method in the API.

The reference implementation provides a behavioral benchmark. In the case of a

discrepancy, the order of resolution is the specification (this document), then the

Javadoc documentation, and finally the reference implementation.



vi Java Servlet API Specification • November 1998

Important References

You may be interested in the following Internet specifications that are relevant to the

development and implementation of the Servlet API. You can locate online versions

of any of these RFCs at the following location:

http://info.internet.isi.edu/7c/in-notes/rfc/.cache

■ RFC 1738 Uniform Resource Locators (URL)

■ RFC 1808 Relative Uniform Resource Locators

■ RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

■ RFC 2045 MIME Part One: Format of Internet Message Bodies

■ RFC 2046 MIME Part Two: Media Types

■ RFC 2047 MIME Part Three: Message Header Extensions for Non-ASCII Text

■ RFC 2048 MIME Part Four: Registration Procedures

■ RFC 2049 MIME Part Five: Conformance Criteria and Examples

■ RFC 2068 Hypertext Transfer Protocol (HTTP/1.1)

■ RFC 2069 An Extension to HTTP: Digest Access Authentication

■ RFC 2109 HTTP State Management Mechanism

■ RFC 2145 Use and Interpretation of HTTP Version Numbers

■ RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCP/1.0)1

The World Wide Web Consortium (http://www.w3.org ) is a source of HTTP-

related information that affects this specification and its implementations.

1A tongue-in-cheek reference.



Preface vii

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

Acknowledgements

Many individuals and companies have given of their valuable skills and talent to

this specification and the Java Servlet API.

The author gratefully acknowledges each of the following companies for

contributing to the definition of the Java Servlet API—Art Technology Group, BEA

Weblogic, IBM, Gefion Software, Live Software, Netscape Communications

Corporation, New Atlanta Communications, The Apache Group, and Sun

Microsystems, Inc.

The author also gratefully acknowledges the following individuals, each of whom

has contributed in his or her unique way—Adam Messinger, Anselm Baird-Smith,

Bob Pasker, Jason Hunter, Alan Williamson, Jon Stevens, Robert Clark, Rod

McChesney, Satish Dharmaraj, Nathan Abramson, Stefano Mazzocchi, Jim Driscoll,

Connie Weiss, and Suzanne Ahmed.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,

or words to be emphasized

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.



viii Java Servlet API Specification • November 1998



9

CHAPTER 1

About Java Servlets

JavaTM servlets are small, platform-independent Java programs that can be used to

extend the functionality of a Web server in a variety of ways. Servlets are to the

server what applets are to the client—small Java programs compiled to bytecode

that can be loaded dynamically and that extend the capabilities of the host.

Servlets differ from applets in that servlets do not run in a Web browser or with a

graphical user interface. Instead, servlets interact with the servlet engine running on

the Web server through requests and responses. The request-response paradigm is

modeled on the behavior of the HyperText Transfer Protocol (HTTP).

A client program, which could be a Web browser or some other program that can

make connections across the Internet, accesses a Web server and makes a request.

This request is processed by the servlet engine that runs with the Web server, which

returns a response to a servlet. The servlet in turn sends a response in HTTP form to

the client.

In functionality, servlets lie somewhere between Common Gateway Interface (CGI)

programs and proprietary server extensions such as the Netscape Server API

(NSAPI). Unlike CGI programs and NSAPI modules, you do not need to modify

servlets to be specific to either a platform or a server.



10 Java Servlet API Specification • November 1998

Overview of Java Servlets

Servlets have the following advantages over other common server extension

mechanisms:

■ They are faster than CGI scripts because they use a different process model.

■ They use a standard API that is supported by many Web servers.

■ They have all of the advantages of the Java language, including ease of

development and platform independence.

■ They can access the large set of APIs available for the Java platform.

Note – The methods described in this specification are methods in the classes and

interfaces of the Java Servlet API. For more information, refer to the API reference in

Chapter 2.

Servlet Lifecycle

A Java servlet has a lifecycle that defines how the servlet is loaded and initialized,

how it receives and responds to requests, and how it is taken out of service. In code,

the servlet lifecycle is defined by the javax.servlet.Servlet interface.

All Java servlets must, either directly or indirectly, implement the

javax.servlet.Servlet interface so that they can run in a servlet engine. The

servlet engine is a customized extension to a Web server for processing servlets, built

in conformance with the Java Servlet API by the Web server vendor. The servlet

engine provides network services, understands MIME requests, and runs servlet

containers.

The javax.servlet.Servlet interface defines methods that are called at specific

times and in a specific order during the servlet lifecycle. The entire servlet lifecycle is

shown in FIGURE 1-1.



Chapter 1 About Java Servlets 11

FIGURE 1-1 The Servlet Lifecycle



12 Java Servlet API Specification • November 1998

How a Servlet is Loaded and Instantiated

The servlet engine instantiates and loads a servlet. The instantiation and loading can

occur when the engine starts, when it needs the servlet in order to respond to a

request, or any time in between.

The servlet engine loads a servlet using the Java class loading facility. The servlet

engine can load the servlet from the local file system, a remote file system, or a

network source.

How a Servlet is Initialized

After the servlet engine loads the servlet, the engine must initialize the servlet.

Initialization is a good time for a servlet to read any persistent data it may have

stored, initialize JDBC database connections, and establish references to other costly

resources.

During initialization, the init method of the javax.servlet.Servlet interface

gives the servlet initialization information, so that the servlet has an opportunity to

configure itself.

The init method takes a servlet configuration object (of type ServletConfig) as

a parameter. The servlet configuration object is implemented in the servlet engine

and allows the servlet to access name-value parameters from the engine’s

configuration information. The servlet configuration object also gives the servlet

access to a servlet context object, of type ServletContext .

How a Servlet Handles Requests

After the servlet is initialized, it is ready to handle requests from the client. Each

client request that is made of a servlet is represented by a servlet request object (of

type ServletRequest ). The response the servlet sends to the client is represented

by a servlet response object (of type ServletResponse ).

When the client makes a request, the servlet engine passes both the servlet request

object and the servlet response object to the servlet. The objects are passed as

parameters to the service method, defined in the Service interface and which the

servlet implements.

The servlet can also implement the ServletRequest or ServletResponse
interfaces, or both. The ServletRequest interface gives the servlet access to the

request parameters the client sends, such as form data, request information, and

protocol methods. The servlet can read the request data from an input stream object

(of type ServletInputStream) .



Chapter 1 About Java Servlets 13

The ServletResponse interface allows the servlet to set response headers and

status codes. By implementing ServletResponse , the servlet has access to an

output stream object (of type ServletOutputStream ) that it can use to return data

to the client.

Multithreading and Mapping

In a multithreaded environment, most servlets must be written to handle multiple

concurrent requests. The exception is a servlet that implements the

SingleThreadModel interface. Such a servlet will execute only one request thread

at a time.

A servlet responds to a client request according to the servlet engine’s mapping. A

mapping pairs a servlet instance with an URL to which the servlet returns data, for

example, HelloServlet with /hello/index.html .

However, a mapping might pair an URL with more than one servlet instance. For

example, a distributed servlet engine running on more than one server might have a

servlet instance running on each server, to balance the processing load. As a servlet

developer, you cannot assume that a servlet has only one instance.

How a Servlet is Destroyed

The servlet engine is not required to keep a servlet loaded for any period of time or

for the life of the server. Servlet engines are free to use servlets or retire them at any

time. Therefore, you should not rely on class or instance members to store state

information.

When the servlet engine determines that a servlet should be destroyed (for example,

if the engine is shut down or needs to conserve resources), the engine must allow the

servlet to release any resources it is using and save persistent state. To do this, the

engine calls the servlet’s destroy method.

The servlet engine must allow any calls to the service method either to complete

or to end with a time out (as the engine defines a time out) before the engine can

destroy the servlet. Once the engine destroys a servlet, the engine cannot route any

more requests to the servlet. The engine must release the servlet and make it eligible

for garbage collection.



14 Java Servlet API Specification • November 1998

Servlet Mapping Techniques

As a servlet engine developer, you have a great deal of flexibility in how you map

client requests to servlets. This specification does not mandate how the mapping

should take place. However, you should feel free to use any of the following

techniques:

■ You can map a servlet to just one URL.

For example, you can specify that a particular servlet is only called by requests

from the file URL /feedback/index.html .

■ You can map a servlet to any URL that begins with a certain directory name.

For example, if you map a servlet to the URL /catalog , requests from

/catalog/ , /catalog/garden , and /catalog/housewares/index.html
would also map to the servlet. However, requests from /catalogtwo or

/catalog.html would not.

■ You can map a servlet to any URL that ends with a certain file name extension.

For example, you can map a request for any file whose name ends in .thtml to a

particular servlet. If you use both file name extension mapping and directory

mapping in your servlet engine, design the engine so that the file name resolution

takes place after the directory name resolution fails.

■ You can map a servlet by using the special URL /servlet /servlet_name.

For example, if you create a servlet with the name listattributes , you can

access the servlet by using the URL /servlet/listattributes .

■ You can invoke a servlet by its class name.

For example, if a servlet engine receives a request from the URL

/servlet/com.foo.servlet.MailServlet , the servlet engine can load the

class com.foo.servlet.MailServlet , instantiate it, cast the instance to a

servlet, and then let the servlet handle the request.

The Servlet Context

The ServletContext interface defines a servlet context object, that is, an object

that defines the servlet’s view of the servlet engine. By using a servlet context,

servlets can log events and obtain resources and objects (such as

RequestDispatcher objects) from the servlet engine. A servlet can run in only one

servlet context, but different servlets can have different views of the servlet engine.



Chapter 1 About Java Servlets 15

If a servlet engine supports virtual hosts, each virtual host has a servlet context. A

servlet context cannot be shared across virtual hosts.

Servlet engines can allow a servlet context to have as its scope part of a server’s URL

path.

For example, a servlet context belonging to a bank application can be mapped to the

path /bank . In this case, a call to the getContext method (/bank/foo ) would

return the servlet context for /bank . Such a mapping will become part of the

upcoming Deployment Descriptor specification.

HTTP Sessions

The HyperText Transfer Protocol (HTTP) is a stateless protocol. To build effective

Web server applications, you must be able to identify a series of unique requests

from a remote client as being from the same client. Many strategies for session

tracking have evolved over time, but all are difficult or troublesome to use.

The Java Servlet API provides a simple interface that allows a servlet engine to use

any number of approaches to track a user session.

Creating a Session

Because HTTP is a request-response protocol, a session is considered new until the

client joins it. Join means that the client returns session tracking information to the

server, indicating that a session has been established. Until the client joins a session,

you cannot assume that the next client response is part of the current session.

The session is considered to be new if either of the following is true:

■ The client does not yet know about the session.

■ The client chooses not to join a session, for example, if the client declines to accept

cookies sent by the server.

As a servlet developer, you must design your Web application to handle situations

in which a client has not, or can not, join a session. The server will maintain the

session object for a period of time specified by the Web server or a servlet. When a

session expires, the server will release the session object and all other objects bound

during the session.



16 Java Servlet API Specification • November 1998

Binding Objects into a Session

You might want to bind objects into a session, if it helps you handle your

application’s data requirements. You can bind any object into a session by a unique

name, using the HttpSession object. Any object bound into a session is available to

any other servlet that handles a request from the same session.

Some objects may require that you know when they are placed into, or removed

from, a session. You can obtain this information by using the

HttpSessionBindingListener interface. When your application stores data in or

removes data from the session, the servlet engine checks whether the object being

bound or unbound implements HttpSessionBindingListener . If it does,

methods in the interface notify the object that it has been bound or unbound.



17

CHAPTER 2

API Class Reference

This section contains the detailed specification for each class and interface in the

Java Servlet API. The API reference in this specification is similar to the Javadoc API

reference, but this specification provides more information.

The API consists of 2 packages, 12 interfaces, and 9 classes, as shown in Table 2-1.



18 Java Servlet API Specification • November 1998

TABLE 2-1 Packages in the Java Servlet API

Package javax.servlet

Type Name Page Number

Interface RequestDispatcher Page 20

Interface Servlet Page 22

Interface ServletConfig Page 24

Interface ServletContext Page 25

Interface ServletRequest Page 30

Interface ServletResponse Page 34

Interface SingleThreadModel Page 36

Class GenericServlet Page 37

Class ServletInputStream Page 40

Class ServletOutputStream Page 41

Class ServletException Page 43

Class UnavailableException Page 44

Package javax.servlet.http

Type Name Page Number

Interface HttpServletRequest Page 46

Interface HttpServletResponse Page 51

Interface HttpSession Page 56

Interface HttpSessionBindingListener Page 60

Interface HttpSessionContext Page 61

Class Cookie Page 62

Class HttpServlet Page 66

Class HttpSessionBindingEvent Page 70

Class HttpUtils Page 71



Chapter 2 API Class Reference 19

Interface RequestDispatcher

Definition
public interface RequestDispatcher;

Defines a request dispatcher object that receives requests from the client and sends

them to any resource (such as a servlet, CGI script, HTML file, or JSP file) available

on the Web server. The request dispatcher object is created by the servlet engine and

serves as a wrapper around a server resource defined by a particular URL.

The RequestDispatcher interface is defined primarily to wrap servlets, but a

servlet engine can create request dispatcher objects to wrap any type of resource.

Request dispatcher objects are created by the servlet engine, not by the servlet

developer.

Methods

forward

public void forward(ServletRequest request, ServletReponse response)
throws ServletException, IOException;

Used for forwarding a request from this servlet to another resource on the Web

server. This method is useful when one servlet does preliminary processing of a

request and wants to let another object generate the response.

The request object passed to the target object will have its request URL path and

other path parameters adjusted to reflect the target URL path of the target object.

You cannot use this method if a ServletOutputStream object or PrintWriter
object has been obtained from the response. In that case, the method throws an

IllegalStateException .



20 Java Servlet API Specification • November 1998

include

public void include(ServletRequest request, ServletResponse response)
throws ServletException, IOException

Used for including the content generated by another server resource in the body of a

response. In essence, this method enables programmatic server-side includes.

The request object passed to the target object will reflect the request URL path and

path info of the calling request. The response object only has access to the calling

servlet’s ServletOutputStream object or PrintWriter object.

An included servlet cannot set headers. If the included servlet calls a method that

needs to set headers (such as cookies), the method is not guaranteed to work. As a

servlet developer, you must ensure that any methods that might need direct access

to headers are properly resolved. To ensure that a session works correctly, start the

session outside the included servlet, even if you use session tracking.



Chapter 2 API Class Reference 21

Interface Servlet

Definition
public interface Servlet

The Servlet interface defines a servlet, a Java object that extends the functionality

of a Web server.

Methods

init

public void init(ServletConfig config) throws ServletException;

The servlet engine calls the init method exactly once on a servlet, after the servlet

is instantiated but before it is placed into service. The init method must exit

successfully before you can call the service method.

If the init method throws a ServletException , you must not place the servlet

into service. If the init method does not complete within the timeout period, you

can assume the servlet is nonfunctional and not in service.

service

public void service(ServletRequest request, ServletResponse response)
throws ServletException, IOException;

Called by the servlet engine to allow the servlet to respond to a request. This method

must not be called until the servlet has been successfully initialized. The servlet

engine must block pending requests to this servlet until such time as it is initialized.

After a servlet object has been destroyed, the servlet engine must not call service
until a new servlet is initialized.



22 Java Servlet API Specification • November 1998

destroy

public void destroy();

Called by the servlet engine when the servlet is removed from service. The servlet

engine may not call this method until all threads within the object’s service method
have exited or the engine’s timeout period has passed.

getServletConfig

public ServletConfig getServletConfig();

Returns a ServletConfig object. As a servlet developer, you must store the

ServletConfig object passed to the init method so that the getServletConfig
method can return the object. For your convenience, the GenericServlet
implementation of this interface already does this.

getServletInfo

public String getServletInfo();

Allows the servlet to provide information about itself to the host servlet runner. The

returned string must be of plain text form and not composed of markup of any kind

(such as HTML, XML, etc).



Chapter 2 API Class Reference 23

Interface ServletConfig

Definition
public interface ServletConfig

This interface defines an object that a servlet engine generates to configure a servlet

and allow the servlet to obtain a reference to its ServletContext interface. Each

ServletConfig object the servlet receives is unique to that servlet.

Methods

getInitParameter

public String getInitParameter(String name);

This method returns a String containing the value of the servlet’s named

initialization parameter, or null if this parameter does not exist.

getInitParameterNames

public Enumeration getInitParameterNames();

This method returns an enumeration of String objects containing the names of the

initialization parameters for the calling servlet. If the calling servlet has no

initialization parameters, getInitParameterNames returns an empty

enumeration.

getServletContext

public ServletContext getServletContext();

Returns the ServletContext object for this servlet.



24 Java Servlet API Specification • November 1998

Interface ServletContext

Definition
public interface ServletContext

Defines a servlet context object that the servlet engine generates to provide a servlet

with information about its environment.

A servlet context object is at least as unique as the host in which it resides. In a

servlet engine that handles multiple virtual hosts (for example, by using the HTTP

1.1 host header), each virtual host must be treated as a separate context. Servlet

engines can also provide context objects that are unique to a group of servlets. You

can group the servlets administratively or define them with a deployment

descriptor.

Methods

getAttribute

public Object getAttribute(String name);

Returns an object that is known to the servlet context object by a given name, or null

if there is no such object associated with the name. This method allows access to

additional information about the servlet engine not already provided by other

methods in this interface.

You should use the same naming conventions for attributes as for package names.

Names matching java.* , javax.* , and sun.* are reserved for definition by this

specification or the reference implementation.

getAttributeNames

public Enumeration getAttributeNames();

Returns an enumeration of the attribute names present in the calling servlet context

object.



Chapter 2 API Class Reference 25

getContext

public ServletContext getContext(String uripath);

Returns the servlet context object that contains servlets and resources for a particular

URI path, or null if a context cannot be provided for the path. The format of the URI

path is /dir/dir/filename.ext .

For security, the servlet context object that a sandboxed or otherwise restricted

servlet has access to should return null to this method call.

getMajorVersion

public int getMajorVersion();

Returns the major version of the Servlet API that this servlet engine supports. All 2.1

compliant implementations must return the integer 2 to this method.

getMinorVersion

public int getMinorVersion();

Returns the minor version of the Servlet API that this servlet engine supports. All 2.1

compliant implementations must return the integer 1 to this method.

getMimeType

public String getMimeType(String file);

Returns the MIME type of the specified file, or null if not known. The MIME type is

determined according to the configuration of the servlet engine.

getRealPath

public String getRealPath(String path);

Applies alias rules to the specified virtual path in URL path format, that is,

/dir/dir/filename.ext . Returns a String representing the corresponding real

path in the format that is appropriate for the machine (including the proper path

separators) that the servlet engine is running on.

Returns null if the translation could not be performed for any reason.



26 Java Servlet API Specification • November 1998

getResource

public URL getResource(String uripath);

Returns an URL object to a resource known to the servlet context object located at

the given URL path (of format /dir/dir/filename.ext ). The servlet engine must

implement whatever URLStreamHandlers are necessary to access the given context.

If there is no resource known to a servlet context for a particular path,

getResource returns null.

This method does not fill the same purpose as the getResource method in

java.lang.Class . The method in java.lang.Class looks up resources based on

Class class loader. This allows the server to make content visible to any servlet

from any source without regard to class loaders, location, and so on.

getResourceAsStream

public InputStream getResourceAsStream(String uripath);

Returns an InputStream object that refers to content known to the servlet context

object at the specified the URL, or null if the servlet context object is not found. The

URL path is of the form /dir/dir/filename.ext.

This method is a convenient way to obtain an URL object from the getResource
method and open a stream. Note that meta-information such as content length and

content type are lost when you use getResourceAsStream .

getRequestDispatcher

public RequestDispatcher getRequestDispatcher(String uripath);

Returns a RequestDispatcher object for the specified URL if the context knows of

an active source (such as a servlet, JSP page, CGI script, etc.) of content for the

particular path, or null otherwise. The format of the URL path is /dir/dir/
filename.ext ). The servlet engine implements whatever functionality is needed to

wrap the target path with a request dispatcher object that can perform request

forwarding and programmatic server side includes.

getServerInfo

public String getServerInfo();

Returns a String object containing at least the name and version of the servlet

engine.



Chapter 2 API Class Reference 27

log

public void log(String msg);
public void log(String msg, Throwable t);

public void log(Exception exception, String msg); // deprecated

Writes the specified message to the log file for this servlet context object. The log

written to is specific to the servlet engine, but is usually an event log. When this

method is called with an exception, the stack trace should be included in the log.

setAttribute

public void setAttribute(String name, Object o);

Binds the object you specify to the name you specify in the servlet context object.

Attribute names should follow the same convention as package names. Names

beginning with the prefixes java.* , javax.* , and sun.* are reserved for

definition by this specification or the reference implementation

removeAttribute

public void removeAttribute(String name);

Removes an attribute from the specified servlet context object.

Deprecated Methods

getServlet

// deprecated
public Servlet getServlet(String name) throws ServletException;

Originally defined to return a servlet with the specified name, or null if not found.

When the servlet is returned it is already initialized and ready to accept service

requests.

This is a dangerous method. When this method is called, the state of the servlet may

not be known and this could cause problems with the server’s state machine. It is

also a security risk to allow any servlet to be able to access the methods of another

servlet.



28 Java Servlet API Specification • November 1998

All servlet implementations should always return null to this call. As this method is

defined to always return null, it will not be removed at this time to preserve binary

compatibility with previous versions of the API. This method will be removed in a

future revision of the API.

Deprecated as of Version 2.0.

getServletNames

// deprecated
public Enumeration getServletNames();

Originally defined to return an enumeration of String objects containing all the

servlet object names known to this servlet context. The enumeration always includes

the servlet itself.

This is a dangerous method, for the same reasons the getServlet method is

dangerous.

All servlet implementations should return an empty enumeration to this call. As this

method is defined to return an empty enumeration, it will not be removed at this

time to preserve binary compatibility with previous versions of the API. This

method will be removed in a future revision of the API.

Deprecated as of Version 2.0.

getServlets

// deprecated
public Enumeration getServlets();

Originally defined to return an enumeration of all the Servlet objects which are

known to this servlet context. The enumeration always includes the servlet itself.

This is a dangerous method, for the same reasons the getServlet method is

dangerous.

All servlet implementations should return an empty enumeration to this call. As this

method is defined to return an empty enumeration, it will not be removed at this

time to preserve binary compatibility with previous versions of the API. This

method will be removed in a future revision of the API.

Deprecated as of Version 2.0.



Chapter 2 API Class Reference 29

Interface ServletRequest

Definition
public interface ServletRequest

Defines a servlet engine generated object that enables the servlet to get data about a

client request. The data provided by this object includes parameter names and

values, attributes, and an input stream to read data from the request’s body.

Methods

getAttribute

public Object getAttribute(String name);

Returns the value of the named attribute of this request, or null if the attribute does

not exist. This method allows access to request information not already provided by

other methods in this interface or data that was placed in the request object by other

servlets. Attribute names should follow the same convention as package names. The

attribute names matching a prefix of java.* , javax.* , and sun.* are reserved for

definition by Sun Microsystems.

getAttributeNames

public Enumeration getAttributeNames();

Returns an enumeration of all the attribute names contained in the request.

getCharacterEncoding

public String getCharacterEncoding();

Returns the character set encoding for the input body of this request, or null if no

character encoding is defined.



30 Java Servlet API Specification • November 1998

getContentLength

public int getContentLength();

Returns the MIME-specified content length, or -1 if not known.

getContentType

public String getContentType();

Returns the Multipurpose Internet Mail Extension (MIME) type of the request body

data, or null if not known.

getInputStream

public ServletInputStream getInputStream() throws IOException;

Returns an input stream for reading binary data from the request body. This method

will throw an IllegalStateException if a reader was previously obtained via

the getReader method.

getParameter

public String getParameter(String name);

Returns a string containing a single value of the specified parameter, or null if the

parameter does not exist. For example, in an HTTP servlet, this method would

return the value of a specified query string parameter or posted form data

parameter. In the event that there are multiple parameter values for a single name,

the value returned should be the first value in the array returned by the

getParameterValues method. If the parameter has (or could have) multiple

values, servlet writers should use the getParameterValues method.

getParameterNames

public Enumeration getParameterNames();

Returns all the parameter names for this request as an enumeration of String objects,

or an empty enumeration if there are no input parameters.



Chapter 2 API Class Reference 31

getParameterValues

public String[] getParameterValues(String name);

Returns the values of the specified parameter as an array of String objects, or null if

the named parameter does not exist.

getProtocol

public String getProtocol();

Returns the protocol being used for this request as a string of the form protocol /

major_version.minor_version . An HTTP 1.0 request, as defined by the HTTP

1.0 specification, should return the string HTTP/1.0 .

getReader

public BufferedReader getReader() throws IOException;

This method returns a buffered reader for reading text data from the request body.

The character encoding of the reader is set according to the request data. This

method must throw an IllegalStateException if the input stream of the request

had been obtained with the getInputStream call.

getRemoteAddr

public String getRemoteAddr();

Returns the IP address of the agent that sent the request.

getRemoteHost

public String getRemoteHost();

Returns the fully qualified host name of the agent that sent the request. If the engine

cannot or chooses not to resolve the hostname (to improve performance), this

method returns the dotted-string form of the IP address.

getScheme

public String getScheme();

Returns the scheme of the URL used in this request. For example, in an HTTP

request, the scheme would be http .



32 Java Servlet API Specification • November 1998

getServerName

public String getServerName();

Returns the host name of the server that received the request.

getServerPort

public int getServerPort();

Returns the port number on which this request was received.

setAttribute

public void setAttribute(String name, Object object);

This method places an attribute into the request for later use by other objects which

will have access to this request object such as nested servlets.

Deprecated Methods

getRealPath

// deprecated
public String getRealPath(String path);

Applies alias rules to the specified virtual path and returns the corresponding real

path, or null if the translation cannot be performed for any reason.

This method has been deprecated in preference to the getRealPath method in the

ServletContext interface. In Version 2.1, the ServletContext interface was

clarified to contain all the path mapping information available to a servlet.

Implementations should return the same string as the getRealPath method in

ServletContext .

Deprecated as of Version 2.1.



Chapter 2 API Class Reference 33

Interface ServletResponse

Definition
public interface ServletResponse

Defines an object generated by the servlet engine that allows a servlet to respond to

a client request. This response is a MIME entity and could be an HTML page, image

data, or any other MIME format.

Methods

getCharacterEncoding

public String getCharacterEncoding();

Returns the character set encoding used for this MIME body. The character encoding

is either the one specified in the assigned content type, or the best match determined

in part by the request header information from the client indicating what character

encodings are acceptable to the client. In HTTP, this information is transmitted to the

servlet engine via the “Accept-Charset” header.

See RFC 2047 for more information about character encoding and MIME.

getOutputStream

public ServletOutputStream getOutputStream() throws IOException;

Returns an output stream for writing binary response data.

Throws IllegalStateException if getWriter has already been called on the

response object.



34 Java Servlet API Specification • November 1998

getWriter

public PrintWriter getWriter throws IOException;

This method returns a print writer for writing formatted text responses. The MIME

type of the response will be modified, if necessary, to reflect the character encoding

being used through the charset property. The content type of the response should be

set before calling this method.

Throws UnsupportedEncodingException if no such encoding can be provided.

Throws IllegalStateException if getOutputStream has already been called

on this same request.

setContentLength

public void setContentLength(int length);

Sets the content length for this response. This method will overwrite any previously

set content length.

In order for this method to successfully set the content length header of the

response, this method must be called before the response is committed to the

underlying output stream.

setContentType

public void setContentType(String type);

This method sets the content type for this response. This type may later be implicitly

modified by the addition of properties such as the MIME charset property if the

service finds it necessary and the appropriate property has not been set.

In order for this method to successfully set the content type header of the response,

this method must be called before the response is committed to the underlying

output stream.



Chapter 2 API Class Reference 35

Interface SingleThreadModel

Definition
public interface SingleThreadModel;

This empty interface allows servlet implements to specify how the system should

handle concurrent calls to the same servlet. If the target servlet is flagged with this

interface, the servlet programmer is guaranteed that no two threads will execute

concurrently the service method of the servlet.

This guarantee can be accomplished by the servlet engine by maintaining a pool of

separate servlet instances of each servlet so marked, or by only letting one thread

execute the service method of the servlet at a time.



36 Java Servlet API Specification • November 1998

Class GenericServlet

Definition
public abstract class GenericServlet implements Servlet,

ServletConfig, Serializable;

This class is a convenience implementation to aid servlet writers. It provides simple

implementations of the servlet lifecycle methods as well as holds a reference to the

ServletConfig and ServletContext objects provided at initialization time.

Select methods from the context object is exposed via methods in this class.

Methods

destroy

public void destroy();

This implementation of the destroy method does nothing.

getInitParameter

public String getInitParameter(String name);

Convenience method which in turns calls the method of the same name on the

stored servlet configuration object.

getInitParameterNames

public Enumeration getInitParameterNames();

Convenience method which in turns calls the method of the same name on the

stored ServletConfig object.



Chapter 2 API Class Reference 37

getServletConfig

public ServletConfig getServletConfig();

Returns a reference to the ServletConfig object stored by the init method of this

class.

getServletContext

public ServletContext getServletContext();

Convenience method which in turns calls the method of the same name on the

stored ServletConfig object.

getServletInfo

public String getServletInfo();

Returns an empty servlet info string.

init

public void init() throws ServletException;
public void init(ServletConfig config) throws ServletException;

The init(ServletConfig config) method is a simple implementation of the

servlet lifecycle initialization method. This is the version of this method that the

servlet engine calls when the servlet is loaded.

The init() method is provided so that if you extend the GenericServlet class,

you do not need to store the config object properly or call super.init(config) .

The init(ServletConfig config) method saves the config object and calls

init() . If you write a method that overrides init(ServletConfig config) ,

you must call super.init(config) , so that the other methods in the

GenericServlet class function correctly.

log

public void log(String msg);
public void log(String msg, Throwable cause);

Writes the class name of the servlet and the given message to the log accessible via

the servlet context object.



38 Java Servlet API Specification • November 1998

service

public abstract void service(ServletRequest request, ServletResponse
response) throws ServletException, IOException;

Abstract method that you must implement if you extend this class, in order to

handle network requests.



Chapter 2 API Class Reference 39

Class ServletInputStream

Definition
public abstract class ServletInputStream extends InputStream

This class defines an input stream for reading requests from a client. This is an

abstract class that a servlet engine provides. A servlet obtains a reference to a

ServletInputStream object by using the ServletRequest interface.

Subclasses of this class must provide an implementation of the read method from

the InputStream interface.

Methods

readLine

public int readLine(byte[] b, int off, int len) throws IOException;

Reads into the portion of the given array specified by the offset and length

parameters bytes from the input until all requested bytes have been read or a new

line character is encountered, in which case the new line character is read into the

array as well and then stops.



40 Java Servlet API Specification • November 1998

Class ServletOutputStream

Definition
public abstract class ServletOutputStream extends OutputStream

This is an abstract class for servlet engines to implement. Servlet developers obtain a

reference to an object of this type through the ServletResponse interface and use

this output stream to return data to clients.

Subclasses of this class must provide an implementation of the write(int) method

of the OutputStream interface.

When a flush or close method is called on an implementation of this interface, any

data buffered by the servlet engine is sent to the client and the response is

considered to be “committed”. Note that calling close on an object of this type

doesn’t necessarily close the underlying socket stream.

Methods

print

public void print(String s) throws IOException;
public void print(boolean b) throws IOException;
public void print(char c) throws IOException;
public void print(int i) throws IOException;
public void print(long l) throws IOException;
public void print(float f) throws IOException;
public void print(double d) throws IOException;

Prints the argument provided to the underlying output stream.



Chapter 2 API Class Reference 41

println

public void println() throws IOException;
public void println(String s) throws IOException;
public void println(boolean b) throws IOException;
public void println(char c) throws IOException;
public void println(int i) throws IOException;
public void println(long l) throws IOException;
public void println(float f) throws IOException;
public void println(double d) throws IOException;

Prints the argument provided to the underlying output stream followed by a CRLF.



42 Java Servlet API Specification • November 1998

Class ServletException

Definition
public class ServletException extends Exception

This exception is thrown to indicate a servlet problem.

Constructors
public ServletException();
public ServletException(String message);
public ServletException(String message, Throwable cause);
public ServletException(Throwable cause);

Constructs a new ServletException . If this constructor is called with a

Throwable parameter, the Throwable object is registered as the original cause of

this exception.

Methods

getRootCause

public Throwable getRootCause();

If the original cause of this exception was set, this method returns the cause;

otherwise, the method returns null.



Chapter 2 API Class Reference 43

Class UnavailableException

Definition
public class UnavailableException extends ServletException

This exception is thrown to indicate a servlet is either temporarily or permanently

unavailable. Servlets may report this exception at any time and the servlet engine

running the servlet must behave appropriately.

Temporary unavailability is when the servlet cannot handle requests at the current

time due to some transient problem. For example, a server on a different application

layer, such as a database, may not be available. The problem may be self-correcting

or may require further corrective action.

Permanent unavailability is when the servlet will not be able to handle client

requests until some administrative action is taken. For example, the servlet may be

misconfigured, or the state of the servlet may be corrupted.

Servlet engines may safely treat both types of exceptions as though they are

permanent, but good treatment of temporary unavailability leads to more robust

servlet engines. Specifically, requests to the servlet may be blocked (or otherwise

deferred) for a servlet suggested amount of time, rather than being rejected until the

service itself restarts.

Constructors
public UnavailableException(Servlet servlet, String message);
public UnavailableException(int seconds, Servlet servlet,

String message);

Constructs a new exception with the specified descriptive message. If the constructor

is called with a given number of seconds, the unavailability is temporary and the

value given is an estimate of when the servlet will be able to handle requests again.

If the constructor is called without this argument, the servlet is permanently

unavailable.



44 Java Servlet API Specification • November 1998

Methods

getServlet

public Servlet getServlet();

This method returns the servlet that is reporting its unavailability. This is used by

the servlet engine to identify the servlet that is affected.

getUnavailableSeconds

public int getUnavailableSeconds();

Returns the amount of time the servlet expects to be unavailable. Returns -1 if the

servlet is permanently unavailable.

isPermanent

public boolean isPermanent();

Returns true if the servlet is permanently unavailable, indicating that some

administrative action must be taken to make the servlet usable.



Chapter 2 API Class Reference 45

Interface HttpServletRequest

Definition
public interface HttpServletRequest extends ServletRequest;

Provides access to HTTP-specific request information to a servlet in an HTTP-based

request.

Methods

getAuthType

public String getAuthType();

Returns the authentication scheme of this request.

getCookies

public Cookie[] getCookies();

Returns an array containing all the cookies present in this request. If there are no

cookies in the request, then an empty array is returned.

getDateHeader

public long getDateHeader(String name);

Returns the value of the requested header converted to a long representing a date

expressed in milliseconds since January 1, 1970, 00:00:00GMT. The match between

the given name and the request header is case insensitive.

If the header cannot be converted, this method will throw an

IllegalArgumentException . If the header requested does not exist, this method

returns -1.



46 Java Servlet API Specification • November 1998

getHeader

public String getHeader(String name);

Returns the value of the requested header. The match between the given name and

the request header is case-insensitive.

If the header requested does not exist, this method returns null.

getHeaderNames

public Enumeration getHeaderNames();

This method returns an enumeration of String objects representing the header names

for this request.

Some server implementations may not allow headers to be accessed in this way, in

which case this method can return an empty enumeration.

getIntHeader

public int getIntHeader(String name);

This method returns the value of the specified header converted to an integer. The

match between the given name and the request header is case insensitive.

If the header cannot be converted to an integer, this method throws a

NumberFormatException . If the header requested does not exist, this method

returns -1.

getMethod

public String getMethod();

Returns the HTTP method (for example, GET, POST, PUT) by which this request was

made.

getPathInfo

public String getPathInfo();

This method returns any extra path information of the request URL following the

servlet path of this request’s URL. If there is a query string as part of the request

URL, it is not included in the return value. The path must be URL decoded before

being returned. This method returns null if there is no path information following

the servlet path of the request URL.



Chapter 2 API Class Reference 47

getPathTranslated

public String getPathTranslated();

This method gets any extra path information following the servlet path of this

request’s URL and translates it into a real path. The request URL must be URL

decoded before the translation is attempted. If there is no extra path information

following the servlet path of the URL, this method returns null.

getQueryString

public String getQueryString();

Returns query string present in the request URL if any. A query string is defined as

any information following a ? character in the URL. If there is no query string, this

method returns null.

getRemoteUser

public String getRemoteUser

Gets the name of the user making this request. This information may be provided by

HTTP authentication.

This method returns null if there is no user name information in the request.

getRequestedSessionId

public String getRequestedSessionId();

Returns the session id specified with this request. This may differ from the session id

in the current session if the session id given by the client was invalid for whatever

reason and a new session was created.

This method will return null if the request does not have a session associated with it.

getRequestURI

public String getRequestURI();

Returns, from the first line of the HTTP request, the part of this request’s URL that

defines the resource being requested. If there is a query string, it is not included in

the return value. For example a request accessed via the URL path of /catalog/
books?id=1 would return /catalog/books . The return value of this method

contains both the servlet path and the path info.



48 Java Servlet API Specification • November 1998

If any part of the URL path was URL encoded, the path must be decoded before

being returned by this method.

getServletPath

public String getServletPath();

This method returns the part of the request URL that refers to the servlet being

invoked. For example, if a servlet is mapped to the URL path of /catalog/summer
and a request of the path /catalog/summer/casual is made, the servlet path

would be /catalog/summer .

If the servlet was invoked by some other mechanism than by a path match (such as

an extension match), then this method returns null.

getSession

public HttpSession getSession();
public HttpSession getSession(boolean create);

Returns the current valid session associated with this request. If this method is

called with no arguments, a session will be created for the request if there is not

allready a session associated with the request. If this method is called with a boolean

argument, then the session will be createdonly if the argument is true.

To ensure the session is properly maintained, the servlet developer must call this

method before the response is committed.

If the create flag is set to false and no session is associated with this request, then

this method will return null.

isRequestedSessionIdValid

public boolean isRequestedSessionIdValid();

This method checks whether this request is associated with a session that is

currently valid. If the session used by the request is not valid, it will not be returned

via the getSession method.

isRequestedSessionIdFromCookie

public boolean isRequestedSessionIdFromCookie();

Returns true if the session id for this request was provided from the client as a

cookie; false otherwise.



Chapter 2 API Class Reference 49

isRequestedSessionIdFromURL

public boolean isRequestedSessionIdFromURL();

Returns true if the session id for this request was provided from the client as part of

a URL; false otherwise. Note that the spelling URLin the method name indicates that

the method is new.

Deprecated Methods

isRequestedSessionIdFromUrl

// deprecated
public boolean isRequestedSessionIdFromUrl();

Deprecated in favor of isRequestedSessionIdFromURL for naming consistency.

Note that the spelling Url in the method name indicates that the method is

deprecated.

This method is deprecated as of Version 2.1.



50 Java Servlet API Specification • November 1998

Interface HttpServletResponse

Definition
public interface HttpServletResponse extends ServletResponse

Represents an HTTP response back to the client. This interface allows a servlet

programmer to manipulate HTTP-protocol-specific header information. It is

implemented by servlet engine developers for use within servlets.

Member Variables
public static final int SC_CONTINUE = 100;
public static final int SC_SWITCHING_PROTOCOLS = 101;
public static final int SC_OK = 200;
public static final int SC_CREATED = 201;
public static final int SC_ACCEPTED = 202;
public static final int SC_NON_AUTHORITATIVE_INFORMATION = 203;
public static final int SC_NO_CONTENT = 204;
public static final int SC_RESET_CONTENT = 205;
public static final int SC_PARTIAL_CONTENT = 206;
public static final int SC_MULTIPLE_CHOICES = 300;
public static final int SC_MOVED_PERMANENTLY = 301;
public static final int SC_MOVED_TEMPORARILY = 302;
public static final int SC_SEE_OTHER = 303;
public static final int SC_NOT_MODIFIED = 304;
public static final int SC_USE_PROXY = 305;
public static final int SC_BAD_REQUEST = 400;
public static final int SC_UNAUTHORIZED = 401;
public static final int SC_PAYMENT_REQUIRED = 402;
public static final int SC_FORBIDDEN = 403;
public static final int SC_NOT_FOUND = 404;
public static final int SC_METHOD_NOT_ALLOWED = 405;
public static final int SC_NOT_ACCEPTABLE = 406;
public static final int SC_PROXY_AUTHENTICATION_REQUIRED = 407;
public static final int SC_REQUEST_TIMEOUT = 408;
public static final int SC_CONFLICT = 409;
public static final int SC_GONE = 410;
public static final int SC_LENGTH_REQUIRED = 411;
public static final int SC_PRECONDITION_FAILED = 412;
public static final int SC_REQUEST_ENTITY_TOO_LARGE = 413;
public static final int SC_REQUEST_URI_TOO_LONG = 414;



Chapter 2 API Class Reference 51

public static final int SC_UNSUPPORTED_MEDIA_TYPE = 415;
public static final int SC_INTERNAL_SERVER_ERROR = 500;
public static final int SC_NOT_IMPLEMENTED = 501;
public static final int SC_BAD_GATEWAY = 502;
public static final int SC_SERVICE_UNAVAILABLE = 503;
public static final int SC_GATEWAY_TIMEOUT = 504;
public static final int SC_HTTP_VERSION_NOT_SUPPORTED = 505;

Constants representing HTTP status codes as defined by the HTTP/1.1 working

drafts.

Methods

addCookie

public void addCookie(Cookie cookie);

Adds the specified cookie to the response. This method can be called multiple times

to set more than one cookie. This method must be called before the response is

committed so that the appropriate headers can be set.

containsHeader

public boolean containsHeader(String name);

Checks whether or not a given response header has been set.

encodeRedirectURL

public String encodeRedirectURL(String url);

Encodes the specified URL for use in the sendRedirect method or, if encoding is

not needed, returns the URL unchanged. This additional encoding method is

provided because the rules for determining whether or not to encode the URL may

be different in the redirect case. The given URL must be an absolute URL. Relative

URLs are not permitted and must throw an IllegalArgumentException .

All URLs sent to the sendRedirect method should be run through this method to

ensure that session tracking is seamless with all browsers.



52 Java Servlet API Specification • November 1998

encodeURL

public String encodeURL(String url);

Encodes the URL by including the session ID in it, or if encoding is not needed,

returns the URL unchanged. URL encoding must be provided by the servlet engine

if URL rewriting is present and enabled and there is a valid session for the request

that this response is part of and the session is not being maintained via a cookie or

other non URL means.

All URLs emitted by a servlet should be run through this method to ensure that

session tracking is seamless with all browsers.

sendError

public void sendError(int statusCode) throws IOException;
public void sendError(int statusCode, String message) throws

IOException;

Sends an error response to the client using the specified status code. If a message is

provided to this method, it is emitted as the response body, otherwise the server

should return a standard message body for the error code given.

This is a convenience method that immediately commits the response. No further

output should be made by the servlet after calling this method.

sendRedirect

public void sendRedirect(String location) throws IOException;

Sends a temporary redirect response to the client (SC_MOVED_TEMPORARILY) using

the specified location. The given location must be an absolute URL. Relative URLs

are not permitted and throw an IllegalArgumentException .

This method will must be called before the response is committed. This is a

convenience method that immediately commits the response. No further output is be

made by the servlet after calling this method.

setDateHeader

public void setDateHeader(String name, long date);

Sets a response header with the specified name and date valued field appropriate for

that header. The date is specified in terms of milliseconds since January 1, 1970,

00:00:00GMT. If the header has already been set, the new value overwrites the

previous one.



Chapter 2 API Class Reference 53

setHeader

public void setHeader(String name, String value);

Sets a response header with the specified name and field. If the field has already

been set, the new value overwrites the previous one.

setIntHeader

public void setIntHeader(String name, int value);

Sets a response header with the specified name and integer value. If the header has

already been set, the new value overwrites the previous one.

setStatus

public void setStatus(int statusCode);

This method sets the status code of the response. If the status code has already been

set, the new value overrides the previous value. If a message is provided, it is sent

back as the body of the response.

Deprecated Methods

encodeRedirectUrl

// deprecated
public String encodeRedirectUrl(String url);

Deprecated in favor of encodeRedirectURL for naming consistency.

Deprecated as of Version 2.1.

encodeUrl

// deprecated
public String encodeUrl(String url);

Deprecated in favor of encodeURL for naming consistency.

Deprecated as of Version 2.1.



54 Java Servlet API Specification • November 1998

setStatus

// deprecated
public void setStatus(int statusCode, String message);

This method sets the status code of the response. If the status code has already been

set, the new value overrides the previous value. If a message is provided, it is sent

back as the body of the response.

Deprecated as of Version 2.1.



Chapter 2 API Class Reference 55

Interface HttpSession

Definition
public interface HttpSession

This interface is implemented by servlet engine to provide an associates between an

HTTP client and an HTTP session. This association, or session, persists over multiple

connection and/or requests during a given time period. Sessions are used to

maintain state and user identity across multiple page requests over the normally

stateless HTTP protocol.

A session can be maintained by either using cookies or URL rewriting.

Methods

getCreationTime

public long getCreationTime();

Returns the time at which this session was created in milliseconds since January 1,

1970, 00:00:00GMT.

getId

public String getId();

Returns the identifier assigned to this session. An HTTP session’s identifier is a

unique string that is created and maintained by the server.

getLastAccessedTime

public long getLastAccessedTime();

Returns the last time the client sent a request carrying the identifier assigned to the

session, or -1 if the session is new. Time is expressed as milliseconds since

00:00:00GMT January 1, 1970.



56 Java Servlet API Specification • November 1998

getMaxInactiveInterval

public int getMaxInactiveInterval();

Returns the maximum amount of time, in seconds, that a session is guaranteed to be

maintained in the servlet engine without a request from the client. After the

maximum inactive time, the session may be expired by the servlet engine. If this

session will not expire, this method will return -1.

This method should throw an IllegalStateException if it is called after this

session has been invalidated.

getValue

public Object getValue(String name);

Returns the object bound to a given name in the session. Returns null if there is no

such binding.

This method must throw an IllegalStateException if it is called after this

session has been invalidated.

getValueNames

public String[] getValueNames();

Returns an array of the names of all the values bound into this session.

This method should throw an IllegalStateException if it is called after this

session has been invalidated.

invalidate

public void invalidate();

This method will invalidate this session. All values bound in the session are

removed. Any values that implement the HttpSessionBindingListener
interface will be notified via the valueUnbound method.



Chapter 2 API Class Reference 57

isNew

public boolean isNew();

Returns a Boolean value indicating whether this session is considered to be new. A

session is considered to be new if it has been created by the server and not received

from the client as part of this request. This means that the client has not

“acknowledged” or “joined” the session and may not ever return the appropriate

session identification information when it makes its next request.

This method should throw an IllegalStateException if it is called after this

session has been invalidated.

putValue

public void putValue(String name, Object value);

Binds the specified object into the session with the given name. Any existing binding

with the same name is replaced. Objects placed into the session which implement

the HttpSessionBindingListener interface will call its valueBound method.

Some servlet engine implementations will persist session data or distribute it

amongst multiple network nodes. For an object bound into the session to be

distributed or persisted to disk, it must implement the Serializable interface.

This method should throw an IllegalStateException if it is called after this

session has been invalidated.

removeValue

public void removeValue(String name);

Unbinds an object in the session with the given name. If there is no object bound to

the given name, this method does nothing. If the object bound to the name

implements the HttpSessionBindingListener , its valueUnbound method will

be called.

This method should throw an IllegalStateException if it is called after this

session has been invalidated.

setMaxInactiveInterval

public int setMaxInactiveInterval(int interval);

Sets the amount of time that a session can be inactive before the servlet engine is

allowed to expire it.



58 Java Servlet API Specification • November 1998

Deprecated Methods

getSessionContext

// deprecated
public HttpSessionContext getSessionContext();

Returns the context object within which sessions on the server are held. This method

has been deprecated as all the methods of HttpSessionContext are deprecated.

This method should now return an object which has an empty implementation of the

HttpSessionContext interface.

Deprecated as of Version 2.1.



Chapter 2 API Class Reference 59

Interface HttpSessionBindingListener

Definition
public interface HttpSessionBindingListener

Object that are meant to be placed into HTTP sessions can implement this interface

to be notified when they are being bound or unbound from an HTTP session.

Methods

valueBound

public void valueBound(HttpSessionBindingEvent event);

Method called when an object is bound into a session. This method must be called

by the servlet engine during the putValue method call in HTTP session.

valueUnbound

public void valueUnbound(HttpSessionBindingEvent event);

Method called when an object is unbound from a session. This method must be

called by the servlet engine during the removeValue method call in HTTP session.

It is possible that another servlet instance may have a reference to the object when

the object is unbound. The object that is being removed from the session must

behave appropriately.



60 Java Servlet API Specification • November 1998

Interface HttpSessionContext

Definition
// deprecated
public interface HttpSessionContext

An HttpSessionContext object is a grouping of HTTP sessions associated with a

single entity.

This interface has been deprecated for security reasons and is only present in the

current version of the API to preserve compatibility. The methods of this interface

have been defined to return values which are legal according to the previous

definition of the API.

Deprecated as of Version 2.1.

Methods

getSession

public HttpSession getSession(String sessionId);

Returns the session associated with a particular session id. It should always return

null.

getIds

public Enumeration getIds();

Returns an enumeration of all of the session ids in this context. This method should

always return an empty enumeration.



Chapter 2 API Class Reference 61

Class Cookie

Definition
public class Cookie implements Cloneable

This class represents a cookie as defined by the original cookie specification from

Netscape Communications Corporation as well as the updated RFC 2109

specification.

Constructors
public Cookie(String name, String value);

Defines a cookie with an initial name-value pair. The name must be an HTTP/1.1

token value; alphanumeric strings work.

Names starting with a $ character are reserved by RFC 2109.

This method will throw an IllegalArgumentException if the given name is not

a valid HTTP/1.1 token.

Methods

getComment

public String getComment();

Returns the comment describing the purpose of this cookie, or null if a comment has

not been defined.

getDomain

public String getDomain();

Returns the domain of this cookie, or null if not defined.



62 Java Servlet API Specification • November 1998

getMaxAge

public int getMaxAge();

This method returns the maximum specified age of the cookie. If no maximum age

was specified, this method returns -1.

getName

public String getName();

This method returns the name of the cookie.

getPath

public String getPath();

Returns the prefix of all the URL paths for which this cookie is valid, or null if not

defined.

getSecure

public boolean getSecure();

Returns true if this cookie is only to be transmitted via secure channels, false

otherwise.

getValue

public String getValue();

This method returns the value of the cookie.

getVersion

public int getVersion();

Returns the version of the cookie. Version 1 compiles with RFC 2109. Version 0

indicates that the cookie complies with the original Netscape cookie specification.

Newly constructed cookies use version 0 by default to maximize interoperability.



Chapter 2 API Class Reference 63

setComment

public void setComment(String purpose);

If a user agent presents this cookie to a user, the cookie’s purpose will be described

by this comment. Version 0 cookies do not support this attribute.

setDomain

public void setDomain(String pattern);

This method sets the domain attribute of the cookie. This attribute defines which

hosts the cookie should be presented to by the client. A domain begins with a dot

(.foo.com ) and means that hosts in that DNS zone (www.foo.com but not

a.b.foo.com ) should see the cookie. By default, cookies are only returned to the

host which saved them.

See RFC 2109 for a more complete discussion of domains and cookies.

setMaxAge

public void setMaxAge(int expiry);

This method sets the maximum age of the cookie. The cookie will expire after the

given number of seconds have passed. Negative values will ensure that the cookie

will not persist on the client. A zero value causes the cookie to be deleted from the

client.

setPath

public void setPath(String uri);

This method sets the path attribute of the cookie. The client should only return

cookies to paths that begin with the given path string.

setSecure

public void setSecure(boolean flag);

Indicates to the user agent that this cookie should only be sent via secure channels

(such as HTTPS). This should only be set when the cookie’s originating server used

a secure protocol to set the cookie’s value.



64 Java Servlet API Specification • November 1998

setValue

public void setValue(String newValue);

Sets the value of the cookie. BASE64 encoding is suggested for use with binary

values.

Version 0 cookies should not use whitespace, brackets, parentheses, the equals sign,

commas, double quotes, slashes, question marks, the @character, colons or

semicolons. Empty values may not behave the same way on all browsers.

setVersion

public void setVersion(int v);

Sets the version of the cookie format used with the cookie is written to the client.

Since the IETF standards are still being finalized, consider version 1 as experimental.



Chapter 2 API Class Reference 65

Class HttpServlet

Definition
public class HttpServlet extends GenericServlet implements
Serializable

This class is an abstract class that simplifies the process of writing HTTP servlets. It

extends the GenericServlet base class and provides a framework for handling the

HTTP protocol. A servlet writer can subclass this class and provide an

implementation for any method. This allows a convenient base class from which to

build HTTP servlets.

The service method provided in this class supports standard HTTP methods such as

GET and POST by dispatching them to appropriate methods such as doGet and

doPost .

Methods

doDelete

protected void doDelete(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

Called by the service method of this class to handle an HTTP DELETE operation.

This operation allows a client to request that an URL be removed from the server.

Operations requested through DELETE can have side effects, for which users may be

held accountable.

The default implementation of this method returns an HTTP BAD_REQUEST error.

A servlet must explicitly implement this method in order to handle a DELETE

method request.



66 Java Servlet API Specification • November 1998

doGet

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

Called by the service method of this class to handle an HTTP GET operation. This

operation allows the client to simply “get” a resource from an HTTP server. Users

that override this method automatically allow support for the HEAD method.

The GET operation is expected to be safe without any side effects for which users

might be held responsible. For example, most form queries have no side effects.

Requests intended to change stored data should use some other HTTP method. This

operation is also expected to be repeated safely.

The default implementation of this method returns an HTTP BAD_REQUEST error.

doHead

protected void doHead(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

Called by the service method of this class to handle an HTTP HEAD operation. By

default, this is done in terms of a unconditional GET method but returning no data

to the client. Only the headers, including content length, are returned.

As with the GET operation, this operation should be safe (without side effects) and

repeatable.

The default implementation of this method automatically handles the HTTP HEAD

operation and does not need to be implemented by a subclass.

doOptions

protected void doOptions(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

Called by the service method of this class to handle an HTTP OPTIONS operation.

This operation automatically determines what HTTP methods are supported. For

example, if a servlet writer subclasses HttpServlet and overrides the doGet
method, then doOptions returns the following header:

Allow: GET,HEAD,TRACE,OPTIONS

You do not ordinarily need to override the doOptions method.



Chapter 2 API Class Reference 67

doPost

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

Called by the service method of this class to handle an HTTP POST operation. This

operation includes data in the request body that should be acted upon by the servlet.

Operations requested through POST can have side effects for which the user can be

held accountable. Specific examples include updating store data or buying items

online.

The default implementation of this method returns an HTTP BAD_REQUEST error.

When you develop servlets, you must explicitly implement this method in the

HttpServlet subclass in order to support POST operations.

doPut

protected void doPut(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

Called by the service method of this class to handle an HTTP PUT operation. This

operation is analogous to sending a file via FTP.

Operations requested through PUT can have side effects for which the user can be

held accountable. Specific examples include updating store data or buying items

online.

The default implementation of this method returns a HTTP BAD_REQUEST error.

The servlet programmer must explicitly implement this method in a HttpServlet
subclass in order to support POST operations.

doTrace

protected void doTrace(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

Called by the service method of this class to handle a HTTP TRACE operation.

The default implementation of this method causes a response with a message

containing all of the headers sent in the trace request.

When you develop servlets, you override this method in most cases.



68 Java Servlet API Specification • November 1998

getLastModified

protected long getLastModified(HttpServletRequest request);

Returns the time the requested entity was last modified. Implementations

supporting the GET request should override this method to provide an accurate

object modification time. This helps browser and proxy caches work more effectively

reducing the load on server and network resources. The return value is milliseconds

since January 1, 1970, 00:00:00GMT.

The default implementation returns a negative number indicating that the

modification time is unknown and should not be used for conditional GET

operations.

service

protected void service(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException;

public void service(ServletRequest request, ServletResponse response)
throws ServletException, IOException;

This is an HTTP-specific version of the servlet service method that dispatches

requests to the methods in this class which support them.

When you develop servlets, you do not usually override this method.



Chapter 2 API Class Reference 69

Class HttpSessionBindingEvent

Definition
public class HttpSessionBindingEvent extends EventObject

This event is communicated to a HttpSessionBindingListener whenever the

listener is bound to or unbound from a HttpSession . This action may be the result

of a session expiring or being invalidated.

The events source is the HttpSession . Binding occurs with a call to

HttpSession.putValue , unbinding occurs with a call to

HttpSession.removeValue .

Constructors
public HttpSessionBindingEvent(HttpSession session, String name);

Constructs a new HttpSessionBindingEvent with the session that is originating

this event and the name to which the object is being bound or unbound.

Methods

getName

public String getName();

Returns the name to which the object is being bound or from which the object is

being unbound.

getSession

public HttpSession getSession();

Returns the session to which the object is being bound or from which the object is

being unbound.



70 Java Servlet API Specification • November 1998

Class HttpUtils

Definition
public class HttpUtils

A collection of static utility methods useful to HTTP servlets.

Methods

getRequestURL

public static StringBuffer getRequestURL(HttpServletRequest
request);

Reconstructs the URL used by the client to make the given request on the server.

This method accounts for difference in scheme (such as http , https ) and ports ,

but does not attempt to include query parameters.

This method returns a StringBuffer instead of a String so that the URL can be

modified efficiently by the servlet programmer.

parsePostData

public static Hashtable parsePostData(int len,
ServletInputstream in);

Parses a stream which contains data of the MIME type application/x-www-
form-urlencoded and builds a hash table of key-value pairs where the keys are

strings and the values are arrays of Strings. A key can appear one or more times in

the POST data. Each time a key appears, its corresponding value is inserted into its

string array in the hash table.

The data read from the POST data is URL decoded. + characters are converted into

spaces and characters sent in hexadecimal notation (%xx) are converted back into

characters.

This method will throw an IllegalArgumentException if the POST data is

invalid.



Chapter 2 API Class Reference 71

parseQueryString

public static Hashtable parseQueryString(String s);

Parses a query string and builds a hash table of key-value pairs where the values are

arrays of Strings. A key can appear one or more times in a query string. Each time a

key appears, its corresponding value is inserted into its string array in the hash

table.

The data read from the query string is URL decoded. + characters are converted into

spaces and characters sent in hexadecimal notation (%xx) are converted back into

characters.

This method will throw an IllegalArgumentException if the query string is

invalid.



72 Java Servlet API Specification • November 1998



Glossary 73

Glossary

bytecode Machine-independent code generated by the Java compiler and executed by

the Java interpreter.

cookie Data created by a Web server that is stored on the user’s computer, providing a

method for the Web site to keep track of a user’s preferences and store them on

the user’s own hard disk.

HTTP HyperText Transfer Protocol. A request-response protocol used to connect to

servers on the World Wide Web and transmit HTML pages to client browsers.

input stream object An object, defined by the ServletInputStream class, that the servlet uses to

read requests from a client.

mapping A pairing of a servlet instance with an URL to which the servlet returns data,

for example, HelloServlet with /hello/index.html .

output stream object An object, defined by the ServletOutputStream class, that a servlet uses to

return data to the client.

request dispatcher
object An object defined by the RequestDispatcher interface that receives

requests from the client and sends them to any resource (such as a servlet,
CGI script, HTML file, or JSP file) available on the Web server.

sandboxed servlet A servlet that runs with security restrictions.

servlet A small, platform-independent Java program without a graphical user

interface that can extend the functionality of a Web server in a number of ways.

servlet configuration
object An object, defined by the ServletConfig interface, that configures a servlet

servlet context object An object, defined by the ServletContext interface, that gives the servlet

information about the servlet engine.

servlet engine An environment written by a Web server vendor in accordance with this

specification that allows servlets to run with a particular Web server.



74 Java Servlet API Specification • November 1998

servlet request object An object defined by the ServletRequest interface and that allows a servlet

to obtain data about a client request.

servlet response
object An object, defined by the ServletResponse interface, that allows a servlet to

respond

servlet runner The sun.servlet.http.HttpServer process in the Java Servlet

Developer’s Kit (JSDK), which allows servlets to run.

session tracking In a Web application, the ability to identify a series of unique requests from a

client as being from the same client

SSL Secure Sockets Layer. A security protocol used on the Internet that specifies

how the client browser and server exchange keys and encrypted data.

URI Uniform Resource Identifier. A definition for an Internet address that is a

superset of an URL.

URL Uniform Resource Locator. The address that defines the route to a file on the

World Wide Web, usually consisting of a protocol prefix, domain name,

subdirectory name, and file name.



Java Software, Inc.

901 San Antonio Road

Palo Alto, CA 94303

415 960-1300

For U.S. Sales Office locations, call:

800 821-4643

In California:

800 821-4642

Australia: (02) 844 5000

Belgium: 32 2 716 7911

Canada: 416 477-6745

Finland: +358-0-525561

France: (1) 30 67 50 00

Germany: (0) 89-46 00 8-0

Hong Kong: 852 802 4188

Italy: 039 60551

Japan: (03) 5717-5000

Korea: 822-563-8700

Latin America: 415 688-9464

The Netherlands: 033 501234

New Zealand: (04) 499 2344

Nordic Countries: +46 (0) 8 623 90 00

PRC: 861-849 2828

Singapore: 224 3388

Spain: (91) 5551648

Switzerland: (1) 825 71 11

Taiwan: 2-514-0567

UK: 0276 20444

Elsewhere in the world,

call Corporate Headquarters:

415 960-1300

Intercontinental Sales: 415 688-9000


	ChapNumber - 1
	ChapTitle - About Java Servlets
	Head1 - Overview of Java Servlets
	Head1 - Servlet Lifecycle
	Head2 - How a Servlet is Loaded and Instantiated
	Head2 - How a Servlet is Initialized
	Head2 - How a Servlet Handles Requests
	Head2 - How a Servlet is Destroyed

	Head1 - Servlet Mapping Techniques
	Head1 - The Servlet Context
	Head1 - HTTP Sessions

	ChapNumber - 2
	ChapTitle - API Class Reference
	Head1 - Interface RequestDispatcher
	Head2 - Definition
	Head2 - Methods

	Head1 - Interface Servlet
	Head2 - Definition
	Head2 - Methods

	Head1 - Interface ServletConfig
	Head2 - Definition
	Head2 - Methods

	Head1 - Interface ServletContext
	Head2 - Definition
	Head2 - Methods
	Head2 - Deprecated Methods

	Head1 - Interface ServletRequest
	Head2 - Definition
	Head2 - Methods
	Head2 - Deprecated Methods

	Head1 - Interface ServletResponse
	Head2 - Definition
	Head2 - Methods

	Head1 - Interface SingleThreadModel
	Head2 - Definition

	Head1 - Class GenericServlet
	Head2 - Definition
	Head2 - Methods

	Head1 - Class ServletInputStream
	Head2 - Definition
	Head2 - Methods

	Head1 - Class ServletOutputStream
	Head2 - Definition
	Head2 - Methods

	Head1 - Class ServletException
	Head2 - Definition
	Head2 - Constructors
	Head2 - Methods

	Head1 - Class UnavailableException
	Head2 - Definition
	Head2 - Constructors
	Head2 - Methods

	Head1 - Interface HttpServletRequest
	Head2 - Definition
	Head2 - Methods
	Head2 - Deprecated Methods

	Head1 - Interface HttpServletResponse
	Head2 - Definition
	Head2 - Member Variables
	Head2 - Methods
	Head2 - Deprecated Methods

	Head1 - Interface HttpSession
	Head2 - Definition
	Head2 - Methods
	Head2 - Deprecated Methods

	Head1 - Interface HttpSessionBindingListener
	Head2 - Definition
	Head2 - Methods

	Head1 - Interface HttpSessionContext
	Head2 - Definition
	Head2 - Methods

	Head1 - Class Cookie
	Head2 - Definition
	Head2 - Constructors
	Head2 - Methods

	Head1 - Class HttpServlet
	Head2 - Definition
	Head2 - Methods

	Head1 - Class HttpSessionBindingEvent
	Head2 - Definition
	Head2 - Constructors
	Head2 - Methods

	Head1 - Class HttpUtils
	Head2 - Definition
	Head2 - Methods



