Programming in C
autumn 2010

Paivi Kuuppelomaki
Week 1

The structure of the
course

m Lectures: thu 9-10
m Excercises

m Study on your own
m Project
m Course exam

m Course book:
Muldner: C for java programmers

Week scedule

+

m Week 1 — compiling, linking, types,
structures, macros

m Week 2 — text files, funktions

m Week 3 — pointers

m \Week 4 — structures and unions
m Week 5 — strings, arrays

m \Week 6 — modules and libraries

Exercises and studing on
your own

m Exercises are available on course page

m Lectures cover difficult things from the
course and others should be studied
on your own

Project work

+

m List of Project work will be available
later from the course page

m Work should be returned at latest at

the end of the first week during period
1.

m You should returned one module from
your project earlier and you get
feedback from other students

course exam

+

m Thu 21.10. 16-19 room Al111l
(CHECKTI)

m What kind of tasks

— Sama kind of tasks as In exercises
— Do a program

— "What errors are in aprogram”

— etc.

m Important to know: pointers, files,
arrays, structures, strings, command
line parameters

Principles of C-language

—+Programmer knows what she/or he
does!

Language does not prevent "bad things” —
Programmer might write a cryptic code

Erros that came by using careless
programming might take time to find out

No object, that hides structures
Pointers important part of a language

Is suitable near machine level programming,
because It Is possible to compile C-programs
to efficient code

For example linux has been coded using C

Comparison of C and Java
+

primitive data types. character, integer, and real
In C, they are of different sizes,

there is no Unicode 16-bit character set

structured data types: arrays, structures and
unions.

In C, arrays are static

there are no classes

Control structures are similar

Functions are similar

Comparison of C and Java
+

Java references are called pointers in C.

Java constructs missing in C:
packages

threads

exception handling

garbage collection

standard Graphical User Interface (GUI)
bullt-in definition of a string

standard support for networking
support for program safety.

Programming style

+

m Try to write clear code and use style your
have learned during Java courses

m Your do not get extra points by writing short

and cryptic code

do { void show (char *p) {
If (scanf("%d”, &i) =1 || char *q;
| == SENTINEL) printf(’[”);
break; for (g=p; *q !="\0’; g++)
If (I>maxi) printf("%c ”, *q);
maxi = I printf("]\n");
} while (1); }

Programming process

+

m Write a progam
— Use editor

m Compile it

— Choose a right compiler
m Linking

— Compiled programming module is linked
to other modules

m Run it
— Run the program

Writing a program

+

m Program should generate an ordinary text file

3 iInt main (void)

{
printf("Hello world \n”);

return O;

m Possible programs }

— emacs: uses own window

m Remember to run from the command line using emacs &
SO you do not preserve command interpreter

— Kate
m Learn by yourself

Compiling

Source file Compiler Linker A runnable
text file] program

m Department’s Linux environment has
gcc (also cc works)

kuuppelo@wrl-130:~$ which gcc

/usr/bin/gcc

kuuppelo@wrl-130:~$ Is -l /usr/bin/gcc

-rwxr-xr-x 2 root root 195844 May 26 02:34 /usr/bin/gcc*
kuuppelo@wrl-130:~$ gcc -dumpversion

4.1.2

1.

gcc --help

sage: gcc [options] file...

Options:

-pass-exit-codes Exit with highest error code from a phase

- -help Display this information

- -target-help Display target specific command line options

(Use '-v --help' to display command line options of sub-processes)

-dumpspecs Display all of the built in spec strings

-dumpversion Display the version of the compiler

-dumpmachine Display the compiler's target processor

-print-search-dirs Display the directories in the compiler's search path

-print-libgcc-file-name Display the name of the compiler's companion library

-print-file-name=<Ilib> Display the full path to library <lib>

-print-prog-name=<prog> Display the full path to compiler component <prog>

-print-multi-directory Display the root directory for versions of libgcc

-print-multi-lib Display the mapping between command line options and
multiple library search directories

-print-multi-os-directory Display the relative path to OS libraries

-Wa,<options> Pass comma-separated <options> on to the assembler

-Wp,<options> Pass comma-separated <options> on to the preprocessor

-WIl,<options> Pass comma-separated <options> on to the linker

-Xassembler <arg> Pass <arg> on to the assembler

-Xpreprocessor <arg> Pass <arg> on to the preprocessor

gcc —help (continues)

-save-temps Do not delete intermediate files

-pipe Use pipes rather than intermediate files

-time Time the execution of each subprocess

-specs=<file> Override built-in specs with the contents of <file>

-std=<standard> Assume that the input sources are for <standard>

-B <directory> Add <directory> to the compiler's search paths

-b <machine> Run gcc for target <machine>, if installed

-V <version> Run gcc version number <version>, if installed
Display the programs invoked by the compiler

Like -v but options quoted and commands not executed

Preprocess only; do not compile, assemble or link
Compile only; do not assemble or link
Compile and assemble, but do not link

-0 <file> Place the output into <file>

-X <language> Specify the language of the following input files
Permissible languages include: ¢ c++ assembler none
‘none' means revert to the default behavior of
guessing the language based on the file's extension

Options starting with -g, -f, -m, -O, -W, or --param are automatically
passed on to the various sub-processes invoked by gcc. In order to pass
other options on to these processes the -W<letter> options must be used.

Compiling
+ int main (void)

g {
" Complllng printf("Hello world \n”);
gcc helloworld.c return 0;

or }

gcc —o helloworld \

helloworld.c m Result is a runnable
m Tassa tendaan file

— preprosseing a.out

— compiling and or

— linking helloworld

gcc -V helloworld.c

Reading specs from /usr/lib/gcc/i386-redhat-linux/3.4.2/specs

Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info --
enable-shared --enable-threads=posix--disable-checking --with-system-zlib --enable-__cxa_atexit
—disable-libunwind-exceptions --enable-java-awt=gtk --host=i386-redhat-linux

Thread model: posix
gcc version 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)

/usr/libexec/gcc/i386-redhat-linux/3.4.2/ccl -quiet -v helloworld.c -quiet -dumpbase helloworld.c -
auxbase helloworld -version -o /tmp/niklande/cc1k600u.s

ignoring nonexistent directory "/usr/lib/gcc/i386-redhat-linux/3.4.2/../../../../i386-redhat-linux/include”
#include "..." search starts here:
#include <...> search starts here:
/usr/local/include
/usr/lib/gcc/i386-redhat-linux/3.4.2/include
/usr/include
End of search list.
GNU C version 3.4.2 20041017 (Red Hat 3.4.2-6.fc3) (i386-redhat-linux)
compiled by GNU C version 3.4.2 20041017 (Red Hat 3.4.2-6.fc3).
GGC heuristics: --param ggc-min-expand=98 --param ggc-min-heapsize=129136
as -V -Qy -o /tmp/niklande/ccQshiJR.o /tmp/niklande/ccl1k600u.s
GNU assembler version 2.15.90.0.3 (i386-redhat-linux) using BFD version 2.15.90.0.3 20040415

/usr/libexec/gcc/i386-redhat-linux/3.4.2/collect2 --eh-frame-hdr -m elf i386 -dynamic-linker /lib/ld-
linux.so.2 /usr/lib/gcc/i386-redhat-linux/3.4.2/../../../crtl.0 /usr/lib/gcc/i386-redhat-
linux/3.4.2/../../../crti.o /usr/lib/gcc/i386-redhat-linux/3.4.2/crtbegin.o -L/usr/lib/gcc/i386-redhat-
linux/3.4.2 -L/usr/lib/gcc/i386-redhat-linux/3.4.2 -L/usr/lib/gcc/i386-redhat-linux/3.4.2/../..1..
/tmp/niklande/ccQshiJR.o -lgcc --as-needed -Igcc_s --no-as-needed -Ic -Igcc --as-needed -lgcc_s -
-no-as-needed /usr/lib/gcc/i386-redhat-linux/3.4.2/crtend.o /usr/lib/gcc/i386-redhat-
linux/3.4.2/../../../crtn.o

gcc -ansi -pedantic -Wall

+

m By using optios —Wall and —pedantic a compiler
gives more warnings

m Option —ansi assures that a compiler will use ansi
standard

gcc -ansi -pedantic -Wall -o helloworld helloworld.c

helloworld.c: In function 'main’:

helloworld.c:3: warning: implicit declaration of function 'printf

helloworld.c:3: warning: incompatible implicit declaration of built-in function'pri

_ _ _ 1 #include <stdio.h>

int main (void) int main (void)

{ {
printf("Hello world \n”); . printf("Hello world \n");
return O; return O;

} }

Program having several
modules

m Each module, compiling unit, library In
Its own file

m Compiling separately
gcc —C main.c
m Linking together
gcc —o0 main.o eka.o toka.o

Program having several
modules

I m+m.c 7 [* eka.c */ [* toka.c */
#include <stdio.h> #include <stdio.h> #include <stdio.h>
#include "eka.h” #include "eka.h” #include "toka.h”
#include "toka.h” void eka (void) void toka (void)

iInt main (void) { {
{ puts(” eka ”); puts(” toka ”);

ekay(); toka (); } }
return O;

}

[* eka.h */ [* toka.h */

void eka (void); void toka (void);

gcc —Cc main.c

gcc —c eka.c

gcc —c toka.c

gcc —o ohjelma main.o eka.o toka.o

Compiling modules —
make

m It is not practical to type long commands
m Use file Makefile

= Runnable commands should be written as rules
Into a file

target: files needed
commandl
command2

commandy

m Please note that commands are indented by
using tab not spaces!

NELGHLE

—+ = Write a file makefile

gcc —c main.c once
gcc —c eka.c

gee —c toka.c m Use it several times
by giving command

gcc —o ohjelma main.o eka.o toka.o

make

makefile
CC = gcc —ansi —pedantic —Wall
ohjelma: main.o eka.o toka.o
$(CC) —o ohjelma main.o eka.o toka.o
eka.o: eka.c eka.h
$(CC) —c eka.c
toka.o: toka.c toka.h
$(CC) —c toka.c
main.o: main.c eka.h toka.h
$(CC) —c main.c

make --help

sage: make [options] [target] ...

U
Options:

-b, -m Ignored for compatibility.
-C DIRECTORY, --directory=DIRECTORY
Change to DIRECTORY before doing anything.
-d Print lots of debugging information.
--debug[=FLAGS] Print various types of debugging information.

-e, --environment-overrides
Environment variables override makefiles.
-f FILE, --file=FILE, --makefile=FILE
Read FILE as a makefile.
-h, --help Print this message and exit.
-1, --ignore-errors Ignore errors from commands.
-1 DIRECTORY, --include-dir=DIRECTORY
Search DIRECTORY for included makefiles.
-] [N], --jobs[=N] Allow N jobs at once; infinite jobs with no arg.
-k, --keep-going Keep going when some targets can't be made.
-1 [N], --load-average[=N], --max-load[=N]
Don't start multiple jobs unless load is below N.

make --help (continues)

+n, --just-print, --dry-run, --recon Don't actually run any commands; just print
them.

-0 FILE, --old-file=FILE, --assume-old=FILE
Consider FILE to be very old and don't remake it.
-p, --print-data-base Print make's internal database.
-, --question Run no commands; exit status says if up to date.
-r, --no-builtin-rules Disable the built-in implicit rules.
-R, --no-builtin-variables Disable the built-in variable settings.
-s, --silent, --quiet Don't echo commands.
-S, --no-keep-going, --stop
Turns off -k.
-t, --touch Touch targets instead of remaking them.
-V, --Version Print the version number of make and exit.
-w, --print-directory Print the current directory.
--no-print-directory Turn off -w, even if it was turned on implicitly.
-W FILE, --what-if=FILE, --new-file=FILE, --assume-new=FILE
Consider FILE to be infinitely new.
--warn-undefined-variables Warn when an undefined variable is referenced.

After compiling (and
el dale)

m We have a runnable program, but does it work?
m Try and test
m Search errors

— Print soming that helps you to understand program
— Write code and think

— Use debugger

m Analyse how well the test cover different
situations (Other courses teach how)

Testing
+

m Try to find errors
m Use different kind of inputs

m You can automate tests (for example
using skripts etc.)

This Is out of scope of this course

m During this course it is enough
— Right and wrong values of inputs
— Typical values near limits (-1,0,1)

Print to help

Ta

printf ("Fname: Name of a varible %d \n”,
variable);

m Try to find out how the program is
working In an error situation

m Add some print statements near error
point

m Often easier to use than the debugger, if
there is a clue where the error is

Debugger gdb
+(9®) help

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points
data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

m Compiling using option -g

core dump

TL- Crashing program creates often a core
dump where Is the state of the memeory
and registers during the time program
crashed

m You can look att the core dump uding
debugger and it might be possible to look
at the values of varibles and/or find out
were program was when it crashed

