Biological Sequence Analysis

Monday 25. February at Noon in C221

1. Sketch an algorithm that, given an IUPAC pattern (a pattern that is a sequence of normal DNA symbols and IUPAC symbols representing subsets of DNA symbols) P and a score threshold k, finds from a given DNA sequence the occurrences of P that have at most k mismatches (that is, the Hamming distance to the occurrence is at most k).
2. For the IUPAC pattern of Fig 2b [Dear p. 120], give an example of a DNA sequence that matches the pattern but does not occur in the training data given in Fig 2a.
3. Given a $4 \times m$ PWM w and a score threshold R, the corresponding pvalue ($=$ the probability that the background model produces a score equal to or greater than R) can be evaluated using the following recursion (assuming uniform model of the background and that the entries of w are small integers):

$$
\begin{aligned}
& \operatorname{pval}(0, r)= \begin{cases}1 & \text {, if } r=0 \\
0 & \text { otherwise. }\end{cases} \\
& \operatorname{pval}(i, r)=\frac{1}{s} \sum_{c \in \Sigma} \operatorname{pval}(i-1, r-w[i, c])
\end{aligned}
$$

where $s=|\Sigma|=$ size of the alphabet. Familiarize yourself with this method. For what values of i and r this should be evaluated? Why only integers in w ? How do you get the answer? Asymptotic running time?
4. Try MEME at http://meme.sdsc.edu/meme/intro.html Give to it 6 sequences from Fig 2a (Dear) and synthesize a PWM of length 12.
5. Sketch an algorithm that finds from a given DNA sequence a window of width m such that this window has among all such windows the highest number of binding sites for a given set of PWMs that have score larger than T.

