
TRAINING LLMS: SCALING AND
EFFICIENT FINE-TUNING

Lauri Seppäläinen

Training LLMs / Lauri Seppäläinen August 7, 2024 0 / 14



OUTLINE

Part 1: Kaplan & al. Scaling Laws for Neural Language Models (2020)
Part 2: Han & al. Parameter-Efficient Fine-Tuning for Large Models: A
Comprehensive Survey (2024)

Training LLMs / Lauri Seppäläinen August 7, 2024 1 / 14



SO YOU WANT TO TRAIN AN LLM
FROM SCRATCH

• What architecture should you use?
• How big should your model be?
• How much data do you need?
• How long should you train for?

Training LLMs / Lauri Seppäläinen August 7, 2024 2 / 14



POWER LAWS

Training LLMs / Lauri Seppäläinen August 7, 2024 3 / 14



MODEL SIZE

Training LLMs / Lauri Seppäläinen August 7, 2024 4 / 14



OPTIMAL COMPUTE ALLOCATION

Training LLMs / Lauri Seppäläinen August 7, 2024 5 / 14



OTHER CONSIDERATIONS

• Model architecture and optimization hyperparameters seem to have minimal
impact; model scale much more important

• Training until convergence is inefficient
• Overfitting can result both from training batch size and parameter count

Training LLMs / Lauri Seppäläinen August 7, 2024 6 / 14



SO YOU WANT TO TRAIN AN LLM
FROM SCRATCH

• What architecture should you use?
✓ Matters far less than model scale.

• How big should your model be?
✓ Large models reach the same level of performance with fewer optimisation steps

and data points.
• How much data do you need?

✓ Surprisingly little; when model size increases 8x, dataset size should only
increase 5x.

• How long should you train for?
✓ Should stop well before convergence.

Training LLMs / Lauri Seppäläinen August 7, 2024 7 / 14



FINE-TUNING - WHY?

• LLMs are huge (billions of params)
• Much of training is spent on learning basic semantic connections between

tokens
• More efficient to take a (large) pre-trained model and fine-tune it for the specific

downstream task
• Parameter Efficient Fine-Tuning (PEFT) = fine-tuning while minimizing the

number of additional parameters or computational costs involved

Training LLMs / Lauri Seppäläinen August 7, 2024 8 / 14



PEFT STRATEGIES

+ hybrid PEFT

Training LLMs / Lauri Seppäläinen August 7, 2024 9 / 14



ADDITIVE PEFT

• General idea: freeze the entire pretrained model and add components to
fine-tune

• Adapters: add small adapter layers to transformer blocks
• Soft prompt: fine-tune prompts with a learnable prefix
• Prefix tuning: add learnable prefixes to key and value vectors in all

transformer layers

Training LLMs / Lauri Seppäläinen August 7, 2024 10 / 14



SELECTIVE PEFT

• General idea: freeze most of the parameters; select a subset of parameters to
fine-tune

• Often implemented as (learnable) binary “freeze/unfreeze” mask
• Imposing structure to the learnable selection may increase computational

efficiency

Training LLMs / Lauri Seppäläinen August 7, 2024 11 / 14



REPARAMETERIZATION PEFT

• Observation: LLMs often have a low-dimensional intrisic space
• General idea: train a small parallel network which projects the input to a

low-dimensional space, effectively reparameterizing the entire pre-trained
parameter space

• Most widely-recognized technique is LoRA

Training LLMs / Lauri Seppäläinen August 7, 2024 12 / 14



LOW-RANK ADAPTATION (LoRA)

• Basic implementation: train a parallel network which bottlenecks the input to
low-dimensional space (with rank r )

• During inference, as efficient as the original model
• More sophisticated variants choose the rank in a flexible fashion instead

adhering to single value

Training LLMs / Lauri Seppäläinen August 7, 2024 13 / 14



EFFICIENT PEFT

Main considerations
• Processing latency
• Peak memory overhead

Some approaches
• KV Caching
• Pruning
• Quantization

Training LLMs / Lauri Seppäläinen August 7, 2024 14 / 14


	titleslides
	Power laws
	Fine-tuning

