

TRAINING LLMS: SCALING AND EFFICIENT FINE-TUNING

Lauri Seppäläinen

HELSINGIN YI JOPISTO **HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI**

[Training LLMs](#page-14-0) / Lauri Seppäläinen **August 7, 2024** 0/14

Part 1: Kaplan & al. *Scaling Laws for Neural Language Models* (2020) Part 2: Han & al. *Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey* (2024)

SO YOU WANT TO TRAIN AN LLM FROM SCRATCH

- What architecture should you use?
- How big should your model be?
- How much data do you need?
- How long should you train for?

HELSINGIN YI IOPISTO FORS I INIVERSITET UNIVERSITY OF HELSINKI

POWER LAWS

MODEL SIZE

Larger models require fewer samples to reach the same performance

The optimal model size grows smoothly with the loss target and compute budget

OPTIMAL COMPUTE ALLOCATION

HELSINGIN YI JOPISTO **HELSINGFORS UNIVERSITET** UNIVERSITY OF HELSINKI

OTHER CONSIDERATIONS

- Model architecture and optimization hyperparameters seem to have minimal impact; model scale much more important
- Training until convergence is inefficient
- Overfitting can result both from training batch size and parameter count

SO YOU WANT TO TRAIN AN LLM FROM SCRATCH

- What architecture should you use?
	- ✓ *Matters far less than model scale.*
- How big should your model be?
	- ✓ *Large models reach the same level of performance with fewer optimisation steps and data points.*
- How much data do you need?
	- ✓ *Surprisingly little; when model size increases 8x, dataset size should only increase 5x.*
- How long should you train for?
	- ✓ *Should stop well before convergence.*

HELSINGIN YI IOPISTO UNIVERSITY OF HELSINKI

FINE-TUNING - WHY?

- LLMs are huge (billions of params)
- Much of training is spent on learning basic semantic connections between tokens
- More efficient to take a (large) pre-trained model and fine-tune it for the specific downstream task
- Parameter Efficient Fine-Tuning (PEFT) = fine-tuning while minimizing the number of additional parameters or computational costs involved

PEFT STRATEGIES

(a) Additive PEFT (b) Selective PEFT (c) Reparameterization PEFT Output Output Output ⇧ Combine Merge \mathbb{C} $\hat{\mathbb{1}}$ ⇧ ⇧ Input (train) Input Input Input

+ hybrid PEFT

Frozen

Learnable

HELSINGIN YI JOPISTO **HELSINGFORS UNIVERSITET** UNIVERSITY OF HELSINKI

ADDITIVE PEFT

- **General idea:** freeze the entire pretrained model and add components to fine-tune
- **Adapters:** add small adapter layers to transformer blocks
- **Soft prompt:** fine-tune prompts with a learnable prefix
- **Prefix tuning:** add learnable prefixes to key and value vectors in all transformer layers

SELECTIVE PEFT

- **General idea:** freeze most of the parameters; select a subset of parameters to fine-tune
- Often implemented as (learnable) binary "freeze/unfreeze" mask
- Imposing structure to the learnable selection may increase computational efficiency

REPARAMETERIZATION PEFT

- **Observation:** LLMs often have a low-dimensional intrisic space
- **General idea:** train a small parallel network which projects the input to a low-dimensional space, effectively reparameterizing the entire pre-trained parameter space
- Most widely-recognized technique is LoRA

LOW-RANK ADAPTATION (LoRA)

- **Basic implementation:** train a parallel network which bottlenecks the input to low-dimensional space (with rank *r*)
- During inference, as efficient as the original model
- More sophisticated variants choose the rank in a flexible fashion instead adhering to single value

HELSINGIN YI IOPISTO **GEODS HNIVEDSITET** UNIVERSITY OF HELSINKI

EFFICIENT PEFT

Main considerations

- Processing latency
- Peak memory overhead

Some approaches

- KV Caching
- Pruning
- Quantization