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Multimodality in machine learning
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Application domains

●Robotics

●Healthcare

●Multimedia

●Human-computer interaction

●Interactive agents

●etc



Principles of multimodality

1. Modalities are heterogenious

– diverse in quality, structure, distributions, 
noise, and relevance

2. Modalities are connected

– statistical and semantic relations, redundancy 
and uniqueness of information

3. Modalities interact

– modalities processed together result in a novel 



Unimodal representations

●Shift from hand-crafted features to data-driven, 

obtained as a result of self-supervised pretraining

– Visual features: convolutional networks, e.g. 
ResNet,

– Textual features: emebddings, LLMs

– Audio: neural acoustic models

– Graphs: either linearization and LLMs or graph 
networks

Video: multimodal data, a sequence of images 



Representation

(Liang et al., 2024)



Fusion

(Liang et al., 2024)



Coordination

(Liang et al., 2024)



Fission

(Liang et al., 2024)



Typical 

tasks

(Guo et al., 2019)



Document understanding
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