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What is multimodal data, and why we need the fusion of them

* Multimodal data:
* The world is represented by information in different mediumes.
* They share the same semantic information - Information Redundancy.
* But also complementary.

* Multimodality interpretation deliver the “fuller picture” of observed
activity, making the model more robust and reliable.
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The evolution of multimodality fusion
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Fig 1. The conventional taxonomy categorizes fusion methods into three classes.
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Five classes of deep multimodal fusion techniques

* Deep multimodal fusion schema:
* Encoder-decoder-based
o Attention-based
* Generative neural network-based
* Graph neural network-based

e Constraint-based
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Encoder-Decoder-based
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Fig 2. Visualizations of different fusion strategy in encoder-decoder-based scheme.
A) The raw-data-level fusion. B) The hierarchical feature fusion. C) The decision-level fusion.
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* Encoder-Decoder:
* Encoder: high-level feature extractor

* Decoder: generate “prediction” from laten
representations.

* (Categories:
* Raw-data-level fusion.
* Hierarchical feature fusion.
* Decision-level fusion.
* Key operation - merge:
* Addition / Multiplication
* (Concatenation

* (Cross product
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Attention-based
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Fig 3. Visualizations of different fusion strategy in attention-based scheme.
A) The intra-modality attention. B) The inter-modality attention. C) The transformer-style attention.
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o Attention mechanism:

* Enable models to assign different
weights on different parts in input
data

o (ategories:
* Intra-attention
* |nter-attention
e Transformer-based
o Limitations:
e (Capacity - the number of modalities

» Computation complexity
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* Graph-based method:

. ) » Handling relations between
I, GNN datapoint
/’ (e.g., GCN)
GNN « (ategories:
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| Construction » General: graph built separately

uoI110NJISuU0)
ydeuao

uoI110NJISU0)
ydeuo

/ » Fused graph construction:

—

0000 (AsaA] XXX (0O@O® (aaaad] (KKK * Limitations:
Modality 1 Modality 2 Modality 3 Modality 1 Modality 2 Modality 3 i
* The graph construction process
i - Visualizationsof difrantfsion stratoy in raph based scheme depends on prior knowledge.

* Time- and space-consuming.

e Hard to be generalized.
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Generative neural network (GNN)-based
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Fig 5. Visulization of general architecture of GNN-based methods.

* Tricky in training
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Constraint-based
* Constraint-based methods:
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Fig 6. Visualizations of different fusion strategy in constraint-based scheme.
A) Coordinated representations. B) Tensor fusion mechanism. [ Hard to extend the |arge amount Of
modalities

* Highly relied on constraint design
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Applications & Challenges

» Applications:
* Vision and languages, vision and sensors...
* Others...
* |n biomedical field - multi-omics, different biomedical devices records
* Challenges:
* Missing modality, or unbalanced modality contribution
* Lack of data - high alignment requirements

* |Interpretability of the model



