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Introduction
What is multimodal data, and why we need the fusion of them

• Multimodal data: 

• The world is represented by information in different mediums. 

• They share the same semantic information - Information Redundancy. 

• But also complementary. 

• Multimodality interpretation deliver the “fuller picture” of observed 
activity, making the model more robust and reliable.
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Background
The evolution of multimodality fusion
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• Classical Machine Learning: 

• Hand-made feature engineering 

• Hard to capture the redundancy 
and complementation 

• Deep Learning: 

• Data-driven feature representation 

• Implicit, mostly interlaced with 
feature representation 

• Rely on well-designed network 
topology and loss function

Fig 1. The conventional taxonomy categorizes fusion methods into three classes.



Deep Multimodal Fusion
Five classes of deep multimodal fusion techniques
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• Deep multimodal fusion schema: 

• Encoder-decoder-based 

• Attention-based 

• Generative neural network-based 

• Graph neural network-based 

• Constraint-based



Deep Multimodal Fusion
Encoder-Decoder-based
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Fig 2. Visualizations of different fusion strategy in encoder-decoder-based scheme.  
A) The raw-data-level fusion. B) The hierarchical feature fusion. C) The decision-level fusion.
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• Encoder-Decoder: 

• Encoder: high-level feature extractor 

• Decoder: generate “prediction” from laten 
representations. 

• Categories: 

• Raw-data-level fusion. 

• Hierarchical feature fusion. 

• Decision-level fusion. 

• Key operation - merge: 

• Addition / Multiplication 

• Concatenation 

• Cross product



Deep Multimodal Fusion
Attention-based
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Fig 3. Visualizations of different fusion strategy in attention-based scheme.  
A) The intra-modality attention. B) The inter-modality attention. C) The transformer-style attention.

• Attention mechanism: 

• Enable models to assign different 
weights on different parts in input 
data 

• Categories: 

• Intra-attention 

• Inter-attention 

• Transformer-based 

• Limitations: 

• Capacity - the number of modalities 

• Computation complexity
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Deep Multimodal Fusion
Graph-based
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Fig 4. Visualizations of different fusion strategy in graph-based scheme.  
A) General schema. B) Fusion in graph construction.

• Graph-based method: 

• Handling relations between 
datapoint 

• Categories: 

• General: graph built separately 

• Fused graph construction: 

• Limitations: 

• The graph construction process 
depends on prior knowledge. 

• Time- and space-consuming. 

• Hard to be generalized.

A. B.



Deep Multimodal Fusion
Generative neural network (GNN)-based
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Fig 5. Visulization of general architecture of GNN-based methods.

• Generative neural network (GNN) 

• Learning data distributions for 
generation tasks / scenarios 

• Aim at handling missed, noisy or 
incomplete data 

• GNN-based multimodal frameworks: 

• Synthesize the missing modality 
based on the other modalities 

• Compatible for merging the other 
generation methods, e.g. Diffusion 

• Tricky in training



Deep Multimodal Fusion
Constraint-based
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Fig 6. Visualizations of different fusion strategy in constraint-based scheme.  
A) Coordinated representations. B) Tensor fusion mechanism.

• Constraint-based methods: 

• learns separated but coordinated 
representations of each modality 
under certain constraints. 

• Categories: 

• Coordinated representation 

• Tensor fusion 

• Limitations: 

• Hard to extend the large amount of 
modalities 

• Highly relied on constraint design

A. B.



Deep Multimodal Fusion
Applications & Challenges
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• Applications: 

• Vision and languages, vision and sensors… 

• Others… 

• In biomedical field - multi-omics, different biomedical devices records 

• Challenges: 

• Missing modality, or unbalanced modality contribution 

• Lack of data - high alignment requirements 

• Interpretability of the model


