# **Techniques for Deep Fusing** Multimodal Data **Based on Deep Multimodal Data Fusion<sup>1</sup>**

Qinhan Hou, Aug 28th, Helsinki

[1] Fei Zhao, Chengcui Zhang, and Baocheng Geng. 2024. Deep Multimodal Data Fusion. ACM Comput. Surv. 56, 9, Article 216 (September 2024), 36 pages. https://doi.org/10.1145/3649447





### Introduction What is multimodal data, and why we need the fusion of them

- Multimodal data:
  - The world is represented by information in different mediums.
  - They share the same semantic information Information Redundancy.
  - But also complementary.
  - Multimodality interpretation deliver the "fuller picture" of observed activity, making the model more robust and reliable.



pharmacology for **University of Helsinki** 

#### Background The evolution of multimodality fusion



Fig 1. The conventional taxonomy categorizes fusion methods into three classes.



- Classical Machine Learning:
  - Hand-made feature engineering
  - Hard to capture the redundancy and complementation
- Deep Learning:
  - Data-driven feature representation
  - Implicit, mostly interlaced with feature representation
  - Rely on well-designed network topology and loss function

### **Deep Multimodal Fusion** Five classes of deep multimodal fusion techniques

- Deep multimodal fusion schema:
  - Encoder-decoder-based
  - Attention-based
  - Generative neural network-based
  - Graph neural network-based
  - Constraint-based



### **Deep Multimodal Fusion Encoder-Decoder-based**



Fig 2. Visualizations of different fusion strategy in encoder-decoder-based scheme. A) The raw-data-level fusion. B) The hierarchical feature fusion. C) The decision-level fusion.

![](_page_4_Picture_4.jpeg)

- Encoder-Decoder:
  - Encoder: high-level feature extractor
  - Decoder: generate "prediction" from laten representations.
- Categories:
  - Raw-data-level fusion.
  - Hierarchical feature fusion.
  - Decision-level fusion.
- Key operation merge:
  - Addition / Multiplication
  - Concatenation
  - Cross product

### **Deep Multimodal Fusion Attention-based**

![](_page_5_Figure_1.jpeg)

Fig 3. Visualizations of different fusion strategy in attention-based scheme. A) The intra-modality attention. B) The inter-modality attention. C) The transformer-style attention.

![](_page_5_Picture_4.jpeg)

- Attention mechanism:
  - Enable models to assign different weights on different parts in input data
- Categories:
  - Intra-attention
  - Inter-attention
  - Transformer-based
- Limitations:
  - Capacity the number of modalities
  - Computation complexity

### **Deep Multimodal Fusion Graph-based**

![](_page_6_Figure_1.jpeg)

Fig 4. Visualizations of different fusion strategy in graph-based scheme. A) General schema. B) Fusion in graph construction.

![](_page_6_Picture_4.jpeg)

- Graph-based method:
  - Handling relations between datapoint
- Categories:

- General: graph built separately
- Fused graph construction:
- Limitations:
  - The graph construction process depends on prior knowledge.
  - Time- and space-consuming.
  - Hard to be generalized.

### **Deep Multimodal Fusion** Generative neural network (GNN)-based

![](_page_7_Figure_1.jpeg)

Fig 5. Visulization of general architecture of GNN-based methods.

![](_page_7_Picture_3.jpeg)

- Generative neural network (GNN)
  - Learning data distributions for generation tasks / scenarios
  - Aim at handling missed, noisy or incomplete data
- GNN-based multimodal frameworks:
  - Synthesize the missing modality based on the other modalities
  - Compatible for merging the other generation methods, e.g. Diffusion
  - Tricky in training

### **Deep Multimodal Fusion** Constraint-based

![](_page_8_Figure_1.jpeg)

Fig 6. Visualizations of different fusion strategy in constraint-based scheme. A) Coordinated representations. B) Tensor fusion mechanism.

![](_page_8_Picture_3.jpeg)

- Constraint-based methods:
  - learns separated but coordinated representations of each modality under certain constraints.
- Categories:
  - Coordinated representation
  - Tensor fusion
- Limitations:
  - Hard to extend the large amount of modalities
  - Highly relied on constraint design

## **Deep Multimodal Fusion Applications & Challenges**

- Applications:
  - Vision and languages, vision and sensors...
  - Others...
    - In biomedical field multi-omics, different biomedical devices records
- Challenges:
  - Missing modality, or unbalanced modality contribution
  - Lack of data high alignment requirements
  - Interpretability of the model

![](_page_9_Picture_9.jpeg)

![](_page_9_Picture_10.jpeg)