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What is structured and unstructured data.
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Unstructured data Structured data

Image Language

Video Audio Tabular Time-series

Figures are generated by DALLE-3.
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There are more and more 

unstructured data in our life…

Example:

• healthcare diagnosis prediction

• financial asset price prediction 

Motivation of integrate structured and unstructured data.

Figures are generated by DALLE-3.
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Two main challenges

• Deep neural networks can become susceptible to 

overfitting and suboptimal generalization.

• Modality missingness becomes a more prominent issue 

when dealing with multimodal data beyond two modalities.

Challenges of integrate structured and unstructured data.
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• Deep neural networks can become susceptible to overfitting and suboptimal generalization.

Challenges of integrate structured and unstructured data.

Time-series Tabular

Figures are generated by DALLE-3.
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• Modality missingness becomes a more prominent issue when dealing with multimodal data beyond 

two modalities.

Challenges of integrate structured and unstructured data.

Modality missingness

Sample Image Language …

1

2

3
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Motivation of LANISTR 

• Empower the overall representation when we learn structured 

and unstructured data together.

• Design a unified architecture and unique pretraining strategies 

for two seemingly very different data types.
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Structure of LANISTR 
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Structure of LANISTR 
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Structure of LANISTR 
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Structure of LANISTR 
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Pre-training of LANISTR 

• Unimodal masking losses

• Similarity-based multimodal masking loss
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Pre-training of LANISTR 

• Unimodal masking losses
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Pre-training of LANISTR 

• Unimodal masking losses

MLM: Masked Language Modeling

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
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Pre-training of LANISTR 

• Unimodal masking losses

MIM: Masked Image Modeling
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An 

image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., Hu, H.: Simmim: A simple framework for masked image modeling. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. pp. 9653–9663 (2022)
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Pre-training of LANISTR 

• Unimodal masking losses

MFM: Masked Feature Modeling

Arik, S.Ö., Pfister, T.: Tabnet: Attentive interpretable tabular learning. In: Proceedings of the AAAI conference 
on artificial intelligence. vol. 35, pp. 6679–6687 (2021)
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Pre-training of LANISTR 

• Unimodal masking losses

MTM: Masked Time-series Modeling

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformerbased framework for

multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining. pp. 2114–2124 (2021)
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Pre-training of LANISTR 

• Similarity-based multimodal masking loss

Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition. pp. 15750–15758 (2021)
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Pre-training of LANISTR 

• Similarity-based multimodal masking loss
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Pre-training of LANISTR 

• Loss function

• Unimodal masking losses

• Similarity-based multimodal masking loss



Fine-tuning of LANISTR 

• Unimodal masking losses

• Similarity-based multimodal masking loss

• Downstream tasks (Classification)
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Performance of LANISTR 

• Dataset

Dataset Languag

e

Image Tabular Time-

series

Missing 

rate

Task Pre-training

Samples

Fine-tuning

Samples

MIMIC-

IV (v2.2)

Clinical 

notes

The last 

chest X-

ray 

image 

taken in 

the first 

48-hour

NA Clinical 

time 

series 

data

35.7% Predicting 

in-hospital 

mortality 

after the 

first 48-

hours of 

ICU

3,680,784 5923

Amazon 

review 

data 

(2018)

Truncated 

text 

summarie

s

Seller or 

user-

provide

d 

visuals

Product ID, 

reviewer ID, 

review 

verification 

status, year, 

review 

ratings 

count, and 

timestamp

NA Not 

mention

Predict the 

star rating 

(out of 5) a 

product 

receives

5,581,312 896
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Performance of LANISTR 

• Results on MIMIC-IV
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Performance of LANISTR 

• Results on Amazon Product Review
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Performance of LANISTR 

• Ablation study

Ablation study for modalities and objective functions in LANISTR in the presence 
of different modalities in the MIMIC-IV dataset.

Effect of pretraining dataset size on downstream task in MIMIC-IV.
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Conclusion

• Structured and Unstructured data.

• LANISTR, a novel framework for language, image, and 

structured data, utilizing unimodal and multimodal masking 

strategies for pretraining.

• Overcome that missing modality in large-scale unlabeled data, a 

prevalent issue in real-world multimodal datasets.

• Demonstrated on real-world retail (Amazon Product Review)

and healthcare (MIMIC-IV) datasets, LANISTR showcases 

remarkable performance improvements over existing methods.
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Thank you
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