Y100 (Mathematics 1) Exercise 4 (2 pages) 26.-29.11.2007

- 1. Calculate $\ln 10$, $\lg 7$, $\log_6 9$ and $\ln \sqrt{10^{1000}}$ with the help of a calculator. Estimate also how many digits there are in the number $4,5^{100}$. (Use the rules governing exponents and logarithms. Ten-based logarithm gives approximately the amount of digits in a number.)
- 2. Find the greatest value of the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^{-x}$.

Hint. You'll need the differentiation rules for products and composed functions. Imitate the example in the lectures. The derivative should be $e^{-x}(1-x)$. Remember also that e^{-x} is always positive.

3. Compute the following integrals:

(a)
$$\int_1^e \frac{2}{x} - \frac{1}{x^2} dx$$
, (b) $\int_0^2 \frac{1}{2x+1} dx$, (c) $\int_0^{\ln 2} e^{3x} dx$.

Hint. In parts (a) and (b), write all terms in a form using powers only (that is, $1/x^2 = x^{-2}$ and so forth). In parts (b) and (c) you'll need the integration rule concerning the derivative of a composed function (rule number 5, see also example 5.8). For example, in part (c) multiply the integrand by three and the whole integral by 1/3 to get inside the integral the derivative of the inner function, which you need.

4. Draw inside the unit circle the following directed angles: 45° , 200° and -30° . Convert these angles to radians. Solve then by approximating from the same picture the values $\sin 45^{\circ}$, $\cos 45^{\circ}$, $\sin -30^{\circ}$ and $\cos 200^{\circ}$. Check the results with a calculator.

5. Differentiate the following functions:

(a)
$$f(x) = e^x \sin x$$
, (b) $g(x) = e^{(x^2)}$, (c) $h(x) = \frac{\cos x}{\sin x}$.

6. The photosynthesis rate of phytoplankton was examined by observing the fixation of carbon-14 isotope in a northern lake. The efficiency of the photosynthesis varied periodically along seasons, and the fixation of carbon-14 in the whole lake was observed to follow approximately the function

$$s(t) = 300 \cos \left(\frac{\pi}{6} \cdot t\right) + 500 \text{ kg/kk},$$

where t denotes time in months from the beginning of July. Find out when the photosynthesis rate reaches its minimum, and compute by integrating how much carbon-14 was fixed during the summer (in June, July and August).