Algebra II Department of Mathematics and Statistics Problem sheet 12 Thu 29.4.2010

- 1. Find the following extension degrees:
 - a) $[\mathbb{Q}(e^{2\pi i/5}):\mathbb{Q}]$
 - b) $\left[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}\right]$
 - c) $[\mathbb{Q}(i, e^{\pi i/3}) : \mathbb{Q}]$
 - d) $[\mathbb{F}_2(\overline{X}^5) : \mathbb{F}_2]$, where $\mathbb{F}_2(\overline{X}^5) \subset \mathbb{F}_2[X]/\langle X^4 + X^3 + 1 \rangle$ e) $[\mathbb{Q}(e^{2\pi i/9}) : \mathbb{Q}].$

Hint: (c) You can show that $\mathbb{Q}(i, e^{\pi i/3}) = \mathbb{Q}(i, \sqrt{3})$. (d) Since the multiplicative group K^* is finite, there is a positive integer n, such that $(\overline{X}^5)^n = 1$.

- 2. Prove Theorem 13.7: A finite extension of a field K is finitely generated and algebraic over K.
- 3. Let $A = \{2^{1/n} \mid n \in \mathbb{N}\}$. Show that $\mathbb{Q}(A)$ is an infinite algebraic extension of \mathbb{Q} . Does the extension $\mathbb{Q}(A)/\mathbb{Q}$ have a finite set of generators?
- 4. Assume known the transcendentality of π over the rational numbers. Show that both squaring (or quadrature) of the circle and doubling the cube are impossible as compass and straightedge constructions.
- 5. Suppose L is an extension of K, and let $A \subset L$ be an arbitrary set of elements algebraic over K. Show that K(A)/K is an algebraic extension. (Remember Theorem 12.7.)
- 6. Let $\mathbb{A} \subset \mathbb{C}$ be the set of all numbers algebraic over \mathbb{Q} . Prove that \mathbb{A} is *al-gebraically closed* in \mathbb{C} , that is, if $\alpha \in \mathbb{C}$ is a root of some polynomial with coefficients in \mathbb{A} , then $\alpha \in \mathbb{A}$.