Algebra II Department of Mathematics and Statistics Problem sheet 10 (2 pages) Thu 22.4.2010

- 1. Let R be an integral domain. Prove the following claims (Lemma 11.1):
 - a) The elements $a, b \in R$ are associates if and only if a = bc, where $c \in R$ is a unit.
 - b) If $a, b \in R$ are associates, and a = bc, then c is a unit.
 - c) All units are associates.
- Show that in the ring Z[i√5] = {a+bi√5 | a, b ∈ Z}, 2 is an irreducible number that divides the product (1 + i√5)(1 i√5), but does not divide its factors. Deduce that Z[i√5] is not a unique factorisation domain.
 Hint: If 2 is not irreducible, then 2 = (a+bi√5)(c+di√5) for some a, b, c, d ∈ Z.

Hint: If 2 is not irreducible, then $2 = (a+bi\sqrt{5})(c+di\sqrt{5})$ for some $a, b, c, d \in \mathbb{Z}$. Consider the modules (i.e. lengths) of the complex numbers appearing in the equation.

- 3. a) Let R be a ring, and let $b \in R$. Show that the map $\tau_b : R[X] \to R[X]$, where $\sum_i a_i X^i \mapsto \sum_i a_i (X+b)^i$, is a ring isomorphism. Deduce that $f \in R[X]$ is irreducible if and only if $\tau_b(f)$ is irreducible.
 - b) Let p be a prime. Show that $X^p 1 = (X 1)g$, where $g \in R[X]$ is irreducible over \mathbb{Q} .

Hint: Consider the polynomial $\tau_1(X^p - 1)$ and use Eisenstein's Criterion.

- 4. a) Let R be a ring. Show that $R[X, Y] \cong R[X][Y]$ (as R-algebras).
 - b) Let L be an extension of the field K, and let a and b be elements of L. Show that K(a,b) = K(a)(b).
- 5. In the following cases, determine the degree of the subextension K(A) of L/K generated by the set A:
 - a) $K = \mathbb{Q}, L = \mathbb{R}, A = \{\sqrt{2}\}.$
 - b) $K = \mathbb{Q}, L = \mathbb{C}, A = \{\sqrt{2}, i\}.$
 - c) $K = \mathbb{F}_2, L = \mathbb{F}_2[X]/\langle X^5 + X^3 + 1 \rangle, A = \{\overline{X}^2\}.$

Hint: [K(A) : K] is a factor of [L : K].

6. Find out which of the following polynomials are irreducible in the ring $\mathbb{Q}[X]$:

- (a) $X^3 + 2X^2 + X 4$ (b) $X^3 + 2X^2 + X 5$ (c) $7X^4 + X^3 2X^2 + 6X + 1$ (d) $-3X^5 + 6X^3 2$ (e) $X^6 5X + 10$ (f) $2X^3 + 5X^2 + 6X + 24$.

Furthermore, show that the polynomials $3XY^2 - XY + 2$ and $X^2 - Y$ are irreducible in the ring $\mathbb{Q}[X, Y] \cong \mathbb{Q}[X][Y]$. (You can use Eisenstein's Criterion.)