Algebra II Department of Mathematics and Statistics Problem sheet 7 (2 pages) Thu 18.3.2010

- 1. Let R a commutative ring, and suppose $S^{-1}R$ is the division ring of R with respect to the subset S. Prove the following claims (Theorem 6.11):
	- (a) $S^{-1}R$ is a commutative ring, with compositions $a/b \cdot c/d = (ac)/(bc)$ and $a/b + c/d = (ad + bc)/(bd).$
	- (b) The canonical map $\eta: a \mapsto a/1$ is a ring homomorphism.
	- (c) If $s \in S$, element $\eta(s) \in S^{-1}R$ has a multiplicative inverse.
	- (d) The canonical map η is one-to-one if and only if S does not contain zero divisors.
	- (e) $S^{-1}R$ is the zero ring if and only if $0 \in S$.
- 2. Let R be a ring, and suppose $a \in R$ has no multiplicative inverse. Show that $\langle a \rangle \neq R$.
- 3. Suppose R is a local ring. Show that the maximal ideal of R consists of precisely those elements of the ring that have no multiplicative inverse.
- 4. Let $p = X^2 Y$, and suppose $q \in \mathbb{R}[X, Y]$ is another polynomial. Prove the following claims (cf. Example 6.14):
	- (a) The polynomial p is irreducible in the ring $\mathbb{R}[X, Y]$, that is, it cannot be written as a product of non-constant polynomials.
	- (b) The polynomial g can be written in the form $g = pq + r$, where $q \in \mathbb{R}[X, Y]$ and $r \in \mathbb{R}[X]$.
	- (c) If the polynomials g and p have infinitely many common zeros (x, y) , then p divides g.

Hint: If the polynomial p has non-constant divisors, they must be of the form $aX + bY + c$. The polynomial g can be written in the form $g = \sum_{i=0}^{n} f_i Y^i$, where $f_i \in \mathbb{R}[X]$ for all i. Use induction on n (the highest power of the variable Y).

5. Let G be a finite abelian group. Show that as a $\mathbb{Z}\text{-module}$, G is a direct sum of p-groups. (Recall the theorems of group theory.)

6. Let I be an arbitrary index set. Suppose that Q is an R-module, such that for any $i \in I$ there exists an R-module M_i and an R-linear map $g_i : M_i \to Q$. Assume further that the following theorem holds for Q (cf. Theorem 7.4, the universal property of direct sums): if N is another R-module, and the mappings $f_i: M_i \to N$ are R-linear for each i, then there exists a unique R-linear map $h: Q \to N$, such that $h \circ g_i = f_i$ for all *i*.

Show that Q is isomorphic to the direct product $\bigoplus_i M_i$. In other words, the universal property determines the direct product up to isomorphism.

Hint: Use the theorem in the assumption with Theorem 7.4 to find linear maps θ : $\bigoplus_i M_i \to Q$ and $h: Q \to \bigoplus_i M_i$. Then use the same theorems for the diagrams shown below to prove that $h \circ \theta = id$ and $\theta \circ h = id$.

