Algebra II Department of Mathematics and Statistics Problem sheet 5 Thu 25.2.2010

- 1. Prove the following facts related to normal subgroups.
 - (a) If $X, Y \leq G$ and $H \leq X$, then $H \cap Y \leq X \cap Y$.
 - (b) If $H \leq G$ and $K \leq G$, then $HK \leq G$.
 - (c) If $X \leq H$ and $f: G \to H$ is a homomorphism, then $f^{-1}X \leq G$.
 - (d) If $X \leq G$ and $f: G \to H$ is a surjective homomorphism, then $fX \leq H$.
- 2. Show that
 - (a) every dihedral group is soluble
 - (b) every finite *p*-group is soluble.

Hint: In part (b), use the fact that a finite *p*-group has non-trivial centre.

- 3. Suppose that G is a group of order 80. Find its composition factors, and deduce that it is soluble.
- 4. Let G be a group. Show that the following conditions are equivalent:
 - (i) G is simple and abelian.
 - (ii) G is a finite cyclic group, whose order is a prime number.
- 5. Prove the Fundamental Theorem of Arithmetic: every integer n > 1 has a representation as a product of prime numbers, and this representation is unique up to a reordering of the factors.

Hint: Use the Jordan-Hölder Theorem to the cyclic group C_n .

- 6. Suppose G is a group of order 10. Prove the following:
 - (a) $H \leq G$ for some $H \cong C_5$, and the composition factors of G are C_2 and C_5 . (You can use Cauchy's Theorem.)
 - (b) $K \leq G$ and $K \cap H = \{1\}$ for some $K \cong C_2$.
 - (c) If $1 \neq a \in K$ and $b \in H$, then ${}^{a}b = b$ or ${}^{a}b = b^{-1}$.

Conclude that there are only two different groups of order 10. What are they?