Algebra II Department of Mathematics and Statistics Problem sheet 4 Thu 18.2.2010

1. Find all inner automorphisms (i.e. those that arise from conjugation) of D_8 , the symmetry group of a square. Which group do they form? Show that not all automorphisms of D_8 are inner.

Hint. Inner automorphisms do not map elements out from their conjugacy classes, and no automorphism can change the order of an element.

2. (a) Let G be a group and Z(G) its centre. Show that if the quotient group G/Z(G) is cyclic, then G is abelian.

(b) Let p be a prime. Show that every group of order p^2 is abelian.

Hint. Use the fact that the centre of any *p*-group is non-trivial.

- 3. Show that a group of order 80 cannot be simple.
- 4. Prove Cauchy's Theorem: if a prime p divides the order of a group G, there exists an element $g \in G$, whose order is p.
- 5. Assume that $m, n \in \mathbb{N}$, and gcd(m, n) = 1. Prove the following claims:
 - (a) If am = bn for some $a, b \in \mathbb{N}$, then m|b and n|a.
 - (b) $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.
- 6. Let G be a group with subgroups H and N. If G = HN, $N \leq G$ and $H \cap N = \{1\}$, the group G is called a *semidirect product* of its subgroups H and N. Prove the following facts about semidirect products.
 - (i) Each $g \in G$ has a unique representation as g = hn, where $h \in H$ and $n \in N$.
 - (ii) The product $h_1n_1 \cdot h_2n_2$, where $h_1, h_2 \in H$ and $n_1, n_2 \in N$, can be written as $h_1h_2 \cdot n'n_2$, where $n' \in N$ only depends on elements h_2 and n_1 .
 - (iii) $G/N \cong H$.