
Certified MaxSAT Preprocessing

Hannes Ihalainen1� , Andy Oertel2,3 , Yong Kiam Tan4 , Jeremias
Berg1 , Matti Järvisalo1 , Magnus O. Myreen5 , and Jakob Nordström3,2

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
{hannes.ihalainen,jeremias.berg,matti.jarvisalo}@helsinki.fi

2 Lund University, Lund, Sweden
andy.oertel@cs.lth.se

3 University of Copenhagen, Copenhagen, Denmark
jn@di.ku.dk

4 Institute for Infocomm Research (I2R), A*STAR, Singapore
tanyk1@i2r.a-star.edu.sg

5 Chalmers University of Technology, Gothenburg, Sweden
myreen@chalmers.se

Abstract. Building on the progress in Boolean satisfiability (SAT) solv-
ing over the last decades, maximum satisfiability (MaxSAT) has become
a viable approach for solving NP-hard optimization problems. However,
ensuring correctness of MaxSAT solvers has remained a considerable con-
cern. For SAT, this is largely a solved problem thanks to the use of proof
logging, meaning that solvers emit machine-verifiable proofs to certify
correctness. However, for MaxSAT, proof logging solvers have started
being developed only very recently. Moreover, these nascent efforts have
only targeted the core solving process, ignoring the preprocessing phase
where input problem instances can be substantially reformulated before
being passed on to the solver proper.
In this work, we demonstrate how pseudo-Boolean proof logging can
be used to certify the correctness of a wide range of modern MaxSAT
preprocessing techniques. By combining and extending the VeriPB and
CakePB tools, we provide formally verified end-to-end proof checking
that the input and preprocessed output MaxSAT problem instances have
the same optimal value. An extensive evaluation on applied MaxSAT
benchmarks shows that our approach is feasible in practice.

Keywords: maximum satisfiability · preprocessing · proof logging · for-
mally verified proof checking

1 Introduction

The development of Boolean satisfiability (SAT) solvers is arguably one of the
true success stories of modern computer science—today, SAT solvers are rou-
tinely used as core engines in many types of complex automated reasoning sys-
tems. One example of this is SAT-based optimization, usually referred to as
maximum satisfiability (MaxSAT) solving. The improved performance of SAT

http://orcid.org/0000-0002-4608-7549
http://orcid.org/0000-0001-9783-6768
http://orcid.org/0000-0001-7033-2463
http://orcid.org/0000-0001-7660-8061
http://orcid.org/0000-0003-2572-063X
http://orcid.org/0000-0002-9504-4107
http://orcid.org/0000-0002-2700-4285

2 H. Ihalainen et al.

solvers, coupled with increasingly sophisticated techniques for using SAT solver
calls to reason about optimization problems, have made MaxSAT solvers a pow-
erful tool for tackling real-world NP-hard optimization problems [8].

However, Modern MaxSAT solvers are quite intricate pieces of software, and
it has been shown repeatedly in the MaxSAT evaluations [51] that even the best
solvers sometimes report incorrect results. This was previously a serious issue
also for SAT solvers (see, e.g., [13]), but the SAT community has essentially
eliminated this problem by requiring that solvers should be certifying [1, 53],
i.e., not only report whether a given formula is satisfiable or unsatisfiable but
also produce a machine-verifiable proof that this conclusion is correct. Many
different SAT proof formats such as RUP [33], TraceCheck [7], GRIT [17],
and LRAT [16] have been proposed, with DRAT [35,36,74] established as the de
facto standard; for the last ten years, proof logging has been compulsory in the
(main track of the) SAT competitions [66]. It is all the more striking, then, that
until recently no similar developments have been observed in MaxSAT solving.

1.1 Previous Work

A first natural question to ask—since MaxSAT solvers are based on repeated
calls to SAT solvers—is why we cannot simply use SAT proof logging also for
MaxSAT. The problem is that DRAT can only reason about clauses, whereas
MaxSAT solvers argue about costs of solutions and values of objective functions.
Translating such claims to clausal form would require an external tool to certify
correctness of the translation. Also, such clausal translations incur a significant
overhead and do not seem well-adapted for, e.g., counting arguments in MaxSAT.

While there have been several attempts to design proof systems specifically
for MaxSAT solving [11, 23, 39, 45, 57, 58, 63–65], none of these have come close
to providing a general proof logging solution, because they apply only for very
specific algorithm implementations and/or fail to capture the full range of tech-
niques used. Recent papers have instead proposed using pseudo-Boolean proof
logging with VeriPB [9,32] to certify correctness of so-called solution-improving
solvers [72] and core-guided solvers [4]. Although these works demonstrate, for
the first time, practical proof logging for modern MaxSAT solving, the meth-
ods developed thus far only apply to the core solving process. This ignores the
preprocessing phase, where the input formula can undergo major reformulation.
State-of-the-art solvers sometimes use stand-alone preprocessor tools, or some-
times integrate preprocessing-style reasoning more tightly within the MaxSAT
solver engine, to speed up the search for optimal solutions. Some of these pre-
processing techniques are lifted from SAT to MaxSAT, but there are also native
MaxSAT preprocessing methods that lack analogies in SAT solving.

1.2 Our Contribution

In this paper, we show, for the first time, how to use pseudo-Boolean proof log-
ging with VeriPB to produce proofs of correctness for a wide range of prepro-
cessing techniques used in modern MaxSAT solvers. VeriPB proof logging has

Certified MaxSAT Preprocessing 3

previously been successfully used not only for core MaxSAT search as discussed
above, but also for advanced SAT solving techniques (including symmetry break-
ing) [9,27,32], subgraph solving [28–30], constraint programming [22,31,54,55],
and 0–1 ILP presolving [37], and we add MaxSAT preprocessing to this list.

In order to do so, we extend the VeriPB proof format to include an output
section where a reformulated output can be presented, and where the pseudo-
Boolean proof establishes that this output formula and the input formula are
equioptimal, i.e., have optimal solutions of the same value. We also enhance
CakePB [10,29]—a verified proof checker for pseudo-Boolean proofs—to handle
proofs of reformulation. In this way, we obtain an end-to-end formally verified
toolchain for certified preprocessing of MaxSAT instances.

It is worth noting that although preprocessing is also a critical component
in SAT solving, we are not aware of any tool for certifying reformulations even
for the restricted case of decision problems, i.e., showing that formulas are equi-
satisfiable—the DRAT format and tools support proofs that satisfiability of an
input CNF formula F implies satisfiability of an output CNF formula G but not
the converse direction (except in the special case where F is a subset of G). To
the best of our knowledge, our work presents the first practical tool for proving
(two-way) equisatisfiability or equioptimality of reformulated problems.

We have performed computational experiments running a MaxSAT prepro-
cessor with proof logging and proof checking on benchmarks from the MaxSAT
evaluations [51]. Although there is certainly room for improvements in perfor-
mance, these experiments provide empirical evidence for the feasibility of certi-
fied preprocessing for real-world MaxSAT benchmarks.

1.3 Organization of This Paper

After reviewing preliminaries in Section 2, we explain our pseudo-Boolean proof
logging for MaxSAT preprocessing in Section 3, and Section 4 discusses verified
proof checking. We present results from a computational evaluation in Section 5,
after which we conclude with a summary and outlook for future work in Section 6.

2 Preliminaries

We write ℓ to denote a literal, i.e., a {0, 1}-valued Boolean variable x or its
negation x = 1− x. A clause C = ℓ1 ∨ . . . ∨ ℓk is a disjunction of literals, where
a unit clause consists of only one literal. A formula in conjunctive normal form
(CNF) F = C1 ∧ . . .∧Cm is a conjunction of clauses, where we think of clauses
and formulas as sets so that there are no repetitions and order is irrelevant.

A pseudo-Boolean (PB) constraint is a 0–1 linear inequality
∑

j ajℓj ≥ b,
where, when convenient, we can assume all literals ℓj to refer to distinct variables
and all integers aj and b to be positive (so-called normalized form). A pseudo-
Boolean formula is a conjunction of such constraints. We identify the clause C =
ℓ1 ∨ · · · ∨ ℓk with the pseudo-Boolean constraint PB(C) = ℓ1 + · · ·+ ℓk ≥ 1, so a
CNF formula F is just a special type of PB formula PB(F) = {PB(C) | C ∈ F}.

4 H. Ihalainen et al.

A (partial) assignment ρ mapping variables to {0, 1}, is extended to literals
by respecting the meaning of negation, satisfies a PB constraint

∑
j ajℓj ≥ b

if
∑

ℓj :ρ(ℓj)=1 aj ≥ b (assuming normalized form). A PB formula is satisfied
by ρ if all constraints in it are. We also refer to total satisfying assignments ρ
as solutions. In a pseudo-Boolean optimization (PBO) problem we ask for a
solution minimizing a given objective function O =

∑
j cjℓj +W , where cj and

W are integers and W represents a trivial lower bound on the minimum cost.

2.1 Pseudo-Boolean Proof Logging Using Cutting Planes

The pseudo-Boolean proof logging in VeriPB is based on the cutting planes
proof system [15] with extensions as discussed briefly next. We refer the reader
to [14] for and in-depth discussion of cutting planes and to [9,26,37,73] for more
detailed information about the VeriPB proof system and format.

A pseudo-Boolean proof maintains two sets of core constraints C and derived
constraints D under which the objective O should be minimized. At the start
of the proof, C is initialized to the constraints in the input formula F . Any
constraints derived by the rules described below are placed in D, from where
they can later be moved to C (but not vice versa). The proof system semantics
preserves the invariant that the optimal value of any solution to C and to the
original input problem F is the same. New constraints can be derived from C∪D
by performing addition of two constraints or multiplication of a constraint by a
positive integer, and literal axioms ℓ ≥ 0 can be used at any time. Additionally,
we can apply division to

∑
j ajℓj ≥ b by a positive integer d followed by rounding

up to obtain
∑

j⌈aj/d⌉ℓj ≥ ⌈b/d⌉, and saturation to yield
∑

j min{aj , b} · ℓj ≥ b
(where we again assume normalized form).

The negation of a constraint C =
∑

j ajℓj ≥ b is ¬C =
∑

j ajℓj ≤ b− 1. For
a (partial) assignment ρ we write C↾ρ for the restricted constraint obtained by
replacing literals in C assigned by ρ with their values and simplifying. We say
that C unit propagates ℓ under ρ if C↾ρ cannot be satisfied unless ℓ is assigned
to 1. If repeated unit propagation on all constraints in C ∪ D ∪ {¬C}, starting
with the empty assignment ρ = ∅, leads to contradiction in the form of an
unsatisfiable constraint, we say that C follows by reverse unit propagation (RUP)
from C∪D. Such (efficiently verifiable) RUP steps are allowed in VeriPB proofs
as a convenient way to avoid writing out an explicit cutting planes derivation.
We use the same notation C↾ω to denote the result of applying to C a (partial)
substitution ω, which can map variables not only to {0, 1} but also to literals,
and extend this notation to sets of constraints by taking unions.

In addition to the above rules, which derive semantically implied constraints,
there is a redundance-based strengthening rule, or just redundance rule for short,
that can derive non-implied constraints C as long as they do not change the
feasibility or optimal value. This can be guaranteed by exhibiting a witness sub-
stitution ω such that for any total assignment α satisfying C∪D but violating C,
the composition α ◦ω is another total assignment that satisfies C ∪D∪{C} and
yields an objective value that is at least as good. Formally, C can be derived

Certified MaxSAT Preprocessing 5

from C ∪ D by exhibiting ω and subproofs for

C ∪ D ∪ {¬C} ⊢ (C ∪ D ∪ {C})↾ω ∪ {O ≥ O↾ω} , (1)

using the previously discussed rules (where the notation C1 ⊢ C2 means that the
constraints C2 can be derived from the constraints C1).

During preprocessing, constraints in the input formula are often deleted or
replaced by other constraints, in which case the proof should establish that
these deletions maintain equioptimality. Removing constraints from the derived
set D is unproblematic, but unrestricted deletion from the core set C can clearly
introduce spurious better solutions. Therefore, removing C from C can only be
done by the checked deletion rule, which requires a proof that the redundance rule
can be used to rederive C from C \{C} (see [9] for a more detailed explanation).

Finally, it turns out to be useful to allow replacing O by a new objective O′

using an objective function update rule, as long as this does not change the
optimal value of the problem. Formally, updating the objective from O to O′

requires derivations of the two constraints O ≥ O′ and O′ ≥ O from the core
set C, which shows that any satisfying solution to C has the same value for both
objectives. More details on this rule can be found in [37].

2.2 Maximum Satisfiability

A WCNF instance of (weighted partial) maximum satisfiability FW = (FH , FS)
is a conjunction of two CNF formulas FH and FS with hard and soft clauses,
respectively, where soft clauses C ∈ FS have positive weights wC . A solution ρ
to FW must satisfy FH and has value cost(FS , ρ) equal to the sum of weights of
all soft clauses not satisfied by ρ. The optimum opt

(
FW

)
of FW is the minimum

of cost(FS , ρ) over all solutions ρ, or ∞ if no solution exists.
State-of-the-art MaxSAT preprocessors such as MaxPre [39,44] take a slightly

different objective-centric view [5] of MaxSAT instances F = (F,O) as consisting
of a CNF formula F and an objective function O =

∑
j cjℓj+W to be minimized

under assignments ρ satisfying F . A WCNF MaxSAT instance FW = (FH , FS)
is converted into objective-centric form ObjMaxSAT(FW) = (F,O) by letting
the formula F = FH ∪{C ∨ bC | C ∈ FS , |C| > 1} of ObjMaxSAT(FW) consist
of the hard clauses of FW and the non-unit soft clauses in FS , each extended
with a fresh variable bC that does not appear in any other clause. The objective
O =

∑
(ℓ)∈FS

w(ℓ)ℓ+
∑

wCbC contains literals ℓ for all unit soft clauses ℓ in FS

as well as literals for all new variables bC , with coefficients equal to the weights
of the corresponding soft clauses. In other words, each unit soft clause ℓ ∈ FS

of weight w is transformed into the term w · ℓ in the objective function O, and
each non-unit soft clause C is transformed into the hard clause C ∨ bC paired
with the unit soft clause (bC) with same weight as C. The following observation
summarizes the properties of ObjMaxSAT(FW) that are central to our work.

Observation 1 For any solution ρ to a WCNF MaxSAT instance FW there
exists a solution ρ′ to (F,O) = ObjMaxSAT(FW) with O(ρ′) = cost(FW , ρ).

6 H. Ihalainen et al.

Conversely, if ρ′ is a solution to ObjMaxSAT(FW), then there exists a solution
ρ of FW for which cost(FW , ρ) ≤ O(ρ′).

For the second part of the observation, the reason O(ρ′) is only an upper
bound on cost(FW , ρ) is that the encoding forces bC to be true whenever C is
not satisfied by an assignment but not vice versa.

An objective-centric MaxSAT instance (F,O), in turn, clearly has the same
optimum as the pseudo-Boolean optimization problem of minimizing O subject
to PB(F). For the end-to-end formal verification, the fact that this coincides
with opt

(
FW

)
needs to be formalized into theorems as shown in Figure 4.

3 Proof Logging for MaxSAT Preprocessing

We now discuss how pseudo-Boolean proof logging can be used to reason about
correctness of MaxSAT preprocessing steps. Our approach maintains the invari-
ant that the current working instance in the preprocessor is synchronized with
the PB constraints in the core set C as described in Section 2.2. At the end of
each preprocessing step (i.e., application of a preprocessing technique) the set of
derived constraints D is empty. All constraints derived in the proof as described
in this section are moved to the core set, and constraints are always removed by
checked deletion from the core set. Full details are in the online appendix [40].

3.1 Overview

All our preprocessing steps maintain equioptimality, which means that if pre-
processing of the WCNF MaxSAT instance FW yields the output instance FW

P ,
then the equality opt

(
FW

)
= opt

(
FW

P

)
is guaranteed to hold. Our preprocess-

ing is certified, meaning that we provide a machine-verifiable proof justifying
this claimed equality. Our discussion below focuses on input instances that have
solutions, but our techniques also handle the—arguably less interesting—case
of FW not having solutions; details are in the online appendix [40].

An overview of the workflow of our certifying MaxSAT preprocessor is shown
in Figure 1. Given a WCNF instance FW as input, the preprocessor proceeds
in five stages (illustrated on the left in Figure 1), and then outputs a pre-
processed MaxSAT instance FW

P together with a pseudo-Boolean proof that
opt

(
ObjMaxSAT

(
FW

))
= opt

(
ObjMaxSAT

(
FW

P

))
. For certified MaxSAT

preprocessing, this proof can then be fed to a formally verified checker as in
Section 4 to verify that (a) the initial core constraints in the proof correspond
exactly to the clauses in ObjMaxSAT

(
FW

)
, (b) each step in the proof is valid,

and (c) the final core constraints in the proof correspond exactly to the clauses
in ObjMaxSAT

(
FW

P

)
. Below, we provide more details on the five stages of the

preprocessing flow.

Stage 1: Initialization. An input WCNF instance FW is transformed to
pseudo-Boolean format by converting it to an objective-centric representation

Certified MaxSAT Preprocessing 7

preprocessing
(MaxSAT)

proof
(pseudo-Boolean)

1. Initialization (FW , 0)
(PB(F 0), O0)
where (F 0, O0) = ObjMaxSAT(FW)

2. Preprocessing
on WCNF

(FW
1 , lb1) (C1, O1)

3. Conversion to
objective-centric

(F 2, O2 + lb1)
where
(F 2, O2) = ObjMaxSAT(FW

1)

(PB(F 2), O2 + lb1)

4. Preprocessing
on objective-
centric

(F 3, O3) (PB(F 3), O3)

5. Constant
removal

(F 4, O4)
where F 4 = F 3 ∧ (bW

3
)

O4 = O3 − W 3 + W 3bW
3

(PB(F 4), O4)

Output
Preprocessed
WCNF FW

P = (F 4, FP
S)

Proof of equioptimality
of PB(F 0) under O0

and PB(F 4) under O4

Fig. 1. Overview of the five stages of certified MaxSAT preprocessing of a WCNF
instance FW . The middle column contains the state of the working MaxSAT instance
as a WCNF instance and a lower bound on its optimum cost (Stages 1–2), or as an
objective-centric instance (Stages 3–5). The right column contains a tuple (C, O) with
the set C of core constraints, and objective O, respectively, of the proof after each stage.

(F 0, O0) = ObjMaxSAT
(
FW

)
and then representing all clauses in F 0 as

pseudo-Boolean constraints as described in Section 2.2. The VeriPB proof starts
out with core constraints PB(F 0) and objective O0. The preprocessor maintains
a lower bound on the optimal cost of the working instance, which is initialized
to 0 for the input FW .

Stage 2: Preprocessing on the Initial WCNF Representation. During
preprocessing on the WCNF representation, a (very limited) set of simplification
techniques are applied on the working formula. At this stage the preprocessor
removes duplicate, tautological, and blocked clauses [43]. Additionally, hard unit
clauses are unit propagated and clauses subsumed by hard clauses are removed.
Importantly, the preprocessor is performing these simplifications on a WCNF
MaxSAT instance where it deals with hard and soft clauses. As the pseudo-
Boolean proof has no concept of hard or soft clauses, the reformulation steps
must be expressed in terms of the constraints in the proof. The next example
illustrates how reasoning with different types of clauses is logged in the proof.

Example 1. Suppose the working instance has two duplicate clauses C and D. If
both are hard, then the proof has two identical constraints PB(C) and PB(D)

8 H. Ihalainen et al.

in the core set, and PB(D) can be deleted since it follows from PB(C) by reverse
unit propagation (RUP). If D is instead a non-unit soft clause, the proof has
the constraint PB(D ∨ bD) and the term wDbD in the objective, where bD does
not appear in any other constraint. Then in the proof we (1) remove the RUP
constraint PB(D∨bD), (2) introduce bD ≥ 1 by redundance-based strengthening
using the witness {bD → 0}, (3) remove the term wDbD from the objective, and
(4) delete bD ≥ 1 with the witness {bD → 0}.

Stage 3: Conversion to Objective-Centric Representation. In order to
apply more simplification rules in a cost-preserving way, the working instance
FW

1 = (F 1
H , F 1

S) at the end of Stage 2 is converted into the corresponding
objective-centric representation that takes the lower-bound lb inferred during
Stage 1 into account. More specifically, the preprocessor next converts its work-
ing MaxSAT instance into the objective-centric instance F2 = (F 2, O2 + lb)
where (F 2, O2) = ObjMaxSAT(FW

1).
Here it is important to note that at the end of Stage 2, the core constraints C1

and objective O1 of the proof are not necessarily PB(F 2) and O2 + lb, respec-
tively. Specifically, consider a unit soft clause (ℓ) of FW

1 obtained by shrinking
a non-unit soft clause C ⊇ (ℓ) of the input instance, with weight wC . Then the
objective function O2 in the preprocessor will include the term wCℓ that does
not appear in the objective function O1 in the proof. Instead, O1 contains the
term wCbC and C1 the constraint ℓ+bC ≥ 1 where bC is the fresh variable added
to C in Stage 1. In order to “sync up” the working instance and the proof we
(1) introduce ℓ+ bC ≥ 1 to the proof with the witness {bC → 0}, (2) update O1

by adding wCℓ − wCbC , (3) remove the constraint ℓ + bC ≥ 1 with the witness
{bC → 0}, and (4) remove the constraint ℓ + bC ≥ 1 with witness {bC → 1}.
The same steps are logged for all soft unit clauses of FW

1 obtained during Stage
2. In the following stages, the preprocessor will operate on an objective-centric
MaxSAT instance whose clauses correspond exactly to the core constraints of
the proof.

Stage 4: Preprocessing on the Objective-Centric Representation. Dur-
ing preprocessing on the objective-centric representation, more simplification
techniques are applied to the working objective-centric instance and logged to
the proof. We implemented proof logging for a wide range of preprocessing tech-
niques. These include MaxSAT versions of rules commonly used in SAT solving
like bounded variable elimination (BVE) [20,68], bounded variable addition [49],
blocked clause elimination [43], subsumption elimination, self-subsuming reso-
lution [20, 60], failed literal elimination [24, 46, 75], and equivalent literal sub-
stitution [12, 48, 71]. We also cover MaxSAT-specific preprocessing rules like
TrimMaxSAT [61], (group)-subsumed literal (or label) elimination (SLE) [6,44],
intrinsic at-most-ones [38, 39], binary core removal (BCR) [25, 44], label match-
ing [44], and hardening [2, 39, 56]. Here we give examples for BVE, SLE, label
matching, and BCR—the rest are detailed in the online appendix [40]. In the fol-
lowing descriptions, let (F,O) be the current objective-centric working instance.

Certified MaxSAT Preprocessing 9

Bounded Variable Elimination (BVE) [20,68]. BVE eliminates from F a variable
x that does not appear in the objective by replacing all clauses in which either x
or x appears with the non-tautological clauses in {C∨D | C∨x ∈ F,D∨x ∈ F}.

An application of BVE is logged as follows: (1) each non-tautological con-
straint PB(C ∨D) is added by summing the existing constraints PB(C ∨x) and
PB(D∨x) and saturating, after which (2) each constraint of the form PB(C∨x)
and PB(D ∨ x) is deleted with the witness x → 1 or x → 0, respectively.

Label Matching [44]. Label matching allows merging pairs of objective variables
that can be deduced to not both be set to 1 by optimal solutions. Assume that
(i) F contains the clauses C ∨ bC and D ∨ bD, (ii) bC and bD are objective
variables with the same coefficient w in O, and (iii) C ∨D is a tautology. Then
label matching replaces bC and bD with a fresh variable bCD, i.e., replaces C∨bC
and D ∨ bD with C ∨ bCD and D ∨ bCD and adds −wbC − wbD + wbCD to O.

As C∨D is a tautology there is some literal ℓ such that ℓ ∈ C and ℓ ∈ D. Label
matching is logged via the following steps: (1) introduce the constraint bC+bD ≥
1 with the witness {bC → ℓ, bD → ℓ}, (2) introduce the constraints bCD + bC +
bD ≥ 2 and bCD+bC+bD ≥ 1 by redundance; these correspond to bCD = bC+bD
which holds even though the variables are binary due to the constraint added
in the first step, (3) update the objective by adding −wbC −wbD +wbCD to it,
(4) introduce the constraints PB(C ∨ bCD) and PB(D ∨ bCD) which are RUP,
(5) delete PB(C ∨ bC) and PB(D ∨ bD) with the witness {bC → ℓ, bD → ℓ},
(6) delete the constraint bCD + bC + bD ≥ 2 with the witness {bC → 0, bD → 0}
and bCD+bC+bD ≥ 1 with the witness {bC → 1, bD → 0}, (7) delete bC+bD ≥ 1
with the witness {bC → 0}.

Subsumed Literal Elimination (SLE) [6, 39]. Given two non-objective variables
x and y such that (i) {C | C ∈ F, y ∈ C} ⊆ {C | C ∈ F, x ∈ C} and (ii)
{C | C ∈ F, x ∈ C} ⊆ {C | C ∈ F, y ∈ C}, subsumed literal elimination
(SLE) allows fixing x = 1 and y = 0. This is proven by (1) introducing x ≥ 1
and y ≥ 1, both with witness {x → 1, y → 0}, (2) simplifying the constraint
database via propagation, and (3) deleting the constraints introduced in the first
step as neither x nor y appears in any other constraints after simplification.

If x and y are objective variables, the application of SLE additionally requires
that: (iii) the coefficient in the objective of x is at most as high as the coefficient
of y. Then the value of x is not fixed as it would incur cost. Instead, only y = 0
is fixed and y removed from the objective. Intuitively, conditions (i) and (ii)
establish that the values of x and y can always be flipped to 0 and 1, respectively,
without falsifying any clauses. If neither of the variables is in the objective, this
flip does not increase the cost of any solutions. Otherwise, condition (iii) ensures
that the flip does not make the solution worse, i.e., increase its cost.

Binary Core Removal (BCR) [25, 44]. Assume that the following four prereq-
uisites hold: (i) F contains a clause bC ∨ bD for two objective variables bC and
bD, (ii) bC and bD have the same coefficient w in O, (iii) the negations bC and
bD do not appear in any clause of F , and (iv) both bC and bD appear in at

10 H. Ihalainen et al.

least one other clause of F but not together in any other clause of F . Binary
core removal replaces all clauses containing bC or bD with the non-tautological
clauses in {C∨D∨bCD | C∨bC ∈ F,D∨bD ∈ F}, where bCD is a fresh variable,
and modifies the objective function by adding −wbC − wbD + wbCD + w to it.

BCR is logged as a combination of the so-called intrinsic at-most-ones tech-
nique [38,39] and BVE. Applying intrinsic at most ones on the variables bC and
bD introduces a new clause (bC ∨ bD ∨ bCD) and adds −wbC −wbD +wbCD +w
to the objective. Our proof for intrinsic at most ones is the same as the one
presented in [4]. As this step removes bC and bD from the objective, both can
now be eliminated via BVE.

Stage 5: Constant Removal and Output. After objective-centric prepro-
cessing, the final objective-centric instance (F 3, O3) is converted back to a WCNF
instance. Before doing so, the constant term W3 of O3 is removed by introducing
a fresh variable bW3 , and setting F 4 = F 3 ∧ (bW3) and O4 = O3 −W3 +W3b

W3 .
This step is straightforward to prove.

Finally, the preprocessor outputs the WCNF instance FW
P = (F 4, FP

S) that
has F 4 as hard clauses. the set FP

S of soft clauses consists of a unit soft clause
(ℓ) of weight c for each term c · ℓ in O4. The preprocessor also outputs the
final proof of the fact that the minimum-cost of solutions to the pseudo-Boolean
formula PB(F 0) under O0 is the same as that of PB(F 4) under O4, i.e. that
opt(ObjMaxSAT(FW)) = opt(ObjMaxSAT(FW

P)).

3.2 Worked Example of Certified Preprocessing

We give a worked-out example of certified preprocessing of the instance FW =
(FH , FS) where FH = {(x1 ∨ x2), (x2)} and three soft clauses: (x1) with weight
1, (x3∨x4) with weight 2, and (x4∨x5) with weight 3. The proof for one possible
execution of the preprocessor on this input instance is detailed in Table 1.

During Stage 1 (Steps 1–4 in Table 1), the core constraints of the proof are
initialized to contain the four constraints corresponding to the hard and non-unit
soft clauses of FW (IDs (1)–(4) in Table 1), and the objective to x1 +2b1 +3b2,
where b1 and b2 are fresh variables added to the non-unit soft clauses of FW .

During Stage 2 (Steps 5–9), the preprocessor fixes x2 = 0 via unit propagation
by removing x2 from the clause (x1 ∨ x2), and then removing the unit clause
(x2). The justification for fixing x2 = 0 are Steps 5–7. Next the preprocessor
fixes x1 = 1 which (i) removes the hard clause (x1), and (ii) increases the lower
bound on the optimal cost by 1. The justification for fixing x1 = 1 are Steps 8
and 9 of Table 1. At this point—at the end of Stage 2—the working instance
FW

1 = (F 1
H , F 1

S) has F 1
H = {} and F 1

S = {(x3 ∨ x4), (x4 ∨ x5)}.
In Stage 3, the preprocessor converts its working instance into the objective-

centric representation (F,O) where F = {(x3 ∨ x4 ∨ b1), (x4 ∨ x5 ∨ b2)} and
O = 2b1 + 3b2 + 1, which exactly matches the core constraints and objective of
the proof after Step 9. Thus, in this instance, the conversion does not result in any
proof logging steps. Afterwards, during Stage 4 (Steps 10–17), the preprocessor

Certified MaxSAT Preprocessing 11

Table 1. Example proof produced by a certifying preprocessor. The column (ID) refers
to constraint IDs in the pseudo-Boolean proof. The column (Step) indexes all proof
logging steps and is used when referring to the steps in the discussion. The letter ω is
used for the witness substitution in redundance-based strengthening steps.

Step ID Type Justification Objective
1 (1) add x1 + x2 ≥ 1 input x1 + 2b1 + 3b2
2 (2) add x2 ≥ 1 input x1 + 2b1 + 3b2
3 (3) add x3 + x4 + b1 ≥ 1 input x1 + 2b1 + 3b2
4 (4) add x4 + x5 + b2 ≥ 1 input x1 + 2b1 + 3b2

Unit propagation: fix x2 = 0, constraint (2)
5 (5) add x1 ≥ 1 (1) + (2) x1 + 2b1 + 3b2
6 delete (1) RUP x1 + 2b1 + 3b2
7 delete (2) ω : {x2 → 0} x1 + 2b1 + 3b2

Unit propagation; fix x1 = 1, constraint (5)
8 add −x1 + 1 to obj. (5) 2b1 + 3b2 + 1
9 delete (5) ω : {x1 → 1} 2b1 + 3b2 + 1

BVE: eliminate x4

10 (6) add
x3 + b1 + x5 + b2 ≥ 1

(3) + (4) 2b1 + 3b2 + 1

11 delete (3) ω : {x4 → 0} 2b1 + 3b2 + 1
12 delete (4) ω : {x4 → 1} 2b1 + 3b2 + 1

Subsumed literal elimination: b2
13 (7) add b2 ≥ 1 ω : {b2 → 0, b1 → 1} 2b1 + 3b2 + 1
14 add −3b2 to obj. (7) 2b1 + 1
15 (8) add x3 + b1 + x5 ≥ 1 (6) + (7) 2b1 + 1
16 delete (6) RUP 2b1 + 1
17 delete (7) ω : {b2 → 0} 2b1 + 1

Remove objective constant
18 (9) add b3 ≥ 1 ω : {b3 → 1} 2b1 + 1
19 add b3 − 1 to obj. (9) 2b1 + b3

applies BVE in order to eliminate x4 (Steps 10–12) and SLE to fix b2 to 0
(Steps 13–17). Finally, Steps 18 and 19 represent Stage 5, i.e., the removal of the
constant 1 from the objective. After these steps, the preprocessor outputs the
preprocessed instance FW

P = (FP
H , FP

S), where FP
H = {(x3 ∨ x5 ∨ b1), (b3)} and

FP
S contains two clauses: (b1) with weight 2, and (b3) with weight 1.

4 Verified Proof Checking for Preprocessing Proofs

This section presents our new workflow for formally verified, end-to-end proof
checking of MaxSAT preprocessing proofs based on pseudo-Boolean reasoning;
an overview of this workflow is shown in Figure 2. To realize this workflow, we
extended the VeriPB tool and its proof format to support a new output sec-
tion for declaring (and checking) reformulation guarantees between input and
output PBO instances (Section 4.1); we similarly modified CakePB [29] a ver-
ified proof checker to support the updated proof format (Section 4.2); finally,

12 H. Ihalainen et al.

Input WCNF
FW

Preprocessor
Proof Log

Elaborated
Proof Log

VeriPB
(Elaboration)

Output WCNF
FW

P

WCNF-to-PB
Encoder

WCNF-to-PB
Encoder

✓ WCNFs
Equioptimal

PB-to-WCNF
Translator

Input PB
Encoding

PB Verdict

PB Proof
Checker

Reformulation
Checker

Output PB
Encoding

CakePB (Backend)CakePBwcnf (Frontend)

Fig. 2. Workflow for end-to-end verified MaxSAT preprocessing proof checking.

we built a verified frontend, CakePBwcnf, which mediates between MaxSAT
WCNF instances and PBO instances (Section 4.3). Our formalization is carried
out in the HOL4 proof assistant [67] using CakeML tools [34,59,70] to obtain
a verified executable implementation of CakePBwcnf.

In the workflow in Figure 2, the MaxSAT preprocessor produces a refor-
mulated output WCNF together with a proof of equioptimality with the input
WCNF. This proof is elaborated by VeriPB and then checked by CakePB-
wcnf, resulting in a verified verdict—in case of success, the input and output
WCNFs are equioptimal. This workflow also supports verified checking of WCNF
MaxSAT solving proofs (where the output parts of the flow are omitted).

4.1 Output Section for Pseudo-Boolean Proofs

Given an input PBO instance (F,O), the VeriPB proof system as described
in Section 2.1 maintains the invariant that the core constraints C (and current
objective) are equioptimal to the input instance. Utilizing this invariant, the new
output section for VeriPB proofs allows users to optionally specify an output
PBO instance (F ′, O′) at the end of a proof. This output instance is claimed to be
a reformulation of the input which is either: (i) derivable, i.e., satisfiability of F
implies satisfiability of F ′, (ii) equisatisfiable to F , or (iii) equioptimal to (F,O).
These are increasingly stronger claims about the relationship between the in-
put and output instances. After checking a pseudo-Boolean derivation, VeriPB
runs reformulation checking which, e.g., for equioptimality, checks that C ⊆ F ′,
F ′ ⊆ C, and that the respective objective functions are syntactically equal after
normalization; other reformulation guarantees are checked analogously.

The VeriPB tool supports an elaboration mode [29], where in addition to
checking the proof it also converts it from augmented format to kernel format.
The augmented format contains syntactic sugar rules to facilitate proof logging
for solvers and preprocessors like MaxPre, while the kernel format is supported
by the formally verified proof checker CakePB. The new output section is passed
unchanged from augmented to kernel format during elaboration.

Certified MaxSAT Preprocessing 13

4.2 Verified Proof Checking for Reformulations

There are two main verification tasks involved in extending CakePB with sup-
port for the output section. The first task is to verify soundness of all cases of
reformulation checking. Formally, the equioptimality of an input PBO instance
fml , obj and its output counterpart fml ′, obj ′ is specified as follows:

sem_output fml obj None fml ′ obj ′ Equioptimal
def
=

∀ v . (∃w . satisfies w fml ∧ eval_obj obj w ≤ v) ⇐⇒
(∃w ′. satisfies w ′ fml ′ ∧ eval_obj obj ′ w ′ ≤ v)

This definition says that, for all values v , the input instance has a satisfying
assignment with objective value less than or equal to v iff the output instance
also has such an assignment; note that this implies (as a special case) that fml
is satisfiable iff fml ′ is satisfiable. The verified correctness theorem for CakePB
says that if CakePB successfully checks a pseudo-Boolean proof in kernel for-
mat and prints a verdict declaring equioptimality, then the input and output
instances are indeed equioptimal as defined in sem_output.

The second task is to develop verified optimizations to speedup proof steps
which occur frequently in preprocessing proofs; some code hotspots were also
identified by profiling the proof checker against proofs generated by MaxPre.
Similar (unverified) versions of these optimizations are also used in VeriPB.
These optimizations turned out to be necessary in practice—they mostly target
steps which, when naïvely implemented, have quadratic (or worse) time com-
plexity in the size of the constraint database.

Optimizing Reformulation Checking. The most expensive step in reformulation
checking for the output section is to ensure that the core constraints C are
included in the output formula and vice versa (possibly with permutations and
duplicity). Here, CakePB normalizes all pseudo-Boolean constraints involved to
a canonical form and then copies both C and the output formula into respective
array-backed hash tables for fast membership tests.

Optimizing Redundance and Checked Deletion Rules. A naïve implementation of
these two rules would require iterating over the entire constraints database when
checking all subproofs in (1) for the right-hand-side constraints (C ∪ D ∪ {C})↾ω∪
{O ≥ O↾ω}. An important observation here is that preprocessing proofs fre-
quently use substitutions ω that only involve a small number of variables (often
a single variable, which in addition is fresh in the important special case of reifica-
tion constraints z ⇔ C encoding that z is true precisely when the constraint C is
satisfied). Consequently, most of the constraints (C ∪ D ∪ {C})↾ω can be skipped
when checking redundance because they are unchanged by the substitution. Sim-
ilarly, the constraint O ≥ O↾ω is expensive to construct when the objective O
contains many terms, but this construction can be skipped if no variables being
substituted occur in O. CakePB stores a lazily-updated mapping of variables
to their occurrences in the constraint database and the objective, which it uses
to detect these cases.

14 H. Ihalainen et al.

sat_hard w wfml
def
= ∀C . mem (0,C) wfml ⇒ sat_clause w C

weight_clause w (n,C)
def
= if sat_clause w C then 0 else n

cost w wfml
def
= sum (map (weight_clause w) wfml)

opt_cost wfml
def
= if ¬∃w . sat_hard w wfml then None

else Some (minset { cost w wfml | sat_hard w wfml })

Fig. 3. Formalized semantics for MaxSAT WCNF problems.

The occurrence mapping just discussed is crucial for performance due to the
frequency of steps involving witnesses for preprocessing proofs, but incurs some
memory overhead in the checker. More precisely, every variable occurrence in
any constraint in the database corresponds to exactly one ID in the mapping.
Thus, the overhead of storing the mapping is in the worst case quadratic in
the number of constraints, but it is still linear in the total space usage for the
constraints database.

4.3 Verified WCNF Frontend

The CakePBwcnf frontend mediates between MaxSAT WCNF problems and
pseudo-Boolean optimization problems native to CakePB. Accordingly, the cor-
rectness of CakePBwcnf is stated in terms of MaxSAT semantics, i.e., the en-
coding, underlying pseudo-Boolean semantics, and proof system are all formally
verified. In order to trust CakePBwcnf, one only has to carefully inspect the
formal definition of MaxSAT semantics shown in Figure 3 to make sure that
it matches the informal definition in Section 2.2. Here, each clause C is paired
with a natural number n, where n = 0 indicates a hard clause and when n > 0
it is the weight of C . The optimal cost of a weighted CNF formula wfml is None
(representing ∞) if no satisfying assignment to the hard clauses exist; otherwise,
it is the minimum cost among all satisfying assignments to the hard clauses.

There and Back Again. CakePBwcnf contains a verified WCNF-to-PB en-
coder implementing the encoding described in Section 2.2. Its correctness the-
orems are shown in Figure 4, where the two lemmas in the top row relate the
satisfiability and cost of the WCNF to its PB optimization counterpart after
running wcnf_to_pbf (and vice versa), see Observation 1. Using these lemmas,
the final theorem (bottom row) shows that equioptimality for two (encoded) PB
optimization problems can be translated back to equioptimality for the input
and preprocessed WCNFs.

Putting Everything Together. The final verification step is to specialize the end-
to-end machine code correctness theorem for CakePB to the new frontend. The
resulting theorem for CakePBwcnf is shown abridged in Figure 5; a detailed
explanation of similar CakeML-based theorems is available elsewhere [29, 69]
so we do not go into details here. Briefly, the theorem says that whenever the
verdict string “s VERIFIED OUTPUT EQUIOPTIMAL” is printed (as a suffix) to the

Certified MaxSAT Preprocessing 15

⊢ wfml_to_pbf wfml = (obj ,pbf) ∧
satisfies w (set pbf) ⇒
∃w ′. sat_hard w ′ wfml ∧

cost w ′ wfml ≤ eval_obj obj w

⊢ wfml_to_pbf wfml = (obj ,pbf) ∧
sat_hard w wfml ⇒
∃w ′. satisfies w ′ (set pbf) ∧

eval_obj obj w ′ = cost w wfml

⊢ full_encode wfml = (obj ,pbf) ∧ full_encode wfml ′ = (obj ′,pbf ′) ∧
sem_output (set pbf) obj None (set pbf ′) obj ′ Equioptimal ⇒
opt_cost wfml = opt_cost wfml ′

Fig. 4. Correctness theorems for the WCNF-to-PB encoding.

⊢ cake_pb_wcnf_run cl fs mc ms ⇒
∃ out err .
extract_fs fs (cake_pb_wcnf_io_events cl fs) =
Some (add_stdout (add_stderr fs err) out) ∧

(length cl = 4 ∧ isSuffix "s VERIFIED OUTPUT EQUIOPTIMAL\n" out ⇒
∃wfml wfml ′.
get_fml fs (el 1 cl) = Some wfml ∧ get_fml fs (el 3 cl) = Some wfml ′ ∧
opt_cost wfml = opt_cost wfml ′)

Fig. 5. Abridged final correctness theorem for CakePBwcnf.

standard output by an execution of CakePBwcnf, then the two input files
given on the command line parsed to equioptimal MaxSAT WCNF instances.

5 Experiments

We upgraded the MaxSAT preprocessor MaxPre 2.1 [39,42,44] to MaxPre 2.2,
which produces proof logs in the VeriPB format [10]. MaxPre 2.2 is available
at the MaxPre 2 repository [50]. The generated proofs were elaborated using
VeriPB [73] and then checked by the verified proof checker CakePBwcnf. As
benchmarks we used the 558 weighted and 572 unweighted MaxSAT instances
from the MaxSAT Evaluation 2023 [52].

The experiments were conducted on 11th Gen Intel(R) Core(TM) i5-1145G7
@ 2.60GHz CPUs with 16 GB of memory, a solid state drive as storage, and
Rocky Linux 8.5 as operating system. Each benchmark ran exclusively on a
node and the memory was limited to 14 GB. The time for MaxPre was limited
to 300 seconds. There is an option to let MaxPre know about this time limit,
but we did not use this option since MaxPre then decides which techniques to
try based on how much time remains. This would have made it very hard to get
reliable measurements of the overhead when proof logging is switched on in the
preprocessor. The time limits for both VeriPB and CakePBwcnf were set to
6000 seconds to get as many instances checked as possible.

The main focus of our evaluation was the default setting of MaxPre, which
does not use some of the techniques mentioned in Section 3 (or the online ap-
pendix [40]). We also conducted experiments with all techniques enabled to check

16 H. Ihalainen et al.

10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

timelimit

memout

tim
elim

it

m
em

o
u
t

MaxPRE without proof logging (s)

M
a
x
P
R
E

w
it
h
p
ro
of

lo
g
gi
n
g
(s
)

unweighted
weighted

Fig. 6. Proof logging overhead for
MaxPre.

10−3 10−2 10−1 100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

104
memout

MaxPRE with proof logging (s)

V
e
r
iP

B
+

C
a
k
e
P
B

fu
ll
ch
ec
k
in
g
(s
)

unweighted
weighted

Fig. 7. MaxPre vs. combined proof
checking running time.

the correctness of the proof logging implementation for all preprocessing tech-
niques. The data and source code from our experiments can be found in [41].

The goal of the experiments was to answer the following questions:

RQ1. How much extra time is required to write the proof for the preprocessor?
RQ2. How long does proof checking take compared to proof generation?

To answer the first question, in Figure 6 we compare MaxPre with and
without proof logging. In total, 1081 instances were successfully preprocessed by
MaxPre without proof logging. With proof logging enabled, 8 fewer instances
were preprocessed due to either time- or memory-outs. For the successfully pre-
processed instances, the geometric mean of the proof logging overhead is 46% of
the running time, and 95% of the instances were preprocessed with proof logging
in at most twice the time required without proof logging.

Our comparison between proof generation and proof checking is based on the
1073 instances for which preprocessing with proof logging was successful. Out
of these, 1021 instances were successfully checked and elaborated by VeriPB.
For 991 instances the verdicts were confirmed by the formally verified proof
checker CakePBwcnf, with the remaining instances being time- or memory-
outs. This shows the practical viability of our approach, as the vast majority of
preprocessing proofs were checked within the resource limits.

A scatter plot comparing the running time of MaxPre with proof logging
enabled against the combined checking process is shown in Figure 7. For the com-
bined checking time, we only consider the instances that have been successfully
checked by CakePBwcnf. In the geometric mean, the time for the combined
verified checking pipeline of VeriPB elaboration followed by CakePBwcnf
checking is 113× the preprocessing time of MaxPre. A general reason for this
overhead is that the preprocessor has more MaxSAT application-specific context
than the pseudo-Boolean checker, so the preprocessor can log proof steps with-
out performing the actual reasoning while the checker must ensure that those
steps are sound in an application-agnostic way. An example for this is reification:

Certified MaxSAT Preprocessing 17

as the preprocessor knows its reification variables are fresh, it can easily emit
redundance steps that witness on those variables; but the checker has to verify
freshness against its own database. Similar behaviour has been observed in other
applications of pseudo-Boolean proof logging [27,37].

To analyse further the causes of proof checking overhead, we also compared
VeriPB to CakePBwcnf. The checking of the elaborated kernel proof with
CakePBwcnf is 6.7× faster than checking and elaborating the augmented proof
with VeriPB. This suggests that the bottleneck for proof checking is VeriPB;
VeriPB without elaboration is about 5.3× slower than CakePBwcnf. As elab-
oration is a necessary step before running CakePBwcnf, improving the per-
formance of VeriPB would benefit the performance of the pipeline as a whole.
One specific feature that seems desirable would be to augment RUP rule appli-
cations with LRAT-style hints [16], so that VeriPB would not need to perform
unit propagation to elaborate RUP steps to cutting planes derivations. Though
these types of engineering challenges are important to address, they are beyond
the scope of the current paper and we have to leave them as future work.

6 Conclusion

In this work, we show how to use pseudo-Boolean proof logging to certify cor-
rectness of the MaxSAT preprocessing phase, extending previous work for the
main solving phase in unweighted model-improving solvers [72] and general core-
guided solvers [4]. As a further strengthening of previous work, we present a fully
formally verified toolchain which provides end-to-end verification of correctness.

In contrast to SAT solving, there is a rich variety of techniques in maximum
satisfiability solving, and it still remains to design pseudo-Boolean proof logging
methods for general, weighted, model-improving MaxSAT solvers [21,47,62] and
implicit hitting set (IHS) MaxSAT solvers [18, 19] with abstract cores [3]. Nev-
ertheless, our work adds further weight to the conclusion that pseudo-Boolean
reasoning seems like a very promising foundation for MaxSAT proof logging.
We are optimistic that this work is another step on the path towards general
adoption of proof logging in the context of SAT-based optimization.

Acknowledgments. This work has been financially supported by the University of
Helsinki Doctoral Programme in Computer Science DoCS, the Research Council of Fin-
land under grants 342145 and 346056, the Swedish Research Council grants 2016-00782
and 2021-05165, the Independent Research Fund Denmark grant 9040-00389B, the Wal-
lenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation, and by A*STAR, Singapore. Part of this work was
carried out while some of the authors participated in the extended reunion of the
semester program Satisfiability: Theory, Practice, and Beyond in the spring of 2023 at
the Simons Institute for the Theory of Computing at UC Berkeley. We also acknowl-
edge useful discussions at the Dagstuhl workshops 22411 Theory and Practice of SAT
and Combinatorial Solving and 23261 SAT Encodings and Beyond. The computational
experiments were enabled by resources provided by LUNARC at Lund University.

18 H. Ihalainen et al.

References

1. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C., Schweitzer, P.: An introduc-
tion to certifying algorithms. it - Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik 53(6), 287–293 (Dec 2011)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Proceedings of the 18th International Conference on Principles
and Practice of Constraint Programming (CP ’12). Lecture Notes in Computer
Science, vol. 7514, pp. 86–101. Springer (Oct 2012)

3. Berg, J., Bacchus, F., Poole, A.: Abstract cores in implicit hitting set MaxSat
solving. In: Proceedings of the 23rd International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT ’20). Lecture Notes in Computer Science,
vol. 12178, pp. 277–294. Springer (Jul 2020)

4. Berg, J., Bogaerts, B., Nordström, J., Oertel, A., Vandesande, D.: Certified core-
guided MaxSAT solving. In: Proceedings of the 29th International Conference on
Automated Deduction (CADE-29). Lecture Notes in Computer Science, vol. 14132,
pp. 1–22. Springer (Jul 2023)

5. Berg, J., Järvisalo, M.: Unifying reasoning and core-guided search for maximum
satisfiability. In: Proceedings of the 16th European Conference on Logics in Artifi-
cial Intelligence (JELIA ’19). Lecture Notes in Computer Science, vol. 11468, pp.
287–303. Springer (2019)

6. Berg, J., Saikko, P., Järvisalo, M.: Subsumed label elimination for maximum satis-
fiability. In: Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI ’16). FAIA, vol. 285, pp. 630–638. IOS Press (2016)

7. Biere, A.: Tracecheck. http://fmv.jku.at/tracecheck/ (2006)
8. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-

bility, Frontiers in Artificial Intelligence and Applications, vol. 336. IOS Press, 2nd
edn. (Feb 2021)

9. Bogaerts, B., Gocht, S., McCreesh, C., Nordström, J.: Certified dominance and
symmetry breaking for combinatorial optimisation. Journal of Artificial Intelligence
Research 77, 1539–1589 (Aug 2023), preliminary version in AAAI ’22

10. Bogaerts, B., McCreesh, C., Myreen, M.O., Nordström, J., Oertel, A., Tan, Y.K.:
Documentation of VeriPB and CakePB for the SAT competition 2023 (Mar 2023),
available at https://satcompetition.github.io/2023/checkers.html

11. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence
171(8-9), 606–618 (2007)

12. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34(1),
52–59 (2004)

13. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Proceedings of the 13th International Conference on Theory
and Applications of Satisfiability Testing (SAT ’10). Lecture Notes in Computer
Science, vol. 6175, pp. 44–57. Springer (Jul 2010)

14. Buss, S.R., Nordström, J.: Proof complexity and SAT solving. In: Biere et al. [8],
chap. 7, pp. 233–350

15. Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs.
Discrete Applied Mathematics 18(1), 25–38 (Nov 1987)

16. Cruz-Filipe, L., Heule, M.J.H., Hunt Jr., W.A., Kaufmann, M., Schneider-Kamp,
P.: Efficient certified RAT verification. In: Proceedings of the 26th International
Conference on Automated Deduction (CADE-26). Lecture Notes in Computer Sci-
ence, vol. 10395, pp. 220–236. Springer (Aug 2017)

http://fmv.jku.at/tracecheck/
https://satcompetition.github.io/2023/checkers.html

Certified MaxSAT Preprocessing 19

17. Cruz-Filipe, L., Marques-Silva, J.P., Schneider-Kamp, P.: Efficient certified res-
olution proof checking. In: Proceedings of the 23rd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’17).
Lecture Notes in Computer Science, vol. 10205, pp. 118–135. Springer (Apr 2017)

18. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Proceedings of the 17th International Conference on Principles and
Practice of Constraint Programming (CP ’11). Lecture Notes in Computer Science,
vol. 6876, pp. 225–239. Springer (Sep 2011)

19. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MAXSAT. In:
Proceedings of the 16th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’13). Lecture Notes in Computer Science, vol. 7962, pp.
166–181. Springer (Jul 2013)

20. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Proceedings of the 8th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’05). Lecture Notes in Computer Sci-
ence, vol. 3569, pp. 61–75. Springer (Jun 2005)

21. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2(1-4), 1–26 (Mar 2006)

22. Elffers, J., Gocht, S., McCreesh, C., Nordström, J.: Justifying all differences us-
ing pseudo-Boolean reasoning. In: Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI ’20). pp. 1486–1494 (Feb 2020)

23. Filmus, Y., Mahajan, M., Sood, G., Vinyals, M.: MaxSAT resolution and subcube
sums. In: Proceedings of the 23rd International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT ’20). Lecture Notes in Computer Science, vol.
12178, pp. 295–311. Springer (Jul 2020)

24. Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms.
Ph.D. thesis, University of Pennsylvania (1995)

25. Gimpel, J.F.: A reduction technique for prime implicant tables. In: Proceedings
of the 5th Annual Symposium on Switching Circuit Theory and Logical Design,
(SWCT ’64). pp. 183–191. IEEE Computer Society (1964)

26. Gocht, S.: Certifying Correctness for Combinatorial Algorithms by
Using Pseudo-Boolean Reasoning. Ph.D. thesis, Lund University
(Jun 2022), available at https://portal.research.lu.se/en/publications/
certifying-correctness-for-combinatorial-algorithms-by-using-pseu

27. Gocht, S., Martins, R., Nordström, J., Oertel, A.: Certified CNF translations for
pseudo-Boolean solving. In: Proceedings of the 25th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’22). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 236, pp. 16:1–16:25 (Aug 2022)

28. Gocht, S., McBride, R., McCreesh, C., Nordström, J., Prosser, P., Trimble, J.: Cer-
tifying solvers for clique and maximum common (connected) subgraph problems.
In: Proceedings of the 26th International Conference on Principles and Practice of
Constraint Programming (CP ’20). Lecture Notes in Computer Science, vol. 12333,
pp. 338–357. Springer (Sep 2020)

29. Gocht, S., McCreesh, C., Myreen, M.O., Nordström, J., Oertel, A., Tan, Y.K.:
End-to-end verification for subgraph solving. In: Proceedings of the 368h AAAI
Conference on Artificial Intelligence (AAAI ’24). pp. 8038–8047 (Feb 2024)

30. Gocht, S., McCreesh, C., Nordström, J.: Subgraph isomorphism meets cutting
planes: Solving with certified solutions. In: Proceedings of the 29th International
Joint Conference on Artificial Intelligence (IJCAI ’20). pp. 1134–1140 (Jul 2020)

https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu
https://portal.research.lu.se/en/publications/certifying-correctness-for-combinatorial-algorithms-by-using-pseu

20 H. Ihalainen et al.

31. Gocht, S., McCreesh, C., Nordström, J.: An auditable constraint programming
solver. In: Proceedings of the 28th International Conference on Principles and
Practice of Constraint Programming (CP ’22). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 235, pp. 25:1–25:18 (Aug 2022)

32. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-
Boolean proofs. In: Proceedings of the 35th AAAI Conference on Artificial In-
telligence (AAAI ’21). pp. 3768–3777 (Feb 2021)

33. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of the Conference on Design, Automation and Test in Europe
(DATE ’03). pp. 886–891 (Mar 2003)

34. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic formu-
lae for CakeML. In: Proceedings of the 26th European Symposium on Programming
(ESOP ’17). Lecture Notes in Computer Science, vol. 10201, pp. 584–610. Springer
(Apr 2017)

35. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: Proceedings of the 13th International Conference on Formal Methods
in Computer-Aided Design (FMCAD ’13). pp. 181–188 (Oct 2013)

36. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended
resolution. In: Proceedings of the 24th International Conference on Automated
Deduction (CADE-24). Lecture Notes in Computer Science, vol. 7898, pp. 345–359.
Springer (Jun 2013)

37. Hoen, A., Oertel, A., Gleixner, A., Nordström, J.: Certifying MIP-based presolve
reductions for 0–1 integer linear programs. In: Proceedings of the 21st International
Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research (CPAIOR ’24) (May 2024), to appear

38. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver.
Journal on Satisfiability, Boolean Modeling and Computation 11(1), 53–64 (2019)

39. Ihalainen, H., Berg, J., Järvisalo, M.: Clause redundancy and preprocessing in
maximum satisfiability. In: Proceedings of the 11th International Joint Conference
on Automated Reasoning (IJCAR ’22). Lecture Notes in Computer Science, vol.
13385, pp. 75–94. Springer (Aug 2022)

40. Ihalainen, H., Oertel, A., Tan, Y.K., Berg, J., Järvisalo, M., Myreen, M.O., Nord-
ström, J.: Certified MaxSAT preprocessing (2024), https://arxiv.org/abs/2404.
17316, Full-length version.

41. Ihalainen, H., Oertel, A., Tan, Y.K., Berg, J., Järvisalo, M., Myreen, M.O., Nord-
ström, J.: Experimental Repository for “Certified MaxSAT Preprocessing” (Feb
2024). https://doi.org/10.5281/zenodo.10630852

42. Jabs, C., Berg, J., Ihalainen, H., Järvisalo, M.: Preprocessing in SAT-based multi-
objective combinatorial optimization. In: Proceedings of the 29th International
Conference on Principles and Practice of Constraint Programming (CP ’23). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 280, pp. 18:1–18:20
(2023)

43. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Proceedings
of the 16th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS ’10). Lecture Notes in Computer Science,
vol. 6015, pp. 129–144. Springer (2010)

44. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: An extended MaxSAT
preprocessor. In: Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’17). Lecture Notes in Computer Sci-
ence, vol. 10491, pp. 449–456. Springer (2017)

https://arxiv.org/abs/2404.17316
https://arxiv.org/abs/2404.17316
https://doi.org/10.5281/zenodo.10630852

Certified MaxSAT Preprocessing 21

45. Larrosa, J., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A framework
for certified Boolean branch-and-bound optimization. Journal of Automated Rea-
soning 46(1), 81–102 (2011)

46. Le Berre, D.: Exploiting the real power of unit propagation lookahead. Electronic
Notes in Discrete Mathematics 9, 59–80 (2001)

47. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (Jul 2010)

48. Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Pro-
ceedings of the 17th National Conference on Artificial Intelligence and 12th Con-
ference on Innovative Applications of Artificial Intelligence. pp. 291–296. AAAI
Press / The MIT Press (2000)

49. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas.
In: 8th International Haifa Verification Conference (HVC ’12), Revised Selected
Papers. Lecture Notes in Computer Science, vol. 7857, pp. 102–117. Springer (2013)

50. MaxPre 2 : MaxSAT preprocessor. https://bitbucket.org/coreo-group/maxpre2
51. MaxSAT evaluations: Evaluating the state of the art in maximum satisfiability

solver technology. https://maxsat-evaluations.github.io/
52. MaxSAT evaluation 2023. https://maxsat-evaluations.github.io/2023 (Jul 2023)
53. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.

Computer Science Review 5(2), 119–161 (May 2011)
54. McIlree, M., McCreesh, C.: Proof logging for smart extensional constraints. In:

Proceedings of the 29th International Conference on Principles and Practice of
Constraint Programming (CP ’23). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 280, pp. 26:1–26:17 (Aug 2023)

55. McIlree, M., McCreesh, C., Nordström, J.: Proof logging for the circuit con-
straint. In: Proceedings of the 21st International Conference on the Integra-
tion of Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR ’24) (May 2024), to appear

56. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary
search for MaxSAT. In: Proceedings of the 15th International Conference on The-
ory and Applications of Satisfiability Testing (SAT ’12). Lecture Notes in Computer
Science, vol. 7317, pp. 284–297. Springer (2012)

57. Morgado, A., Ignatiev, A., Bonet, M.L., Marques-Silva, J.P., Buss, S.R.: DR-
MaxSAT with MaxHS: First contact. In: Proceedings of the 22nd International
Conference on Theory and Applications of Satisfiability Testing (SAT ’19). Lec-
ture Notes in Computer Science, vol. 11628, pp. 239–249. Springer (Jul 2019)

58. Morgado, A., Marques-Silva, J.: On validating Boolean optimizers. In: Proceedings
of the 23rd IEEE International Conference on Tools with Artificial Intelligence,
(ICTAI ’11). pp. 924–926 (2011)

59. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into
pure and stateful ML. Journal of Functional Programming 24(2–3), 284–315 (Jan
2014)

60. Ostrowski, R., Grégoire, É., Mazure, B., Sais, L.: Recovering and exploiting struc-
tural knowledge from CNF formulas. In: Proceedings of the 8th International Con-
ference on Principles and Practice of Constraint Programming (CP ’02). Lecture
Notes in Computer Science, vol. 2470, pp. 185–199. Springer (2002)

61. Paxian, T., Raiola, P., Becker, B.: On preprocessing for weighted MaxSAT. In:
Proceedings of the 22nd International Conference on Verification, Model Checking,
and Abstract Interpretation, (VMCAI ’21). Lecture Notes in Computer Science,
vol. 12597, pp. 556–577. Springer (2021)

https://bitbucket.org/coreo-group/maxpre2
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/2023

22 H. Ihalainen et al.

62. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In: Proceedings of the 21st International Conference
on Theory and Applications of Satisfiability Testing (SAT ’18). Lecture Notes in
Computer Science, vol. 10929, pp. 37–53. Springer (Jul 2018)

63. Py, M., Cherif, M.S., Habet, D.: Towards bridging the gap between SAT and Max-
SAT refutations. In: Proceedings of the 32nd IEEE International Conference on
Tools with Artificial Intelligence (ICTAI ’20). pp. 137–144 (Nov 2020)

64. Py, M., Cherif, M.S., Habet, D.: A proof builder for Max-SAT. In: Proceedings
of the 24th International Conference on Theory and Applications of Satisfiability
Testing (SAT ’21). Lecture Notes in Computer Science, vol. 12831, pp. 488–498.
Springer (Jul 2021)

65. Py, M., Cherif, M.S., Habet, D.: Proofs and certificates for Max-SAT. Journal of
Artificial Intelligence Research 75, 1373–1400 (Dec 2022)

66. The International SAT Competitions web page. http://www.satcompetition.org
67. Slind, K., Norrish, M.: A brief overview of HOL4. In: Proceedings of the 21st Inter-

national Conference on Theorem Proving in Higher Order Logics (TPHOLs ’08).
Lecture Notes in Computer Science, vol. 5170, pp. 28–32. Springer (Aug 2008)

68. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination res-
olution for preprocessing SAT instances. In: Proceedings of the 7th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’04). Lecture
Notes in Computer Science, vol. 3542, pp. 276–291. Springer (2004)

69. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: Verified propagation redundancy and
compositional UNSAT checking in CakeML. International Journal on Software
Tools for Technology Transfer 25, 167–184 (Feb 2023), preliminary version in
TACAS ’21

70. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: The ver-
ified CakeML compiler backend. Journal of Functional Programming 29, e2:1–e2:57
(Feb 2019)

71. Van Gelder, A.: Toward leaner binary-clause reasoning in a satisfiability solver.
Annals of Mathematics and Artificial Intelligence 43(1), 239–253 (2005)

72. Vandesande, D., De Wulf, W., Bogaerts, B.: QMaxSATpb: A certified MaxSAT
solver. In: Proceedings of the 16th International Conference on Logic Programming
and Non-monotonic Reasoning (LPNMR ’22). Lecture Notes in Computer Science,
vol. 13416, pp. 429–442. Springer (Sep 2022)

73. VeriPB: Verifier for pseudo-Boolean proofs. https://gitlab.com/MIAOresearch/
software/VeriPB

74. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing (SAT ’14). Lecture
Notes in Computer Science, vol. 8561, pp. 422–429. Springer (Jul 2014)

75. Zabih, R., McAllester, D.A.: A rearrangement search strategy for determining
propositional satisfiability. In: Proceedings of the 7th National Conference on Ar-
tificial Intelligence (AAAI ’88). pp. 155–160. AAAI Press / The MIT Press (1988)

http://www.satcompetition.org
https://gitlab.com/MIAOresearch/software/VeriPB
https://gitlab.com/MIAOresearch/software/VeriPB

	Certified MaxSAT Preprocessing

