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Abstract. Core-guided search has proven to be the state-of-the-art in
finding optimal solutions for maximum Boolean satisfiability and these
techniques have recently been successfully imported in constraint pro-
gramming. While effective on a wide range of problems, the methods are
direct translations of their propositional logic counterparts. We propose
two reformulation techniques that take advantage of the rich formalism
offered by constraint programming rather than relying on propositional
logic strategies, and generalise two existing techniques to improve core-
extraction and the overall performance. Our experiments demonstrate
the effectiveness of our approaches over the conventional (core-guided)
CP methods, both in terms of proving optimality and quickly computing
high-quality solutions.

1 Introduction

Discrete optimisation problems are ubiquitous: they include scheduling, roster-
ing, production planning, and many other important questions. Optimal or good
solutions to these problems result in more efficient use of scarce resources, saving
time, money and the environment. Because of their importance, there are many
paradigms to solve optimisation problems, including Mixed Integer Program-
ming (MIP), Constraint Programming (CP), Maximum Satisfiability (MaxSAT)
and local search. In this work, we focus on constraint programming, and in par-
ticular on improving core-guided search for CP.

There are two main approaches to optimization in constraint programming:
1) branch-and-bound, that iteratively improves a best known solution during
search, and 2) core-guided search, where the algorithm assumes all constraints
can be satisfied, and upon detecting infeasibility, relaxes the assumptions and
reiterates. Branch-and-bound and core-guided search can be seen as upper and
lower bounding methods, respectively. Branch and bound is by far the most used
approach in CP.

Core-guided search originates from the MaxSAT community, where problems
are specified as propositional logic formulae. It is one of the central approaches
to complete MaxSAT solving, as a large portion complete solvers in the annual
MaxSAT Evaluation use the core-guiding methodology. In contrast, in CP, core-
guided approaches have only recently been developed. In particular, the solver



LCG-Glucose-UC, based on core-guiding, achieved the third highest score in the
MiniZinc Challenge 2016, and OR-tools has introduced core-guided search in
2018 as part of their parallel solver. While these techniques have seen success in
CP, they do not, in fact, use the expressivity offered by the constraint program-
ming framework. Indeed, the methods are direct translations of the MaxSAT
approaches, which were originally developed for the low-level language of propo-
sitional logic.

In this work, we advance the state-of-the-art for core-guided search in CP by
exploiting the high-level language constructs offered by constraint programming.
We provide two novel reformulation techniques for CP which are unique to con-
straint programming. Moreover, we generalise two existing techniques for CP,
namely assumption probing to improve core-extraction and core-boosting [1] to
increase the overall performance. We also discuss an issue with using explana-
tion lifting with the conventional CP core-guided approach and note a number
of techniques adapted from the MaxSAT community which play an important
role in obtain high quality results. Our experiments on benchmarks from the
MiniZinc Challenge show improvements over the conventional (core-guided) CP
approaches, both in terms of the number of instances solved to optimality and
the ability to quickly produce high-quality solutions.

The rest of the paper is organised as follows. In the next section, we introduce
basic notations; constraint programming solvers with explanations, and core-
guided MaxSAT methods along with their conventional translation for CP. Our
main contributions are given in Section 3, together with additonal techniques
that improve empirical performance. A report on the experimental evaluation is
given in Section 4. We conclude in Section 5.

2 Preliminaries

Notation: A Boolean variable can take values true (1) or false (0). A literal is a
Boolean variable x or its negation  x. A clause is a disjunction (set of) of literals.
The set varpFq and litpFq contain all variables (resp. literals) of the formula
F . The binary variable xx ˝ ky is an indicator for the condition x ˝ k being true,
e.g., xx ą ky is true if the integer variable x is assigned a value greater than k.
For two formulas R and L, R ñ L denotes logical entailment, i.e., all models
R are also models of L. We use the notation unsatpLq to indicate that formula
L is unsatisfiable (i.e. has no models). We will use rtxusul to denote the function
returning the excess of x above l, up to u. That is, rtxusul “ maxp0,minpu, xq´ lq.
For convenience, we write rtxus8l as rtxusl.

CP solvers typically (implicitly) reason about an integer variables x taking
values in rl...us by using the atomic constraints: x ě d, x ď d, x “ d, x ‰ d and
false for d “ l..u. Given a set of constraints F , the current domain D, seen as
a formula containing conjunction of atomic constraints, represents all possible
values that each variable x P varpFq can take. We denote the upper and lower
bound (in the current domain) of an integer x by ubpxq and lbpxq, respectively.
A propagator fc for a constraint c P F takes the current domain D and returns



a set fcpDq of atomic constraints such that each r P fcpDq is entailed by D ^ c
but not D alone, i.e. D œ r and D ^ c ñ r. If false P fcpDq, the propagator
has detected unsatisfiability, i.e. that the current domain is inconsistent with the
constraint c. For example, if c is a clause, then fcpDq “ tfalseu if the current
domain sets all literals in c to 0. If instead, D sets all but one literal l P c to
false, then fcpDq “ tl “ 1u.

We consider the problem of minimising a linear objective function
ř

i wi ¨xi,
subject to a set of constraints F . Here each xi is an integer variable taking
values in some domain rl...us assigned a weight wi. Whenever all variables are
binary and all constraints in F are clauses, we talk about a (weighted partial)
MaxSAT problem. We say that a literal x P litpFq for which wpxq ą 0 is soft
and denote the set of all soft variables by SpFq. A model τ of F is a solution
and has cost COSTpF , τq “

ř

xiPSpFq wpxiqτpxiq. A solution τ is optimal if

COSTpF , τq ď COSTpF , τ 1q holds for all solutions τ 1 to F . Note that the
traditional description of MaxSAT is somewhat different to the above, but this
is closer to the mathematical view of optimisation problems, and more closely
reflects how MaxSAT solvers (including core-guided solvers) work internally [2].

An important concept in this work is that of an (unsatisfiable) core. Given a
set F of constraints, a core κ is a set κ Ă litpFq of literals s.t. F ^

Ź

lPκplq ñ
false. In other words, cores are sets of literals for which no assignment satis-
fying F also satisfy all literals (seen as unit clauses) of κ. A key observation
for core-guided search methods is that the existence of a core κ that only con-
tains negations of soft variables implies a lower bound wκ “ mintwi |  xi P κu
on the objective function

řn
i“1 wixi. Core-guided search methods make use of

this fact by reformulating the instance during search. More specifically, given a
lower bound li on each soft variable xi, the objective function can be rewrit-
ten as

řn
i“1 wixi “

řn
i“1 wili `

řn
i“1 wirtxiusli “ Clb `

řn
i“1 wirtxiusli where Clb

is constant. We also note that, for an integer variable x, the following holds:
rtxusk “ xx ą ky` rtxusk`1, and xx ą ky “ rtxusk`1

k . For an integer variable x with
initial domain l..u then x “ l ` rtxusul .

Lifting Explanations in CP solving: Similarly to how core-guided MaxSAT
solvers make extensive use of conflict driven clause learning (CDCL) SAT solv-
ing under assumptions [3], core-guided CP solvers make extensive use of lazy
clause generation solving (LCG) under assumptions [4]. Given a set F of propa-
gators (representing a set of constraints), a current domain Dorig and a set A of
assumptions (in the form of atomic constraints) over integer variables, an LCG
solver LCG(F ,D,A) determines if there exists an assignment θ to the variables
that entails: (i) all constraints, (ii) all assumptions and (iii) the original domain
Dorig. If so, the solver returns SAT(θ). Otherwise the solver returns UNSAT(κ̄)
where κ̄ Ď A is a subset of atomic constraints that represents a core of the
instance (more precisely, the set κ “ t l | l P κ̄u is a core of the instance).

As we use LCG solvers in a black-box manner, we will not go into detail
on how such solvers operate (see e.g. [5] for more details). A central concept for
applying LCG solvers in core-guided CP is that of explanations for propagations.



Each propagator fc in a LCG solver must be able to explain its propagation of an
atomic constraint r in the form of a clause, i.e., compute an explanation clause
explpc,D, rq ” pE Ñ rq where E is a conjunction of atomic constraints and
D ñ E, as well as cñ E Ñ r. During conflict analysis, a learnt clause is derived
by starting from the conflict C, and repeatedly replacing some atom r P C with
its reason, i.e. E. Analogously to how learned clauses over assumptions represent
cores in core guided MaxSAT, the explanations for failure over assumptions
represent cores in core-guided CP. We note that for a single propagation there
can be (and often are) are many different explanations; the solver does not
need to use the current strongest information about the domain to explain the
failure. Instead any explanation that is correct in the current domain suffices.
The following examples demonstrate that some of the explanations are better
for core guided CP than others.

Example 1. Consider the propagation of the linear inequality 2x` 3y` 4z ď 27
with the current domain x P r5..7s, y P r4..9s, z P r5..8s. The propagator detects
unsatisfiability, a simple explanation is: xx ě 5y ^ xy ě 4y ^ xz ě 5y Ñ false i.e.
the clause C1 “ pxx ă 5y _ xy ă 4y _ xz ă 5yq. This is not however, the only
explanation. By relaxing bounds we obtain the lifted explanation xx ě ´2y ^
xy ě 4y ^ xz ě 5y Ñ false i.e. the clause C2 “ pxx ă ´2y _ xy ă 4y _ xz ă 5yq,
for the same propagation. Observe that the lifted explanation is stronger than the
simple one as C2 ñ C1. Some lifted explanations can be particularly attractive,
for example if the original domain sets x ě 0, then the lifted explanation is
equivalent to xy ě 4y ^ xz ě 5y Ñ false, containing one less literal. [\

One way of obtaining stronger explanations is through lifting, informally speak-
ing a lifted explanation can be computed by making use of the original propa-
gator in order to compute an explanation for an atom in the (partial) learned
clause, instead of the explanation graph. The reason computed by the propa-
gator will frequently be weaker than the atom that was originally inferred, and
allow the construction of a more general explanation.

Example 2. Consider a propagator fc for the linear inequality c “ 7y` 4t ě 34,
and a current domain y P r0..10s and t P r0..2s. The propagator can propagate
xy ě 4y with explanation xt ď 2y Ñ xy ě 4y. Now suppose a partial learned
clause of form  xy ě 1y _ Q, is encountered during conflict analysis. Since
xy ě 4y ñ xy ě 1y the original explanation can be used to obtain C1 “  xt ď 2y_
Q. However, the propagator fc can return the lifted explanation xt ď 8y Ñ
xy ě 1y which allows deriving the learned clause C2 “  xt ď 8y _ Q. We ob-
serve that C2 ñ C1, i.e. the learned clause obtained with the lifted explanation
is stronger than the original one. [\

Objective probing: Branch-and-bound (B&B) CP solvers iteratively search
for better solutions by constraining that the objective value must be better than
in the previous found solution. A common issue that arises is slow convergence:



after finding a solution, B&B solvers typically generate many incrementally bet-
ter solutions before reaching the true optimal solution. One strategy for improv-
ing convergence rate is optimistic partitioning [6]: after finding a solution with
objective value ẑ given lower bound zlb, optimistic partitioning speculatively
posts a constraint

@

z ă ẑ`zlb
2

D

(instead of xz ă ẑy). If this succeeds, we have a
much better solution; otherwise, the lower bound is greatly increased.

Core-Guided MaxSAT: that originated with the Fu-Malik algorithm [7] is
today one of three central approaches to complete industrial MaxSAT solving,
together with the implicit hitting set approach [8, 9] and the model improv-
ing (corresponding to branch-and-bound in CP) approach [10–13]. Core-Guided
search is a lower bounding approach based on first assuming that all soft literals
can be set to false and relaxing the assumption whenever new cores (i.e. sources
of unsatisfiability) are detected.

In more detail, when minimising an objective
ř

i wpxiqxi subject to a set
F of clauses, modern core-guided MaxSAT solvers maintain a working instance
Fw, initialised to F . During each iteration, a SAT solver is used to determine if
there exists a solution of cost 0 to Fw by querying it on the clauses of Fw while
assuming A “ t x|x P SpFwqu, that is that all soft variables are false. If the
result is satisfiable, a solution satisfying Fw and A will be an optimal solution
to F . Otherwise, the solver returns a set of literals κ̄ Ă A that represents a
core κ “ t l | l P κu of Fw. Next Fw is relaxed (reformulated) based on κ.
First, the weight of each soft literal in κ is lowered by wκ “ mintwpxq | x P κu.
Second, new soft variables and clauses reformpκq that rule out κ as a source of
unsatisfiability are added to Fw.

Most core-guided solvers differ mainly in the instantiation of reformpκq. We
detail the OLL algorithm [14, 15] as it been shown to be the most effective in the
MaxSAT evaluations and can be naturally extended to CP. Assuming |κ| “ n
OLL adds new soft variables xoκ ą 1y , ..., xoκ ą n´ 1y, each of weight wκ and
clauses corresponding to AS-CNFp

ř

lPκplq ą k Ñ xoκ ą kyq for each k “ 1..n´
1. Assuming one of the commonly used encodings [16, 17], the clauses enforce that
setting k ą 1 literals of κ to true propagates the literals xoκ ą 1y , ..., xoκ ą k ´ 1y
to true, incurring pk ´ 1qwκ additional cost. Informally, the new clauses allow
setting one of the soft literals in κ to true for free while incurring more cost for
any additional ones.

Example 3. Consider the following problem:

min z “ 3x1 ` 2x2 ` 2x3 ` 4x4

s.t. maxpx1, x2q ě 2

maxpx2, x3q ě 2

maxpx3, x4q ě 2.



where each xi is an integer variable with domain 0..3. To solve this problem with
the MaxSAT OLL algorithm, we consider the equivalent problem:

min z “
3
ÿ

k“1

3 xx1 ě ky `
3
ÿ

k“1

2 xx2 ě ky `
3
ÿ

k“1

2 xx3 ě ky `
3
ÿ

k“1

4 xx4 ě ky

s.t AS-CNFpxxi ě kyq for i “ 1..4, k “ 1..3 [18]

xx1 ě 2y _ xx2 ě 2y

xx2 ě 2y _ xx3 ě 2y

xx3 ě 2y _ xx4 ě 2y .

We sketch an execution of the MaxSAT OLL algorithm. The initial solver
call is made assuming xxi ě ky to false for all i “ 1..4, and k “ 1..3. Let
κ1 “ txx2 ě 2y , xx3 ě 2yu be the first core extracted. First the weights of both
variables in the core are lowered by mintwpxx2 ě 2yq, wpxx3 ě 2yqu “ 2. Then
a new soft variable xo1 ą 1y (with weight 2) defined with clauses corresponding
to

`

 xo1 ą 1y Ñ
ř

lPκ1
plq ď 1

˘

is introduced to the instance before the solver
reiterates. In the next iteration, the soft variables of the instance are xo1 ą 1y,
xxi ě ky for k “ 1..3 and i P t1, 4u as well as xxj ě 1y, xxj ě 3y for j P t2, 3u. Let
κ2 “ txx1 ě 2y , xo1 ą 1y , xx4 ě 2yu be the next core. As in the first iteration,
the weight of each soft variable in the core is lowered by 2 and new soft variables
xo2 ą 1y and xo2 ą 2y (weight 2) are introduced and defined with constraints
AS-CNF

`

 xo2 ą ky Ñ
ř

lPκ2
plq ď k

˘

.
Next the algorithm extracts two unit cores arising due to the order-encoding

of integers before terminating with the satisfying assignment that sets xx2 ě 1y,
xx3 ě 1y, xx2 ě 2y, xx3 ě 2y and xo1 ą 1y to true and all other variables to false.
This assignment has cost 8 and corresponds to x1 “ x4 “ 0 and x2 “ x3 “ 2,
an optimal assignment to the original problem. [\

Core-boosting is a recently proposed [1] search strategy for MaxSAT that
combines core-guided search with an anytime approach (originally a B&B type
search for MaxSAT). The intuition underlying core-boosting is that core-guided
search is mostly an ”all-or-nothing” strategy. In its most basic form, core-guided
search only finds one feasible solution during search, an optimal one. Further-
more, core-guided search tends to be somewhat bimodal [1], either proving opti-
mality fairly quickly or not terminating within a reasonable time. Core-boosted
search is designed to take advantage of the fact that, even if core-guided search
doesn’t terminate within a reasonable time, it might still rule out a significant
number of cores from the instance that would cause trouble for approaches like
B&B.

More specifically, given a total resource budget, core-boosting spends a small
fraction of its budget running in a core-guided mode. If this budget is exhausted
and optimality has not yet been proven it rebuilds the objective based on the
cores found so far, and then spends its remaining time optimizing the reformu-
lated objective in a branch-and-bound mode.



3 Advancing Core-Guided search for CP

In this section, we overview core-guided search for CP and discuss our contri-
butions toward advancing its performance. We begin with what we call slice-
based reformulation, i.e. the conventional translation of the OLL algorithm for
MaxSAT to CP. We also discuss potential issues when applying explanation lift-
ing to the slice based formulation. Motivated by these we then detail our main
contributions: coefficient elimination and variable-based reformulation, two novel
core-guided reformulations specific for CP. Finally, we also discuss improvements
and generalisations of existing search heuristics from MaxSAT and CP; assump-
tion probing and core-boosting.

3.1 Slice-based reformulation

The following restatement of Example 3 for CP provides intuition for the slice
based reformulation.

Example 4. In contrast to MaxSAT, the OLL algorithm with slice based refor-
mulation works directly on the original problem of Example 3. Initially, the LGC
solver is called while assuming all variables to their current lower bounds, i.e.
xxi ď 0y for i “ 1..4. Let κ1 “ t xx2 ď 0y , xx3 ď 0yu, i.e. txx2 ě 1y , xx3 ě 1yu
be the first core obtained. The algorithm now introduces a new integer vari-
able o1 ě xx2 ě 1y ` xx3 ě 1y with an initial domain o1 “ t1, 2u (notice that
o1 ‰ 0 as at least one of the literals in the core has to be false). For an al-
ternative view, o1 could be seen as the variable o1 “ xx2 ě 1y ` xx3 ě 1y that
has its upper bounds enforced by assumptions. Next the objective is reformu-
lated using o1 to z “ 2 ` 2rto1us1 ` 3x1 ` 2rtx2us1 ` 2rtx3us1 ` 4x4. For some
intuition, notice for example that the term 2rtx2us1 corresponds to the term

2
ř3
k“2 xx2 ě ky in the MaxSAT objective and that the term 2rto1us1 ` 2 can

be seen as 2 xx2 ě 1y ` 2 xx3 ě 1y plus the lower bound implied by κ1.
In the next iteration, all variables are again assumed to their current lower

bounds, i.e. xx1 ď 0y, xx2 ď 1y, xx3 ď 1y, xx4 ď 0y, and xo1 ď 1y. Notice how
the current lower bound for x2 and x3 is 1, conceptually, the (potential) weight
for x2 “ x3 “ 0 is accounted for by the variable o1. Assume the next core
obtained is κ2 “ txx2 ě 2y , xx3 ě 2yu. Similarly to before, a new variable o2 and
constraint o2 ě xx2 ě 2y`xx3 ě 2y is introduced, and the objective reformulated
to z “ 4` 2rto1us1 ` 2rto2us1 ` 3x1 ` 2rtx2us2 ` 2rtx3us2 ` 4x4.

In the next iteration, the lower bounds for the variables are xx1 ď 0y, xx2 ď 2y,
xx3 ď 2y, xx4 ď 0y, xo1 ď 1y, and xo2 ď 1y. Assume that the next core extracted
is κ3 “ txx1 ě 1y , xo2 ě 2y , xx4 ě 1yu after which the constraint o3 ě xx1 ě 1y`
xo2 ě 2y ` xx4 ě 1y is introduced and the objective reformulated to z “ 6 `
2rto1us1 ` rtx1us

1
0 ` 3rtx1us1 ` 2rtx2us2 ` 2rtx3us2 ` 2rtx4us

1
0 ` 4rtx4us1.

Finally, the solver still extracts the core κ4 “ txo1 ě 2yu and reformulates
the instance one last time before terminating with the solution x1 “ x4 “ 0,
x2 “ x3 “ 2 and o1 “ o2 “ 2, o3 “ o4 “ 1. [\



Algorithm 1: OLL for constraint programming using slice-based refor-
mulation
Data: Constraints F , an original domain Do and objective

z “ w1x1 ` . . .` wmxm.
Result: Optimal solution θ˚.
zlb Ð

řn
i“1 wilbpxiq

switch LCG(F ,Do,H) do
case UNSATpHq do

return UNSAT

case SATpθq do
E Ð txi ÞÑ plbpxiq, wi, wiq | i P 1 . . . nu
while true do

switch LCG(F ,Do,txxi ď liy | Erxis “ pli, ui, wiquq do
case SATpDq do

return D, zlb

case UNSATpκ̄q do
F , zlb, E Ð reformulate-slicepF , zlb, E, κq

Algorithm 2: reformulate-slice(F , zlb, E, κ)

wκ Ð mintui | xxi ă kiy P κ,Erxis “ plbi, ui, wiqu
oκ Ð new-varpF , r1, |κ|sq
RÐ 0
for xxi ă kiy P κ do

plbi, ui, wiq Ð Erxis
RÐ R` xxi ą lbiy
if ui “ wκ then

Erxis Ð plbi ` 1, wi, wiq

else
Erxis Ð plbi, ui ´ w

κ, wiq

Eroκs Ð p1, wκ, wκq
F Ð F ^ poκ ě Rq
return F , zlb ` wκ, E

Example 4 gives some intuition for the term slice based reformulation. In
each iteration the algorithm slices off the current lower bound of all variables
appearing in a core κ, packaging the removed values into a new penalty term
oκ “

ř

lPκplq.
Algorithms 1 and 2 detail OLL with slice based reformulation for CP. Given

a set F of constraints and an objective z to minimize, the algorithm initially
checks the feasibility of the problem by calling the LCG solver on the constraints
without assumptions. If the problem has feasible solutions, the algorithm enters
its main search loop. On each iteration, the LCG solver is invoked on the instance



while assuming all soft variables to their current lower bounds. These lower
bounds are maintained in a mapping E that maps each variable xi to a tuple
pli, ui, wiq containing its current lower bound (li), its residual weight ui and its
full weight wi. If the solver returns SAT(D) the obtained domain will be an
optimal solution to the problem so the algorithm terminates. Otherwise, the
solver returns a set κ of assumptions corresponding to the core t l | l P κu.
The algorithm then reformulates the instance using Algorithm 2. Analoguously
to MaxSAT, slice based reformulation of the instance means: (i) computing wκ,
the minimum residual weight of all literals in the core, (ii) lowering the (residual)
weight of each literal in the core by wκ and (iii) introducing a new variable oκ
with lower bound 1 and full weight wκ as well as new constraints oκ ě

ř

lPκplq.
Any variable whose residual weight gets lowered to 0 during step (ii) gets its
lowerbound increased by one and residual weight reset to its full weight

The following example demonstrates a potential weakness of slice-based re-
formulation, motivating the novel reformulation strategies we propose in the next
section.

Example 5. Consider the problem defined in Example 3 and the initial LCG call
made by OLL for CP with the assumptions xxi ď 0y for i “ 1..4. Assume now
that we obtain the lifted core κ11 “ txx2 ě 2y , xx3 ě 2yu and introduce a single
new variable oκ “ xx2 ě 1y ` xx2 ě 2y ` xx3 ě 1y ` xx3 ě 2y “ rtx2us

2
0 ` rtx3us

2
0

If the solver later derives xx2 ě 1y and xx3 ě 1y, the lower bound on oκ is set to
2. However, with the reformulations performed in Example 4 the algorithm has
already derived xx2 ě 2y _ xx3 ě 2y, implying a lower bound of 3 on oκ [\

In other words, slice based reformulation makes using lifted cores difficult. Hence,
instead of the approach presented in Example 5 we instead perform reformulation
similarly to Example 4 instead. We do however add the lifted core to the model,
thus allowing the algorithm to extract it later without search.

3.2 Novel Core-Guided Reformulations for CP

Next we detail the main contribution of this work, two novel reformulation strate-
gies for the CP OLL algorithm: 1) Coefficient Elimination and 2) Variable-based
reformulation. Coefficient elimination seeks to increase the number of variables
whose lower bounds are increased during reformulation steps., thus increasing
the rate at which the lower bounds of the variables increase. Variable-based re-
formulation attempts to make better use of the information provided by lifted
cores in order to increase the lower bound on the objective faster.

Coefficient Elimination Let κ be a set of literals corresponding to a core
obtained during an iteration of OLL for CP and wκ the smallest (residual)
weight of the literals in the core. Consider now the weighted sum of the literals
in the core, i.e the variable oκ “

ř

xiPκ
wixi. Since κ corresponds to a core,

the lower bound of oκ is wκ and the objective could be reformulated using
ř

xiPκ
wirtxiusli “ wκ ` rtoκuswκ `

ř

xiPκ
wirtxiusli`1. Notice how, in contrast to



the strategy described in Section 3.1 and Example 4, coefficient elimination in
this form results in the lower bound of all variables in κ being increased by one.
The drawback is instead the (potential) increase in complexity of the subsequent
LCG solver calls.

Example 6. Consider the following problem:

minimize 1000p`
n
ÿ

i“1

xi ` yi s.t.  pÑ xi ` yi ě 1, @i P 1 . . . n

With weight splitting, the OLL algorithm for CP generates maxpn, 1000q cores
of form xp ď 0y^xxi ď 0y^xyi ď 0y i “ 1.., each time decreasing the coefficient
of p by 1. Since p is never removed from the objective, we expect extracting each
core to require approximately similar amounts of computational effort (see also
independent core extraction detailed later in this section).

With coefficient elimination, the algorithm instead introduces the variable
oκ “ 1000p`x1` y1 with a lower bound of 1 when reformulating κ “ xp ď 0y^
xx1 ď 0y^xy1 ď 0y. In the next iteration, the variable p is no longer directly in the
objective. Instead the next core extracted will be xoκ ď 1y^ xx2 ď 0y^ xy2 ď 0y
instead. Informally speaking, all of the subsequent cores will depend on the
reformulation variables introduced in previous iterations thus making extracting
cores require increasing amounts of computational effort. [19] [\

The version of coefficient elimination that we consider is a hybrid strategy
designed to balance the number of variables whose lower bounds can be increased
during each reformulation with the potential of extracting independent cores
during subsequent iterations. More specifically, when reformulating on a set κ
of literals having minimum weight wκ, we fully reformulate all literals in κ that
have weight less than Twκ where T is a threshold parameter, and slice the
rest. More formally, coefficient elimination introduces a variable oκ “

ř

xiPκ
cixi

where ci “ maxpwi, Tw
κq and reformulates the objective using

ř

xiPκ
wirtxiusli “

wκ ` rtoκuswκ `
ř

xiPκ
maxp0, wi ´ Tw

κqrtxiusli `
ř

xiPκ
wirtxiusli`1.

Variable-based reformulation attempts to overcome the difficulties that slice
based reformulation has with exploiting the full potential of lifted cores, i.e. that
slice-based reformulation can only ever increase the lb of variables by 1 and thus
the objective by the minimum (residual) weight of the variables in the core.

Recall for example the lifted core txx2 ě 2y , xx3 ě 2yu discussed in Exam-
ple 5. When reformulating with variable-based reformulation, the OLL algorithm
for CP introduces the variable oκ ě x2 ` x3 with an initial domain of r2 . . .q.
In more general terms, variable based reformulation merges all integer variables
appearing in a core into a single new variable, and assigns the new variable an
initial lower bound equal to the lowest bound appearing in the core. Notice that
the potential benefits of variable based elimination are directly related to the size
of the domains of the involved variables. In this particular case, the approach
lifts the lower bound by 2 but it is easy to create examples where the increase
is higher, which we observed to also occur frequently in practice.



In addition to more effectively exploiting information in lifted cores, we often
observed that variable based reformulation resulted in unit cores being extracted
in subsequent iterations. Unit cores are particularly attractive for the OLL algo-
rithm for CP as no new variables nor constraints need to be introduced. Instead
it suffices to increase the lower bound of the variable in the core.

3.3 Generalisations of Existing Techniques

Before reporting on an experimental evaluation of the new reformulation strate-
gies, we briefly describe new generalisations and improvements to existing heuris-
tics in both CP and MaxSAT solving that we make use of in this work.

Core-Boosting for CP We extended core-boosted search from MaxSAT to
CP. A key difference when applying core boosting in CP compared to MaxSAT
is the need to explicitly encode the objective function (which is only implicitly
defined during the core-guided phase) before switching to branch-and-bound
search.

Explicitly encoding the objective function when using variable based reformu-
lation is fairly straightforward. During each reformulation step, a set x1, . . . , xk
of variables in the objective are replaced with a variable o representing their
sum. When switching to B&B search, the same procedure is used to remove
all remaining terms and merging them into a single new variable. In contrast,
combining core-boosted search with slice-based reformulation is more intricate.
Consider a possible (implicit) objective:

z “ c1rtx1usd1 `c2rtx2usd2 ` . . . `ckrtxmusdm
` b1 xx1 ě d1y `b2 xx2 ě d2y ` . . . `bk xxm ě dmy `zlb

obtained after several iterations of core-guided search with sliced based refor-
mulation. A simple approach to making z explicit is to introduce fresh vari-
ables for each sub-term, i.e. let x1i “ maxp0, xi ´ diq, x

2
i “ xxi ě diy and

z “ zlb `
řm
i“1 cix

1
i `

řm
i“1 bix

2
i .

A more efficient method makes use of the monotonicity of rtxiusdiwhich in

turn implies that any atomic constraint
@

rtxiusdi ě c
D

can be expressed as an
equivalent atom xxi ě c1y:

@

rtxius
ui
li
ě c

D

“

$

&

%

true if c ď 0
xxi ě li ` cy if 0 ă c ď ui ´ li
false if c ą ui ´ li

Hence we can use a form of variable view [20] to encode the expressions rtxiusdi
and xxi ě diy ” rtxius

di`1
di

, thus avoiding the need to introduce new variables.

Progressive probing Recall that when given an incumbent solution with cost
ẑ and a lower bound zlb on the objective, objective (optimistic) probing at-
tempts to improve the solution and find a solution of cost pẑ ` zlbq{2. In prac-
tice, we observed that objective probing is a risky strategy since the jump from



ẑ to pẑ ` zlbq{2 is quite aggressive, and thus can result in difficult unsatisfi-
able subproblems. Instead we consider a more conservative strategy that we call
progressive probing, an idea resembling to the use of progression in MaxSAT
solving [21]. For geometrically increasing values of δ (more precisely, in itera-
tion i δi “ 2istepsize where stepsize is a parameter) the solver is queried for a
solution of cost ẑ ´ δi. The procedure reiterates until the solver either returns
UNSAT or runs out of the resources allocated for probing.

In addition to B&B search, we also make use of probing during core-guided
search, inspired by techniques from the MaxSAT community [22, 23]. Anytime
a singleton core xx ą ky is extracted , the bound k is probed by repeated invo-
cations of LCG(F ,D,txx ď k ` δiyu) for the geometrically increasing values of δi
defined above. Core-probing like this is particularly effective in combination with
variable-based reformulation: if lbpxq` lbpyq is much smaller than the true lower
bound of oκ “ x` y, core probing will quickly push up the bound of z, skipping
many of the intermediate steps. Recall also that variable based reformulation
often results in unit cores being extracted in subsequent iterations.

3.4 Additional Techniques

Finally, we also considered a number of fairly direct translations of MaxSAT
techniques to CP.

Independent core extraction [24] is a strategy for obtaining simpler cores.
Given some core κ of instance, the reformulation (i.e. introduction of new vari-
ables and constraints) is delayed and instead only the assumptions in the core
are relaxed (i.e. their weight is lowered by wκ or Twκ in the case of variable
based reformulations). Since at least one of the weights will be lowered to zero,
the solver can be invoked to extract another core without needing to reformu-
late. Note that reformulating the instance makes it more complicated, and thus
delaying is beneficial. The process continues until no more cores can be found,
at which point all found cores are reformulated.

Stratification [25] starts by posting assumptions using only literals with high
weights, and throughout the search introduces the remaining literals. This allows
high-weighted core to be extracted early in the search. As a side effect, feasible
solutions can be generated in the process.

Hardening [25] can be used to enforce satisfaction for certain literals. Given
an upper and lower bound zub zlb on the optimal cost, hardening will set false
any Booleans with weight w ą zub ´ zlb. The same rule can be generalised to
integer variables xi by setting ubpxiq “ lbi ` t

zub´zlb
ci

u where ci is the coefficient
and lbi a (relaxed) lower bound of xi.

Solution-guided search [13, 26] is a value-selection heuristic that assigns a
branching-variable the value it takes in the current best solution if possible, and
otherwise resorts to the default value-selection strategy. This focuses the search
around the best solution, quickly finding local improvements.



4 Experiments

In order to experimentally evaluate the improvements to core-guided search we
integrated the described core-guided optimisation methods into geas (https:
//bitbucket.org/gkgange/geas), a lazy-clause generation solver. The core en-
gine of geas is written in C++, with a FlatZinc frontend written in OCaml.
The core-guided optimisation techniques are entirely implemented in the OCaml
frontend, using the engine’s assumption interface to handle the cores and refor-
mulation. Propagators in geas implement lazy explanation with lifting, so it can
extract lifted cores.

As benchmarks, we took the set of models and instances from the MiniZinc
Challenge [27] for years 2015–2018, and selected all optimization models with
a linear objective. This resulted in 48 models, and 249 instances. We then ran
geas on this data-set, comparing its branch-and-bound configuration (bb), with
all combinations of the following core-based configurations:

– core-guided (core), or core-boosted (boost), using a 10% of time limit (i.e.
60s) core-guided phase before switching to branch and bound search

– slice-based (slice), or variable-based (var) reformulations.
– weight splitting (split) or coefficient elimination with a threshold of T “ 2

(elim).

All core-based methods were run with stratification, independent core extraction
and hardening. All methods were run using free search (alternating programmed-
and activity-driven search) and a geometric restart sequence. Each instance was
run with a 600 second time-limit, reporting the time to prove optimality as well
as the best objective value found.

Figure 1 compares the overall performance of each set of parameters across
the dataset. We observe that branch and bound performs slightly better than
”the basic version” of core guided search, i.e. core-slice-split and core-slice-elim.
Variable based reformulation improves over slice based reformulation, obtain-
ing performance superior to B&B. The best overall performance is obtained by
boost-var-split making use of core-boosted search, variable based reformulation
and weight splitting, although the difference between coefficient elimination and
weight splitting is minor.

Figure 2 gives a per-instance breakdown of the results, comparing core-guided
search with branch-and-bound as well as the reformulation strategies. We observe
that B&B and core-guide search are fairly orthogonal in the sense that there are
many instances on which B&B search finished quickly while core-guided search
times out and vice versa. This observation provides a possible explanation for
the good overall performance of core-boosted search, notice that most of the
instances where core-guided outperforms branch-and-bound are clustered in the
bottom-right of the figure. The other side of the figure also clearly demonstrates
the superior performance of variable based reformulation compared to slice based
reformulation.

In addition to proving optimality we investigate the anytime behaviour of
the methods i.e. how good are the solutions obtained when optimality is not
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Fig. 2: Comparing time-to-optimality. Left: branch-and-bound versus core
guided using a variable-based reformulation. Right: slice-based versus variable-
based reformulation.

proven? Tables 1 and 2 compare the quality of solutions found by each method
across all (Table 1) and a representative (Table 2) set of benchmarks. The tables
again demonstrates the orthogonality of the methods we consider, no individual
method dominates all others. However, pure core-guided methods were much less
competitive as anytime methods supporting the intuition of core-guided methods
typically either proving optimality quickly, or failing to produce solutions of
reasonable quality.



Table 1: How many times did each each method (row) report a strictly better
objective value than each other method (column) and the best objective value
found overall (column best).

boost core
var slice var slice

bb elim split elim split elim split elim split best
bb 0 25 22 33 38 100 93 89 87 196

boost
var

elim 39 0 27 36 36 102 95 93 91 211
split 39 23 0 33 36 103 93 94 91 205

slice
elim 37 18 20 0 25 101 92 91 88 196
split 33 22 20 28 0 101 93 92 87 197

core
var

elim 20 4 4 10 8 0 22 39 34 144
split 19 4 5 9 8 24 0 37 31 152

slice
elim 22 8 8 8 8 50 47 0 13 151
split 22 7 8 9 8 57 54 25 0 154

Table 2: Quality scores for selected models. Quality of a solution with objective
value z is defined as the ratio of the distance between the initial lower bound zlb
and z to the distance between the best solution obtained by any method and zlb

boost core
var slice var slice

model bb elim split elim split elim split elim split

cargo coarsePiles 0.99 1.00 0.98 0.90 0.89 0.81 0.81 0.79 0.79
celar 0.59 0.97 0.98 0.99 0.99 0.68 0.68 0.94 0.91
oc-roster 0.93 1.00 0.97 1.00 0.96 0.66 0.51 0.55 0.52
seat-moving 0.84 0.95 0.95 0.95 0.95 1.00 1.00 1.00 1.00
vrplc service 1.00 0.99 0.99 0.99 1.00 0.80 0.80 0.74 0.74

5 Conclusion

In this paper, we revisit the use of unsatisfiable core approaches for CP – both
standalone, and as part of a hybrid (core-boosted) strategy. We exploit the extra
expressiveness of lazy clause generation solvers to build more compact OLL-style
reformulations, and to opportunistically tighten lower and upper bounds. We ex-
perimentally evaluated the new methods and draw the following conclusions 1)
Core-boosting is generally worthwhile, both for anytime performance and prov-
ing optimality. 2) Variable-based reformulations are typically better for proving
optimality, but this is model-dependent. 3) If using core-boosting, variable-based
reformulations also produce better solutions. 4) Surprisingly, slice-based refor-
mulations yield better solutions for core-guided; but still not as good as those for
core-boosted. 5) Coefficient elimination finds the best solution slightly more fre-
quently in combination with variable-based core-boosting (but is slightly worse
at proving optimality). In other configurations, it is worse than weight splitting.
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Appendix: Solution quality across all models

model bb b-v-el b-v-sp b-s-el b-s-sp c-v-el c-v-sp c-s-el c-s-sp
cargo coarsePiles 0.99 1.00 0.98 0.90 0.89 0.81 0.81 0.79 0.79
celar 0.59 0.97 0.98 0.99 0.99 0.68 0.68 0.94 0.91
city-position 0.94 0.92 0.95 0.84 0.83 0.01 0.01 0.97 0.97
community-detection 0.83 0.87 0.71 0.61 0.69 0.41 0.34 0.26 0.33
concert-hall-cap 1.00 1.00 1.00 1.00 1.00 0.88 0.98 0.94 0.98
crossword opt 0.99 0.98 0.99 0.98 0.98 0.90 0.91 0.96 0.96
cvrp 0.96 0.99 0.98 0.97 1.00 0.78 0.78 0.78 0.78
dcmst 1.00 1.00 1.00 1.00 1.00 0.92 0.89 0.91 0.94
freepizza 0.99 0.97 0.98 0.98 0.97 0.83 0.83 0.83 0.83
gbac 0.76 0.92 0.78 0.85 0.92 0.36 0.28 0.45 0.45
gfd-schedule 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
gfd-schedule2 1.00 1.00 0.99 1.00 1.00 0.98 0.98 0.99 0.99
group 0.96 0.99 0.97 0.97 1.00 0.92 0.92 1.00 0.99
handball 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
hrc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
jp-encoding 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mapf 1.00 1.00 1.00 1.00 1.00 0.89 0.90 0.99 0.95
mario 0.96 0.91 0.97 1.00 0.97 0.82 0.82 0.82 0.85
maximum-dag 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
mknapsack global 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
model 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98
mznc2017 aes opt 0.98 0.98 0.98 0.99 1.00 0.86 0.86 0.91 0.91
mznc2017 cargo 0.95 0.86 0.94 0.77 0.90 0.68 0.85 0.72 0.72
neighbours-rect 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.98 0.99
nfc 0.97 1.00 0.99 1.00 0.98 0.96 0.96 0.98 0.98
oc-roster 0.93 1.00 0.97 1.00 0.96 0.66 0.51 0.55 0.52
p1f 0.96 0.96 0.96 0.96 0.96 1.00 1.00 1.00 1.00
pc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
rcpsp-wet 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
rel2onto 1.00 1.00 1.00 1.00 1.00 0.95 0.92 0.92 0.90
road naive 0.40 0.66 0.66 0.46 0.46 0.50 0.50 0.50 0.50
roster model 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
seat-moving 0.84 0.95 0.95 0.95 0.95 1.00 1.00 1.00 1.00
spot5 0.89 0.95 1.00 0.98 0.99 0.94 0.93 0.96 0.96
steelmillslab 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
steiner-tree 1.00 1.00 1.00 1.00 1.00 0.94 0.96 0.91 0.99
tcgc2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
tpp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
train 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.98 0.98
triangular 1.00 1.00 0.99 0.99 0.99 0.97 0.97 0.97 0.97
ttppv 0.99 0.98 0.99 0.99 0.98 0.90 0.90 0.89 0.88
vrplc service 1.00 0.99 0.99 0.99 1.00 0.80 0.80 0.74 0.74
wcsp 0.95 1.00 1.00 1.00 1.00 0.78 0.87 0.95 0.95
zephyrus 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00


