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Abstract

DNA microarrays provide fast and systematic way to detect genes with cell type
specific expression. One of the crucial steps in the analysis of expression data is to
identify differentially expressed genes in two or more user defined groups of microar-
rays. Past couple of years have resulted significant number of techniques that deal this
problem. The fact that many of the methods in literature are used only in particular
publication has raised lots of confusion. Researchers new to subject often don’t know
which method to prefer and what these methods actually do with the data.

The purpose of this review is to familiarize the reader with the problem and process
of finding good class separating genes between groups of microarrays. Some of the
most prominent statistical methods, their strengths and weaknesses will be discussed
in detail.

KEYWORDS: microarrays, class separation, between group analysis, t-test, Wilcoxon
rank sum, ANOVA, permutation test, S2N, Bonferroni adjustment.

1 Introduction to microarrays

The ultimate goal of biomedical researchers has been obtaining full knowledge about life,
thus about living cells. Although many of the cell components and their ways of functioning
are well studied, the general picture how all the pieces fit together is still a mystery. In the
middle of last decade good ground for learning more about gene regulation was established
by introduction of microarray technology. The central dogma of molecular biology says that
DNA makes RNA makes protein. Or, in other words, the whole information needed for “run-
ning” a cell is stored in DNA which acts like central warehouse of information, pieces of that
information are “written out” to mRNAs, which are then used as manuals to manufacture
proteins. Proteins themselves are components that hold up a cell structure, catalyze different
chemical reactions, transport signals between cell parts as well as between cells, maintain
DNA and switch certain parts of it on and off etc. The microarray technology makes it
possible to measure the expression of all mRNAs in a cell in particular time point. Knowing
the the presence or absence of each mRNA thus shows which proteins are in production and
what processes in the cell are active.

In 1975 Edwin Southern introduced a method, today known as Southern blot, for de-
tecting presence of DNA probe in unknown DNA sample[E92]. The technique is based on
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Figure 1: Two complementar DNA chains in DNA double helix. Two DNA chains are
complementar if positions of A and C nucleotides in one of the chains correspond to T and
G in the other.

the property that single stranded DNA pairs always with other single stranded DNA, com-
plementar to it, to form a DNA double helix (see Figure 1.). In Southern blot, radioactive
labeled sample DNA is hybridized to the probe fixed on the surface (e.g on nylon filter).
Hybridization reaction is a process where two complementary strands of nucleic acids are
joint to double stranded helix. Reaction is carried out on higher temperature where original
double stranded probe and sample take single stranded form. Hybridization reaction will
take place only if the radioactively labeled sample contains same DNA as probe. In case of
success the sample will stick on the probe and will be later detectable, as non hybridized
radioactive DNA from the sample will be washed away. The higher the concentration of
probe DNA in the sample, the stronger the radioactive signal on the spot on the filter where
the DNA chains of the probe are fixed.

On microarrays, one performs thousands of Southern blot kind of reactions at once. Big
number of known DNA fragments corresponding to mRNA sequences of particular genes
are fixed on the miniature surface (e.g. lcm x lem) and hybridized with labeled mRNA
extract from the cells. The surface material is commonly glass or plastic and the sample is
marked with fluorescent labels instead of radioactive ones. The rest of the section will be
organized as follows. Subsections 1 and 2 describe two main types of microarrays, cDNA
microarrays and oligonucleotide arrays respectively, and subsection 3 will introduce formats
of raw microarray data.

1.1 cDNA microarrays

cDNA microarrays have got their name from the molecules fixed on their surface. cDNA is
DNA synthesized by reverse transcriptase from an mRNA template. For the hybridization,
two pools of mRNAs samples (test and control) are prepared from two different kind of
cells and labeled with different fluorescent dyes. Test and control mRNAs or cDNAs are
hybridized to the microarray at the same time making them to compete for the same probes
on the surface of microarray. If the amount of the mRNA molecule in one of the samples
is higher then also the intensity of particular fluorescent dye in the spot where the probe is
fixed is stronger. When the concentrations are equal or mRNA molecules corresponding the
probe are missing then so is it with the intensities of fluorescent dyes. cDNA microarrays
are thus used for capturing the relative changes of each mRNA molecule in transcriptome
(see Figure 2a).

1.2 Oligonucleotide microarrays

The main weakness of cDNA microarrays comes from relatively long length of the probes.
On 1953 Watson and Cric discovered that two complementary chains in DNA double helix
are hold together by the weak hydrogen bonds. Hydrogen bonds can be formed between
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Figure 2: Simplified microarray experiments. a) cDNA microarray: sample cDNAs are
labeled and hybridized to the chip. Microarray is then scanned and pseudo-colour image
from two different dye intensities is constructed. Finally dots in the image are converted
to gene names and numerical expression changes depending on their location and color on
the image. b) Oligonucleotide microarray: sample cDNA is prepared and hybridized to the
chip. Chip is scanned and dots are converted to gene names and their absolute expression
values depending on their location and color in image.

nucleotides of Adenine (A) and Thymine (T), or Cytosine (C) and Guanine (G) (see again
Figure 1). Longer DNA double helix means thus more hydrogen bonds, which means greater
force to keep two stands of DNA together. Starting from some length of the DNA, the force
between chains becomes so strong that the helix stays together even if double chain contains
some nucleotide pairs that do not form hydrogen bonds. On the other words, with the length
of the probes rises also the probability for unspecific hybridizations i.e. for hybridizations
where all pairs of nucleotides are not complementar. It can thus easily happen that cDNA
probe on the chip gives signal even when the exact copy of it in the sample is not present.

In oligonucleotide microarrays the specificity of hybridizations is much higher due to
shorter (e.g. 25 bases) probes on the chip. In addition, the usage of several unique probes
corresponding to one mRNA allows to compute mean expression which value is hoped to
reflect better the true expression. The higher specificity in one hand and the use of only
one sample instead of two in hybridization reaction allows to measure absolute expression of
every mRNA (or cDNA or cRNA) in the sample on the scale from non-expressed to highly
expressed (Figure 2b). The greatest disadvantage for using oligonucleotide arrays is their
relatively high price.

1.3 Microarray data formats

Raw expression data has different formats depending on the software which was used to
scan the array after hybridization. The data from the array is often stored in text tabulated
format where each row contains data about one gene (gene, clone, mRNA, cDNA are used
henceforth synonymously) on the microarray. Each row has an identifier (e.g. the name of
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Geneld | Array 1 | Array 2 | Array 3 | Array 4 | Array 5 | Array 6 | Array 7
203629at | 67,5 56,7 83,7 74,8 63,6 49,1 64,8
203630at | 168 165,9 148,6 134,4 151,4 212,7 199,9
203632at | 130,9 137,2 82,8 96,9 145,5 216,9 163,6
203633at | 202,5 218,8 211,6 261,7 328,9 156,1 186,6
203635at | 92,8 114,9 95,8 91,6 122,3 84,2 65,8
203640at | 204,6 202,8 239,1 193,2 208,6 438,6 530,5
203641at | 102,9 85,9 94,2 85,3 137,1 81,5 78,1
203642at | 87 67 105 76,5 141,2 71,7 109,2
203645at | 244,5 278,7 829,1 293,7 500,2 241 225,9
203647at | 267,9 158,8 136,5 199,9 3441 176,3 140,8
203648at | 237,6 2448 2414 249,6 367,6 192,5 1674
203656at | 121,2 151,6 119,8 105,5 2479 97,4 102,3

Figure 3: Example of expression data matrix. Clone 203640at expression value in array 4 is
193,2.

the clone), expression value of that clone, annotation of the clone and some other parameters
which may or may not have significance. However, the most important columns in the data
file are the ones of gene identifier and its expression value (which sometimes may be log
transformed). For further analysis the data from different arrays is usually merged to one

matrix of expression values where columns represent arrays and rows correspond to genes
(Figure 3).

2 Fashion of profiles

In recent years prices of high resolution microarrays have dropped sufficiently to allow re-
searchers to perform tens of hybridizations in one study. As the living cells are never exactly
the same the repeated measurements simply help to catch normal biological variance of gene
expression. Cancer cells may vary even in a scale where traditional diagnostic techniques
fail to catch their exact type and status, whereas expression values for all genes maintain
this power. Lately several new cancer subtypes have been discovered simply by hierarchical
clustering of the expression data [Ram01][Bha01|[van02]. Even though arrays allow extreme
diagnostic accuracy they are far too expensive to become part of routine testing machineries
in the hospitals. Often measuring the expression levels of only few genes may provide same
answers to our questions with same degree of accuracy as testing them all on the array. The
question is simply which genes carry the information we are interested in. In last couple
of years several methods have been proposed for finding such genes, genes which expres-
sion allows to differentiate between cell types or even same cells under specific conditions.
In practice this means several repeated expression measurements in all groups of cells and
search of genes which expression differs between groups of microarrays while it is stable
inside the groups. In addition to the diagnostic value that found genes may have, they are
also interesting as genes that are most probably behind the status of the cells.

The focus of this review is on the statistical methods used for finding group differen-
ciating genes from microarray data. The rest of the review is divided as follwos: section
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3 discusses common statistical methods used for comparing groups of expression data and
picking up informative genes, section 4 describes the usage of permutation test for comput-
ing the statistical strength of selected genes, section 5 gives glimpse of other statistical and
non-statistical methods not covered here, section 6 discusses some weakensses comming from
microarray technology that affect the analysis procedure, finally section 7 summarizes the
whole review.

3 Group separation with common statistical methods

The crucial problem in building profiles for groups of expression data is to find genes that
best separate particular dataset from some other group of expression data. Good separator
genes should have as different expression between groups as possible. For that we need a dis-
tance measure that could show how far two groups are from each other. The most primitive
one could be the absolute distance between the expression means of a gene in the groups.
The bigger the difference the better the separation. However, the measure gets seriously
biased if the groups are not homogeneous i.e. contain extreme outliers. Instead, the distance
between two nearest elements in two groups could be used. Yet another solution is to correct
the biased mean difference with the variances of the groups. There are several test statistics
that combine in them means and variances of groups.

3.1 t-test

Two-sampled t-test is currently the most used test for selecting genes that can separate two
groups of microarrays. The test statistic is computed as

Ty 1)
\/ o2+ o2

where py, uo are mean values and oy, sigmas correspond to standard deviations of two
samples. The main weakness of particular distance measure is the assumption of equal
variances in both samples, which may not always be the case. Slight modifications in the
denominator, namely addition of n; and ns that correspond to the number of elements in
groups one and two, give the formula of two sampled t-test for unequal variances [GS01]

M — 2
Tl )

-1 Z2

n1 na

Regardless of its wide use, t-test has weaknesses which are often not paid enough atten-
tion. First, t-test assumes the normality of the data i.e. that the data inside the groups
follows normal distribution. Often the number of arrays is too small for such assumption.
Another problem of t-test as well as most of other tests reviewed henceforth comes from
multiple testing. Let it be reminded that each gene from the data is tested separately and
for some studies the total number of tests may easily exceed 10000. Usually statistical tests
are carried out on significance level a = 0.05 which shows the probability of getting sample
as extreme (or worse) just by chance. Thus the probability of extreme results and also false
positives (so called Type I errors) starts growing with the number of tests. The intuitive
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Value | Group | Rank
2.3 A 1
2.9 A 2
3.2 A 3
3.4 A 4
3.6 A 5.5
3.6 B 5.5
3.9 B 7
4.1 B 8
4.2 B 9
4.9 A 10
5.3 B 11
5.7 B 12

Figure 4: Wilcoxon rank test wight groups A={2.3, 3.4, 3.2, 4.9, 2.9, 3.6}, B={4.1, 3.6, 5.7,
4.2, 3.9, 5.3}. The test statistic R = 25.5 (as 25.5 < 52.5). Given n; = ny = 6 and o = 0.05
the critical value for two-tailed test is 26. Thus the groups are significantly different on 0.05
significance level.

solution would be to correct a level with the number of tests, feasible by division of a with
the number of tested hypothesis. In a/n the type I error rate for n tests stays the same as
provided by « while testing only 1 hypothesis. Such way of correcting o is known as Bon-
ferroni method [0J02]. « correction with more complicated Turkey’s method would
give the same effect[Ric94]|.

3.2 Wilcoxon rank sum test

Genes we want to test may not always have underlying normal distribution, often due to
small number of measurements in the groups. An alternative test without any distributional
assumptions (non-parametric tests) is therefore needed. Common non-parametric alternative
for t-test is Wilcoxon rank sum test. Many resources refer to Wilcoxon rank sum test and
Mann-Whintey test. In fact they are almost the same, developed around the same time and
follow the same logic and principles. Even the results from these tests are comparable.

To do the Wilcoxon rank sum test, the variables from both samples get merged and
ordered by their values. Each variable obtains rank depending on its position in the list.
For example value in position 10 will get rank 10. If two or more variables have equal value
their rank will be mean of positions they share, e.g. if values on positions 11, 12 and 13
have same value, their rank will be 12 as 12 = (114 12+ 13)/3 (Figure 2). Next, the sum of
ranks is computed for both groups and smaller from the values is selected as a test statistic.
Critical value for the test statistic given « is found from the table or with statistical software
given the sample sizes, n; ny. If the value of the test statistic is more extreme than critical
value, two groups are said to have signifficant separation. Due to multiple testing Bonferroni
adjustment is compulsory[Tro02].[Ric94]
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3.3 ANOVA

In most of the cases only two groups of expression data are compared, however the number
of groups may be bigger. For example, researchers might be interested in finding separator
genes between samples of normal, tumorigenic and metastatic tissues. If such genes exist,
their expression values can in theory be used for cancer diagnostics or even more important,
they might have role in development and progression of cancer. The strength of each gene
as a separator in more than 2 samples is tested by one-way analysis of variance (ANOVA).
Non-parametric alternative to one-way ANOVA is Kruskal-Walls test. But due to its seldom
usage on microarray data it will be not covered here. ANOVA can be seen as extension
of t-test for more than 2 groups of samples, or vice versa, the t-test can be thought of
as generalization of ANOVA for only two groups of samples. Similarily to t-test, also the
test statistic of ANOVA, conventionally known as F, is ratio between values that measure
variance between the groups (M Seysfect) and within the groups (M Sepror)-

— MSeffect

F
MS&’I’"I"O’I"

(3)

Lets first focus on the numerator and denote the number of classes with letter G. In
t-test, G = 2 and the distance between two means is subtraction of one from the other.
In ANOVA G > 2, so there exist more than one distance and these have to get combined
somehow to one value. For that the mean of all groups M, is computed and the the sum of
the distances between M;, and all group means are summed in the form of “sum of squared
deviates”, i.e. Zle(Mg — M;,;)%. As the groups may contain different number of elements
the actual sum of squared deviates (SS,,) in ANOVA has slightly modified form

G
Ssbg = Z Ng(Mg - Mtot)2 (4)

g=1

where N, represents the number of values in group g. N, can be seen as a weight that
corrects the differences in groups sizes.
The denominator for F' is the sum of variances inside the groups just like in t-test.

G Ng

SSuwg =D (Xgi — M,)? (5)

g=1i=1

where X; is variable 7 in group g.

SSpy and S5, look very similar as they both are measures of variance. One of them
captures the variance between centers of the groups, and the other variance inside the groups.
However these two measures can not be used together in one formula if the number of number
of items, from which they are built of, is different. For S5, the number of items is G while
for $Sug it’s sumS_; Ny, and corresponding degrees of freedom are thus dfy, = (G — 1) and
dfwg = sumS (N, — 1). Due to the differences in degrees of freedom the final equation for
F takes form of

_ SSu/dfsy

 SSuwg/dfwg (6)

Perhaps the main disadvantage of using ANOVA is that it does not tell which groups
are different from which groups, it just says if there is an overall difference. The test gives
positive result even if some of the groups overlap completely while some other groups are

F
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clearly separated. The relations between individual groups can be investigated only by pair-
wise comparisons. However it is not meaningful to start with pairwise tests as the pairwise
tests are unlikely to be sensible if the result from ANOVA is non-significant.[R03]

4 Permutation test

In 1999, a group from MIT published paper about acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL)[Gol99]. The article contained not only the largest set of
leukemia expression data at the time but also several new methods for analyzing such data.
Among other novelties was usage of permutation test with distance measure similar to t-test
statistic.

The distance measure for gene between groups groups, referred as “signal to noise” ratio
has form of

SON — H1 — K2 (7)
o1+ 02

where p1, po and oy, o9 refer to expression means and standard deviations in groups. The
measure looks like robust form of t-test statistic and has advantage in cases where the vari-
ance in one of the groups may be higher than in the other. Also S2N value may be positive
or negative depending in which group the gene has higher expression.

The statistical significance of S2N scores were evaluated with permutation test. In permu-
tation test, each microarray experiment gets class label depending on the group it belonged
to. The class labels are then switched randomly many times (permutated) and after each
permutation new S2N scores for each gene is computed. Genes are ranked according to their
positions in sorted list of S2N values (e.g. gene with highest S2N score gets rank 1). His-
tograms of S2N scores for each rank are built, e.g histogram for all genes that obtained rank
1 over all permutations, histogram for genes with rank 2 etc. After permutations, S2N value
of a gene computed under correct class labels is compared with the value of 1% percentile
in the histogram that has the same rank. If the value is more extreme than in histogram,
the gene is considered to have significant power to separate two groups or classes.

4.1 SAM

Several slightly modified variants of the original method of Golub and Slonim et al.[Gol99]
have been recently published. Due to the limited space only Significance method of Analysis
of Microarrays (SAM)[Tus01] and “ideal discriminator method” [Tro02] were selected to be
referred here while other methods, including Mixture Model Method by Pan et al [Pan03],
are left out.

Differences between SAM and other permutation test based methods lie mainly in the
distance measure and how the permutations are used. The distance measure in SAM is

d(i) = 1(7) = 22(1) (8)

s(t) + so

where z; (i) and z5(7) are average expressions of gene (7) in groups 1 and 2. The “gene-specific
scatter” s(1) is

s(i) = \/a {20 [em () — 21 ()] + 3 [2a(4) — 22()]7} 9)
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where >, and ), are sums of expression measurements in groups 1 and 2 while a =
(1/n1 4+ 1/n2)/(n1 + na — 2), nl and n2 are the numbers of measurements in corresponding
groups. $o is small positive constant computed from the dataset. The list of d,(¢) values
from each permutation test is received, d,(1) has the highest value d,(2) second highest etc.
Expected relative difference dg () for each 7 is average value of d,(7) over all permutations i.e.
dge(i) = ¥, dp(i)/b where b is the number of permutations performed for computation. In
most of the cases d(i) = dg(i). Genes, which have expected and observed relative difference
bigger than ¢ are called significant. The bigger the ¢ the smaller the number of genes and
also the number of false positives|Tus01][SAM].

4.2 1Ideal discriminator method

The distance measure for “ideal discriminator method” is Pearson correlation coefficient [Tro02].
Ideal discriminator is a gene with artificial expression values so that in one of the groups
expression is minimum and in the other its maximum. Pearson correlation between ideal
gene and all other genes are computed. Again class labels are permuted and p-value of each
gene is computed as
- _ count(mazi(Diperm) > Pioss)
Piperm = count(permutations)

(10)

The method is significant mainly because of the different thinking its built on. In t-test
and in its relatives the thinking is horizontal, from left to right, and expression values of
one gene are considered at the time. In ideal discriminator method the thinking is vertical.
Expression values of ideal gene are compared with expression values of all other genes. The
operation unit is not anymore single value but vector.

4.3 Turning parametric test to non-parametric

So far we have seen how two different distance measures somewhat similar to t-test have been
used in permutation test. This however does not mean that t-test or any other parametric
test statistic could not be used in permutation test framework. The core idea of permutation
test is to compare the test statistic with the same data after randomization. Therefore no
information about the distribution of the data are used neither needed. Thus permutation
test can be used to change parametric test to non-parametric [Tro02|. The p-value for gene
J is then

_ count(tjperm > tjobs) (11)
77 count(permutations)
where t; . are t values from the data using original class labels and ¢;,,,,, are t values for the

same gene after every permutation. Still p-values have to be corrected for multiple testing by
using Bonferroni correction: P; = min(m*p;, 1) where m=number of genes [Tro02].

JBon ferroni

5 Glimpse of other methods

Last two sections discussed only most common statistical methods for group comparison.
Many other statistical as well as non statistical methods have been developed from which
some will be mentioned in following sentences. Methods published in statistical framework
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include linear discriminant analysis, regression modeling, between group analysis (BGA) and
Bayesian statistics. Machine learning is applied in maximum difference subset (MDSS) algo-
rithm, prediction by collective likelihoods (PCL). Also principal component analysis (PCA)
has been used for finding best genes for group separation.

6 Discussion

Regardless of all the methods referred and many other non-statistical approaches for reduc-
ing dimensionality to end up with small number informative genes, there seems to be no well
established technique that would fully satisfy biological researchers as well as statisticians.
One of the reasons for growing number of different methods comes from the specialty of the
data. The number of samples in groups is often still too small for proper parametric tests.
At the same time the number of experiments is ill-proportionally high. From the biomedical
scientist point of view the problem is lack of knowledge of what is proper statistics. There
are also serious limitations in availability of tools. Statistical packages need prior knowledge
for working with them and implementations used in method publications are often not avail-
able. Different methods produce lists of genes that vary in length and may not overlap etc.
However, majority of the methods still capture most from the relevant information.

The only exception where statistical tests for group separation may completely fail is find-
ing good diagnostic marker genes. Good marker gene is here defined as one expressed only
in one of the two groups. The main reason why methods described here and also elsewhere
miss such markers are technical weaknesses that microarrays still have. Namely, even state
of the art array technology fails to draw border between expressed and unexpressed genes.
For example, on oligonucleotide arrays a gene may be not expressed even if its expression
value is as high as 100 while another gene on the same microarray may be truly present with
expression of 30. The scale of expression values may be 0 to 6000 while most of the values
fall between 0 and 1000. Typical examples of statistically significant separator genes are 200
and 600, or 40 and 120, or 1800 and 2800. All such genes are interesting for further study
but they are completely useless as diagnostic markers. Thus the best strategy for selecting
good marker genes seems still to be manual selection of genes from lists produced by any
statistical or non statistical method.

7 Summary

The invention of DNA microarrays has opened many new doors for biomedical scientists to-
ward full understanding of life. In recent years the number of experiments where expression
of genes in two or more types of cells are measured by using DNA microarrays is increased.
Such wet lab experiments have triggered the adaption of old and invention of new statistical
and non-statistical methods that can point genes which expression in these groups differs
most. This review covered principles, strength and weaknesses of most used and/or peculiar
statistical methods that deal this problem.
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