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Abstract

Understanding the dynamics of argumentation frame-
works (AFs) is important in the study of argumenta-
tion in AI. In this work, we focus on the so-called
extension enforcement problem in abstract argumen-
tation. We provide a nearly complete computational
complexity map of fixed-argument extension enforce-
ment under various major AF semantics, with results
ranging from polynomial-time algorithms to complete-
ness for the second-level of the polynomial hierarchy.
Complementing the complexity results, we propose al-
gorithms for NP-hard extension enforcement based on
constrained optimization. Going beyond NP, we pro-
pose novel counterexample-guided abstraction refine-
ment procedures for the second-level complete prob-
lems and present empirical results on a prototype sys-
tem constituting the first approach to extension enforce-
ment in its generality.

Introduction
Argumentation is a core topic in Artificial Intelligence (AI)
(Bench-Capon and Dunne 2007), with applications in e.g.
decision support (Amgoud and Prade 2009), legal reason-
ing (Bench-Capon, Prakken, and Sartor 2009), and multi-
agent systems (McBurney, Parsons, and Rahwan 2012). Ar-
gumentation frameworks (AFs) (Dung 1995) provide the
fundamental formal model for many approaches to argu-
mentation in AI. Syntactically, AFs are directed graphs,
where arguments are abstract entities represented by ver-
tices. Conflicts among arguments are formalized as attacks,
and represented with directed edges between arguments. Se-
mantics of AFs—several of which have been proposed—
specify criteria for arguments’ acceptance resulting in sets
of jointly acceptable arguments called extensions.

Argumentation is inherently a dynamic process. Recently,
several works have focused on fundamental aspects of
argumentation dynamics (Baumann 2012a; Baumann and
Brewka 2015; Bisquert et al. 2013; Coste-Marquis et al.
2014a; 2014b; Delobelle, Konieczny, and Vesic 2015; Diller
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et al. 2015). In this work, we focus on extension enforce-
ment (Baumann 2012b; Bisquert et al. 2013; Coste-Marquis
et al. 2015), a specific form of AF dynamics with connec-
tions to belief revision, concerned with finding changes to a
given AF in order to support a desired point of view, repre-
sented as a set of arguments, under pre-specified semantics.

While the complexity landscape of non-dynamic prob-
lems on AFs, including the credulous and skeptical rea-
soning tasks for a given fixed AF, is already well-
established (Dunne and Wooldridge 2009), the complex-
ity of extension enforcement under different semantics and
problem variants has not been thoroughly studied until now.
Furthermore, while several efficient systems for the NP-hard
variants of non-dynamic problems are available (Cerutti et
al. 2014; Cerutti, Giacomin, and Vallati 2014; Dvořák et
al. 2014; Egly, Gaggl, and Woltran 2010; Nofal, Atkinson,
and Dunne 2014), to our best knowledge the single existing
system for extension enforcement was only recently pro-
posed (Coste-Marquis et al. 2015), and currently supports
extension enforcement only w.r.t. specific AF semantics (the
stable semantics). This paper aims at bridging these gaps.

Our main contributions are the following.

• We provide a nearly complete computational complexity
map of fixed-argument extension enforcement, where the
task is to enforce a given extension by modifying the at-
tack relation of a given AF. Our results cover nine stan-
dard AF semantics and both the so-called strict and non-
strict variants of extension enforcement. For examples,
we provide polynomial-time algorithms for strict enforce-
ment under the admissible and stable semantics (the latter
of which was in fact proposed to be solved using the NP-
machinery of integer programming (IP) by Coste-Marquis
et al. (2015)); show that most non-strict enforcement
problems are NP-complete, along with strict enforcement
under the complete and grounded semantics; and establish
second-level completeness for strict enforcement under
preferred and semi-stable semantics as well as for non-
strict semi-stable and stage semantics.

• We propose algorithms for the NP-hard variants of
the enforcement problems based on applying con-
straint optimization solvers. We detail maximum sat-
isfiability (MaxSAT) encodings for the NP-complete
problem variants, and, perhaps most interestingly, pro-



pose novel counterexample-guided abstraction refinement
(CEGAR) (Clarke et al. 2003; Clarke, Gupta, and Strich-
man 2004) procedures for the second-level ΣP2 -complete
variants using optimization solvers as functional NP ora-
cles. We provide an overview of an empirical evaluation
of a prototype system implementation that supports the
considered extension enforcement variants.

While our main focus is fixed-argument extension en-
forcement, we also shortly discuss the normal, strong, and
weak variants (Baumann 2012b) of enforcement.

Preliminaries
We recall concepts related to argumentation frame-
works (Dung 1995), their semantics (Baroni, Caminada,
and Giacomin 2011), and enforcement operators (Baumann
2012b; Coste-Marquis et al. 2015).

Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A is a finite set of arguments and R ⊆
A×A is the attack relation. The pair (a, b) ∈ R means that
a attacks b. An argument a ∈ A is defended (in F ) by a set
S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there exists a
c ∈ S such that (c, b) ∈ R.

Example 1. Let F = (A,R) be an AF with A = {a, b, c, d}
and R = {(b, a), (b, c), (c, a), (c, d), (d, b)}. The corre-
sponding graph representation is shown in Figure 1.

Semantics for argumentation frameworks are defined
through a function σ which assigns to each AF F = (A,R)
a set σ(F ) ⊆ 2A of extensions. We consider for σ the func-
tions naive , stb, adm , com , grd , prf , sem , and stg which
stand for naive, stable, admissible, complete, grounded, pre-
ferred, semi-stable and stage extensions, respectively. These
semantics are defined as follows.

Definition 2. Given an AF F = (A,R), the characteristic
function FF : 2A → 2A of F is defined as FF (S) = {x ∈
A | x is defended by S}. Moreover, for a set S ⊆ A, we
define the range of S as S+

R = S ∪ {x | (y, x), y ∈ S}.
Definition 3. Let F = (A,R) be an AF. A set S ⊆ A
is conflict-free (in F ), if there are no a, b ∈ S, such that
(a, b) ∈ R. We denote the collection of conflict-free sets of
F by cf (F ). For a conflict-free set S ∈ cf (F ), it holds that

• S ∈ naive(F ) if there is no T ∈ cf (F ) with S ⊂ T ;
• S ∈ stb(F ) if S+

R = A;
• S ∈ adm(F ) if S ⊆ FF (S);
• S ∈ com(F ) if S = FF (S);
• S ∈ grd(F ) if S is the least fixed-point of FF ;
• S ∈ prf (F ) if S ∈ adm(F ) and there is no T ∈ adm(F )

with S ⊂ T ;
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Figure 1: Example argumentation framework
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(b) Non-strictly enforcing {a}

Figure 2: Enforcement under complete semantics

• S ∈ sem(F ) if S ∈ adm(F ) and there is no T ∈
adm(F ) with S+

R ⊂ T
+
R ;

• S ∈ stg(F ) if there is no T ∈ cf (F ) with S+
R ⊂ T

+
R .

For any AF F it holds that cf (F ) ⊇ adm(F ) ⊇
com(F ) ⊇ prf (F ) ⊇ sem(F ) ⊇ stb(F ). We use the
term σ-extension to refer to an extension under a semantics
σ ∈ {naive, stb, adm, com, grd , prf , sem, stg}.

Extension enforcement is the problem of modifying the
syntactic attack structure R of a given AF F = (A,R) in
a way that a given set T of arguments becomes (part of) an
extension under a desired semantics σ in the modified AF.
Several types of enforcement have been proposed (Baumann
2012b; Coste-Marquis et al. 2015), differing in the type of
modifications allowed to the framework. We focus mainly
on so-called fixed-argument extension enforcement (Coste-
Marquis et al. 2015), where the set of arguments remains
the same, but the attack structure may be modified arbitrar-
ily. Later on we also discuss adaptation to enforcement un-
der strong and weak expansions (Baumann 2012b). Strict
enforcement requires that the given set T of arguments has
to be a σ-extension, while in non-strict enforcement T is
required to be part of a σ-extension. We denote the set of
attack structures that strictly enforce T under σ for F by
enf σs (F, T ) = {R′ | F ′ = (A,R′), T ∈ σ(F ′)}, and by
enf σns(F, T ) = {R′ | F ′ = (A,R′), ∃T ′ ∈ σ(F ′) : T ′ ⊇
T} for non-strict enforcement. The number of changes of
an enforcement is |R∆R′| = |R \ R′| + |R′ \ R|, i.e., the
symmetric difference of the attack structures R and R′. The
following definition captures the optimization problem for
extension enforcement, where arg min is the standard nota-
tion for the set of domain elements that minimize a function.
Extension enforcement (x ∈ {s, ns})
Input: AF F = (A,R), T ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf σx(F,T )

|R∆R′|.

Example 2. In AF F from Example 1 we have com(F ) =
{∅}. A way to strictly enforce {a} as a complete extension is
to remove attacks (b, a) and (c, a) (Figure 2a). Adding (d, c)
makes {a, d} a complete extension, and thus {a} becomes
non-strictly enforced (Figure 2b).

In the decision problems for extension enforcement, we
are given an AF F = (A,R), a set T ⊆ A, and an in-
teger k ≥ 0, and are asked to decide if there is an F ′ =
(A,R′) with |R∆R′| ≤ k that enforces T non-strictly (resp.
strictly). For the complexity results, in addition to the stan-
dard complexity classes P, NP, and coNP, recall that the
class ΣP2 consists of problems which can be decided by a



non-deterministic polynomial-time algorithm with access to
an NP oracle.

Complexity Analysis
An overview of the complexity results of this paper is given
in Table 1. We begin our analysis by considering non-strict
enforcement. A basic observation is that, to enforce a set
T under semantics σ, all attacks “inside” T need to be re-
moved, since all considered semantics are based on conflict-
free sets. For non-strict enforcement under conflict-free and
naive semantics, this modification turns out to be optimal.
Proposition 1. Non-strict enforcement for conflict-free and
naive semantics is in P.

Proof. (sketch) Let F = (A,R) be an AF and T ⊆ A the set
to be enforced. DefineF ∗ = (A,R∗) withR∗ = R\(T×T ).
Now T ∈ cf (F ∗) and thus there is a T ′ ∈ naive(F ∗) with
T ⊆ T ′. For any R′ ⊆ A × A with |R∆R′| < |R∆R∗| it
holds that T and all supersets of T are not conflict-free in
F ′ = (A,R′). Thus F ∗ is an optimal solution.

For the remaining semantics, non-strict enforcement is
presumably harder. This follows from the fact that it is com-
putationally hard to check whether there is a superset of T
that is a σ-extension of the input AF F .
Proposition 2. Non-strict enforcement

• for admissible, complete, preferred, and stable semantics
is NP-complete; and

• for semi-stable and stage semantics is ΣP2 -complete.

Proof. Hardness in all cases follows from a reduction from
the credulous acceptance problem for the same semantics σ,
where we have to decide whether an a is contained in one σ-
extension of a given AF F . We reduce this problem to non-
strict enforcement by defining T = {a}. Then T can be non-
strictly enforced under σ with 0 changes iff a is credulously
accepted. Complexity of credulous reasoning is analyzed
in (Caminada, Carnielli, and Dunne 2012; Coste-Marquis,
Devred, and Marquis 2005; Dimopoulos and Torres 1996;
Dung 1995; Dvořák and Woltran 2010). Membership for
all problems follows from a guess and check (verifying if
a given set is admissible or stable can be checked in P; for
semi-stable and stage this problem is in coNP).

Coste-Marquis et al. (2015) established that the union
of non-strict and strict extension enforcement under sta-
ble semantics is NP-hard. As a more fine-grained analy-
sis, by Proposition 2 non-strict enforcement is in itself NP-
complete; furthermore, in the following we will show that
strict enforcement under stable semantics is in fact in P.

From the previous propositions it might appear that the
main source of intractability does not originate from the
modifications of the attack structure, but from (credulous)
acceptance problems associated with the semantics under
consideration. However, even for the computationally sim-
ple grounded semantics, non-strict enforcement turns out to
be NP-complete. This suggests that for admissibility-based
semantics the non-determinism introduced by changes in the
attack structure is enough for NP-hardness.

Table 1: Complexity results for extension enforcement

σ strict non-strict
Conflict-free in P in P

Naive in P in P
Admissible in P NP-c

Stable in P NP-c
Complete NP-c NP-c
Grounded NP-c NP-c
Preferred ΣP

2 -c NP-c
Semi-stable ΣP

2 -c ΣP
2 -c

Stage coNP hard and in ΣP
2 ΣP

2 -c

Theorem 3. Non-strict enforcement for grounded semantics
is NP-complete.

We move on to strict enforcement. Here we establish
polynomial-time results for stable and admissible semantics.

Proposition 4. Strict enforcement for conflict-free, naive,
admissible, and stable semantics is in P.

Proof. (sketch) Let F = (A,R) be an AF, T ⊆ A, and σ ∈
{cf ,naive, adm, stb}. For each σ, we define a polynomial-
time computable F ∗σ = (A,R∗σ) that is an optimal solution
to the strict enforcement problem under σ. We assume that
T 6= ∅; otherwise the problem is trivial. Let t0 ∈ T be an
arbitrary but fixed argument. For all considered semantics
we have to remove conflicts inside T .

• σ = cf : let R∗cf = R \ (T × T );

• σ = naive: add a self-attack to arguments a ∈ A \ T
where T ∪ {a} would be conflict-free otherwise, i.e.
R∗naive = (R \ (T × T )) ∪ {(a, a) | a ∈ A \ T, @(b, a) ∈
R with b ∈ T ∪ {a}};

• σ = stb: add attacks (t0, a) with a ∈ A \ T where a is
not attacked by T , i.e. R∗stb = (R \ (T × T )) ∪ {(t0, a) |
a ∈ A \ T, @(t, a) ∈ R with t ∈ T};

• σ = adm: for each attack from a ∈ A \ T to t ∈ T
that is not counterattacked by T add (t0, a), i.e. R∗adm =
(R \ (T × T ))∪ {(t0, a) | a ∈ A \ T, ∃(a, t) ∈ R s.t. t ∈
T and @(t′, a) ∈ R s.t. t′ ∈ T}.

In contrast to admissible semantics, strict enforcement
for complete and grounded semantics is NP-complete. In-
tuitively, admissibility together with the fact that we must
not defend arguments outside any desired set can be used
for reducing satisfiability of Boolean formulas to strict en-
forcement under complete or grounded semantics.

Theorem 5. Strict enforcement for complete and grounded
semantics is NP-complete.

For preferred and semi-stable semantics, we see a jump
in complexity: the corresponding problems are in fact ΣP2 -
complete. Intuitively, in addition to the source of intractabil-
ity that strict enforcement under complete semantics brings,
one has to take into account that modifications to the attack
structure might give rise to supersets of T that are admissi-
ble. Hardness can be proven by a reduction from satisfiabil-
ity of quantified Boolean formulas.



t a1 b1 . . . an bn

Figure 3: Strict enforcement under preferred semantics

Theorem 6. Strict enforcement for preferred and semi-
stable semantics is ΣP2 -complete.

As an illustrative example of when complete and pre-
ferred semantics differ w.r.t. strict enforcement, see Figure 3.
Here strictly enforcing {t} under complete semantics re-
quires no modifications. In contrast, under preferred seman-
tics each other argument requires one distinct modification.

Finally, for stage semantics we give straightforward
bounds. Hardness follows from coNP-hardness of verifying
if a set is a stage extension (Dvořák and Woltran 2010).

Corollary 7. Strict enforcement for stage semantics is in
ΣP2 and coNP hard.

We conjecture that strict enforcement for stage semantics
is indeed ΣP2 -complete; this is the only missing piece in the
complexity map (recall Table 1) established in this paper.

Extension Enforcement via MaxSAT
In this section we present declarative encodings that can be
used for solving extension enforcement optimally under the
considered semantics. We employ maximum satisfiability
(MaxSAT) as a well-suited declarative language. For non-
strict enforcement under stable semantics, our encoding is
essentially the same as the integer programming formulation
presented by Coste-Marquis et al. (2015). Here we present
MaxSAT encodings for the various semantics, as well as de-
velop counterexample-guided abstraction refinement algo-
rithms for solving the ΣP2 -complete problem variables by
applying the NP-encodings.

We recall the MaxSAT problem. For a variable x, there
are two literals, x and ¬x. A clause is a disjunction (∨) of
literals. A truth assignment is a function from variables to
{0, 1}. A clause c is satisfied by a truth assignment τ (τ(c) =
1) if τ(x) = 1 for a literal x in c, or τ(x) = 0 for a literal
¬x in c; otherwise τ does not satisfy c (τ(c) = 0).

An instance ϕ = (ϕh, ϕs) of the Partial MaxSAT prob-
lem consists of a set ϕh of hard clauses and a set ϕs of soft
clauses. Any truth assignment τ that satisfies every clause
in ϕh is a solution to ϕ. The cost of a solution τ to ϕ is
COST(ϕ, τ) =

∑
c∈ϕs(1 − τ(c)), i.e., the number of soft

clauses not satisfied by τ . A solution τ is optimal for ϕ if
COST(ϕ, τ) ≤ COST(ϕ, τ ′) holds for any solution τ ′ to ϕ.
Given ϕ, the Partial MaxSAT problem asks to find an opti-
mal solution to ϕ. From here on, we refer to partial MaxSAT
simply as MaxSAT.

We now present MaxSAT encodings for NP extension en-
forcement problems. Let F = (A,R) be an AF and T ⊆ A
the set to be enforced under semantics σ. We use variables
xa and ra,b for a, b ∈ A with the interpretation “xa = 1 iff a
is in an extension”, and “ra,b = 1 iff the attack (a, b) occurs
in the modified AF”.

For all semantics, the soft clauses are given by
ϕsoft(F ) =

∧
a,b∈A r

′
a,b, where

r′a,b ↔
{
ra,b if (a, b) ∈ R
¬ra,b if (a, b) 6∈ R,

i.e., a violated soft clause, contributing unit cost to the cost
of a solution, implies that the corresponding attack has been
modified (removed or added).

We now define clauses enforcing that the given set T must
be part of a σ-extension for the modified AF encoded via the
attack variables ra,b. For non-strict enforcement (short-hand
ns), we define ϕns(F, T ) =

∧
a∈T xa which encodes that

the given set must be part a σ-extension. For strict enforce-
ment (short-hand s), there is no need to encode arguments’
statuses as variables (their values are fixed), i.e., variables
xa are not required. For encoding the semantics, we adapt
Boolean formulas from (Besnard and Doutre 2004), origi-
nally for non-dynamic problems, to extension enforcement.
We start with non-strict enforcement. For conflict-free sets,
if an attack between two arguments is present, then only one
of them can be in a conflict-free set.

ϕcf
ns(F, T ) = ϕns(F, T ) ∧

∧
a,b∈A

(
ra,b → (¬xa ∨ ¬xb)

)
For admissible semantics (recall that non-strict enforce-

ment for admissible, complete, and preferred semantics co-
incides), if a is in an admissible set and there is an attack on
a, then a defender together with a defending attack must be
assigned to 1.

ϕadm
ns (F, T ) = ϕcfns(F, T )∧

∧
a,b∈A

(
(xa∧rb,a)→

∨
c∈A

(xc∧rc,b)
)

Stable semantics can be encoded in the following way. If
an argument is not in the stable extension, an attacker in the
set together with an attack in the new AF has to be found.

ϕstb
ns (F, T ) = ϕcfns(F, T ) ∧

∧
a∈A

(
¬xa →

∨
b∈A

(xb ∧ rb,a)
)

We move on to strict enforcement for conflict-free sets.

ϕcf
s (F, T ) =

∧
a,b∈T

¬ra,b,

i.e., strict enforcement simply consists of removing all at-
tacks inside T . For admissible semantics, we need a defend-
ing counter-attack for each attack on set T .

ϕadm
s (F, T ) = ϕcf

s (F, T ) ∧
∧
a∈T

∧
b∈A\T

(
rb,a →

∨
c∈T

rc,b
)

In the encoding for strict enforcement under complete se-
mantics, we need to ensure that for each argument outside T
there is an attack on it that is not defended against by T .

ϕcom
s (F, T ) = ϕadm

s (F, T ) ∧
∧

a∈A\T

∨
b∈A

(
rb,a ∧

∧
c∈T
¬rc,b

)
In summary, for semantics σ, an optimal solution to the

MaxSAT problem ϕ = (ϕσx(F, T ), ϕsoft) corresponds to an
optimum solution to the strict enforcement problem (if x =
s) or the non-strict enforcement problem (if x = ns).



Extension Enforcement Beyond NP

The second-level complexity of strict enforcement under
preferred and semi-stable semantics, as well as non-strict
enforcement under preferred, semi-stable, and stage seman-
tics, hinders direct use of NP optimization solvers for these
problems. However, the NP semantics, such as complete,
overapproximate the preferred and semi-stable semantics,
and conflict-free sets overapproximate stage semantics. This
implies that the NP encodings can be used as base ab-
stractions within a counterexample-guided abstraction re-
finement (CEGAR) approach to solving the second-level ex-
tension enforcement problems. As a general outline, in CE-
GAR an (over)abstraction of the set of solutions of interest
is iteratively refined until an actual solution to the original
problem instance is encountered. At each iteration, the ab-
straction is solved, typically using an NP oracle (such as a
SAT solver). A thus obtained candidate solution is checked
with another oracle call. If the oracle reports that the candi-
date is not an actual solution, a counterexample is obtained,
and the abstraction is refined further based on the counterex-
ample. This is repeated until no counterexamples are found,
at which point the candidate solution is an actual solution.

Let F = (A,R) be an AF and T ⊆ A the set to
be enforced under semantics σ ∈ {prf , sem, stg}. Let
x ∈ {ns, s} be the type of enforcement. Our procedures
are presented in a unifying way as Algorithm 1. First, we
select the “base” semantics χ for enforcement that acts as
our first abstraction: conflict-free sets for stage and admis-
sible, complete semantics otherwise. In the loop an optimal
solution for non-strict or strict enforcement under seman-
tics χ is computed by e.g. a MaxSAT or an IP solver, and
represented by the truth assignment τ . We extract the AF
F ′ = (A,R′), with R′ = {(a, b) | a, b ∈ A, τ(ra,b) = 1}
from τ . We then check whether F ′ is also a solution to en-
forcement under semantics σ. For strict enforcement, we
have to check whether T ∈ σ(F ′) holds. For non-strict
enforcement we check whether T ′ ∈ σ(F ′) with T ′ =
{a ∈ A | τ(xa) = 1}. We encode the base semantics
as in (Besnard and Doutre 2004). Conflict-free sets are en-
coded by ψcf (F ′) =

∧
(a,b)∈R′(¬xa ∨ ¬xb), admissible

semantics by ψadm(F ′) = ψcf (F ′) ∧
∧

(b,a)∈R′(xa →
(
∨

(c,b)∈R xc)), and complete semantics by ψcom(F ′) =

Algorithm 1 Enforcement for σ ∈ {prf , sem, stg} with
x = s or σ ∈ {sem, stg} with x = ns.

1: if σ ∈ {prf , sem} then χ← com else χ← cf
2: ψ ← ϕχx (F, T )
3: if x = ns then ψ ← ψ ∧ δ(A)
4: while true do
5: (c, τ)← MAXSAT(ψ,ϕsoft )
6: result ← SAT(Γσ(τ))
7: if result = unsatisfiable then
8: return (c, τ)
9: else

10: ψ ← ψ∧ REFINE(τ, x)

ψadm(F ′) ∧
∧
a∈A((

∧
(b,a)∈R′(

∨
(c,b)∈R′ xc)) → xa). We

define the following shorthand for searching for a superset
of a set S ⊆ A in case of preferred semantics, or otherwise
for a superset w.r.t. the range given by F ′.

ασ(F ′, S)=

{∧
a∈S xa ∧

∨
a∈A\S xa if σ = prf∧

a∈S+

R′
x+a ∧

∨
a∈A\S+

R′
x+a ∧ β(F ′) else.

The formula β(F ′) =
∧
a∈A(x+a ↔ (xa ∨

∨
(b,a)∈R′ xb))

encodes the range w.r.t. F ′. Now, the following formula ver-
ifies that F ′ is a solution to the (non-)strict enforcement un-
der σ with S = T if x = s and S = T ′ if x = ns.

Γσ(τ) = ψχ(F ′) ∧ ασ(F ′, S)

In words, we search for a superset of T (T ′) that is a
χ-extension. If this formula is satisfiable, then there is a
counterexample witnessing that T (T ′) is not a σ-extension
in F ′. For the refinement step, we define the shorthand
γ(τ) =

∧
(a,b)∈R′ ra,b, ∧

∧
{a,b}⊆A,(a,b)/∈R′ ¬ra,b. We re-

fine the current abstraction ψ by REFINE(τ, s) = ¬γ(τ)
in the strict case which rules out R′, and in the non-strict
case we additionally rule out all χ-extensions the range of
which is a subset of the range of T ′ by REFINE(τ, ns) =
¬γ(τ) ∨

∨
a∈A\T ′+

R′
x+a . In this case, we define range vari-

ables dependent on the attack variables via the shorthand
δ(A) =

∧
a∈A(x+a ↔ (xa ∨

∨
b∈A(rb,a ∧ xb))) (Line 3).

Algorithm 1 solves strict enforcement for {prf , sem, stg}
and non-strict enforcement for {sem, stg} optimally, as at
each iteration the current abstraction is solved optimally.

Experiments
We present empirical results on a prototype system im-
plementation (available at http://cs.helsinki.fi/
group/coreo/pakota/) for extension enforcement,
which supports the considered NP-hard strict and non-strict
extension enforcement variants, and allows for using
both MaxSAT solvers as well as IP solvers via standard
translation of MaxSAT into IP (Ansótegui and Gabàs 2013).

We generated enforcement instances as follows. Let
|A| = 25, 50, . . . denote the number of arguments in the
AF to be generated, and |T | the size of subset T ⊆ A of
arguments to be enforced. For a fixed edge probability p, we
sampled directed graphs by independently picking an edge
to the AF with probability p (but disallowing self-attacks).
For each |A| and p ∈ {0.05, 0.1, 0.2, 0.3}, we sampled five
directed graphs. For each AF, we picked uniformly at ran-
dom five sets of arguments T ⊂ A to be enforced for each
|T |/|A| ∈ {0.05, 0.1, 0.2, 0.3}. For each number of argu-
ments |A|, this gave 400 enforcement problem instances.

We used the OpenWBO (Martins, Manquinho, and Lynce
2014) MaxSAT solver—among the solvers in the 2015
MaxSAT Evaluation on Partial MaxSAT—and the CPLEX
IP solver. The experiments were run on 2.83-GHz Intel Xeon
E5440 quad-core machines with 32-GB memory and Debian
GNU/Linux 8 using a per-instance timeout of 900 seconds.

We present results for a choice of four major AF seman-
tics: the NP-complete enforcement problems of strict com-
plete and non-strict admissible and stable, as well as the ΣP2 -
complete strict preferred. As the only system available for
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Figure 4: Median runtimes (left); OpenWBO v CPLEX strict complete (middle), non-strict stable (right).

comparison, we consider the recently proposed IP-based ap-
proach to non-strict stable by Coste-Marquis et al. (2015)
using CPLEX. The performance of CPLEX on our encod-
ing and the approach of Coste-Marquis et al. for non-strict
stable (Fig. 4 left) essentially coincide also empirically, cor-
roborating the fact that the encodings are essentially the
same. Interestingly, the relative performance of OpenWBO
and CPLEX varies noticeably depending on the combina-
tion of (non)strictness and the semantics; CPLEX domi-
nates on non-strict stable, while OpenWBO is better on strict
complete; compare Fig. 4 middle and right. While Open-
WBO tends to produce more timeouts, the median runtimes
(Fig. 4 left) of OpenWBO are noticeably lower than those
of CPLEX. For the challenging ΣP2 -complete problem for
strict preferred, our prototype implementation of the pro-
posed CEGAR approach, using OpenWBO and complete
as the base abstraction, already performs well, solving in-
stances with 200 arguments and beyond (Fig. 5).

Other Extension Enforcement Variants
Finally, we shortly discuss other variants of extension en-
forcement, namely, under normal, strong, and weak expan-
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Figure 5: CEGAR on strict preferred

sions. Baumann and Brewka (2010) consider enforcement
under so-called expansions of an AF F = (A,R), which re-
sult in AF F ′ = (A ∪ A′, R ∪ R′) with new arguments A′
and new attacks R′ s.t. A ∩ A′ = R ∩ R′ = ∅ and one of
A′ or R′ is non-empty. An expansion is normal if for each
(a, b) ∈ R′ we have a ∈ A′ or b ∈ A′; strong if a /∈ A;
and weak if b /∈ A. The tasks for enforcement under these
variants are the same as for strict and non-strict, with the ad-
ditional requirement that the enforcing AF is to be a normal,
strong, or weak expansion. Considering these variants, the
proof of Proposition 2 implies the following for a fixed A′.

Corollary 8. Non-strict enforcement under normal, strong,
or weak expansions

• for admissible, complete, preferred, and stable semantics
is NP-complete; and

• for semi-stable and stage semantics is ΣP2 -complete.

As pointed out by Coste-Marquis et al. (2015), enforce-
ment under expansions can be encoded via additional hard
constraints for a fixed set A′ of additional arguments; the
same holds for the MaxSAT encodings. Furthermore, our
CEGAR algorithm (Algorithm 1) with adapted hard con-
straints can also be applied for semi-stable and stage seman-
tics under normal, strong, or weak expansions. Also, our
approach allows for further enforcement variants, e.g., any
combination of (i) imposing other constraints on the way
the attack structure may be changed, e.g., utilizing hard unit
clauses to state that certain attacks must not be removed,
(ii) attaching weights to attacks and searching for weight-
minimum changes, or (iii) removal of arguments (by remov-
ing the argument and all attacks the argument is involved in).
However, we note that it is not clear under which condition
the cost of optimal solutions is preserved when restricting
these problems by considering a fixed set A′ (e.g. a single-
ton set). In fact, the following example shows that the costs
of optimal solutions—and the sets of optimal solutions—do

c1 c2t1 t2a1 a2b1 b2

Figure 6: Enforcement under weak expansions



not in general coincide. Consider strictly enforcing {t1, t2}
under semi-stable semantics. Weak expansion in the AF in
Figure 6 requires two new arguments (for each argument t1
and t2 we need a new argument to extend their range); re-
stricting A′ to singleton sets would not yield any solutions.

Conclusions
We presented both new complexity results and novel algo-
rithms, based on a declarative optimization approach, for
several variants of fixed-argument extension enforcement.
As the main contributions, on the theoretical side we pre-
sented a nearly complete computational complexity map of
the considered problem variants. Complementing the the-
oretical analysis, we proposed algorithms for the variants,
ranging from polytime results to procedures going beyond
NP for the second-level complete problem variants. Further
improving the efficiency of the approach both via under-
standing what makes enforcement instances hard and via
employing optimization solvers incrementally with the CE-
GAR approach, as well as extensions to other types of argu-
mentation dynamics, are important aspects of future work.
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