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Abstract. The study of limits of strategic behavior in collective
decision making is a central topic in computational social choice.
Focusing on judgment aggregation, we provide complexity results
and algorithms for manipulation and bribery under various aggre-
gation rules. Specifically, we show that manipulation and bribery
are complete for the second level of the Polynomial Hierarchy
and detail aggregation-rule-specific strong refinements for effective
counterexample-guided abstraction refinement algorithms based on
iterative calls to a maximum satisfiability solver for both manipula-
tion and bribery. We provide an open-source implementation of the
approach and empirically evaluate its performance on standard Pref-
Lib datasets, showing that the strong refinement strategies developed
in this work enable scaling up to solving more instances.

1 Introduction
A central topic in the AI research area of computational social
choice [5, 30] is the study of limits of strategic behavior in collective
decision making, see, e.g., [3, 10, 19, 16, 17]. Strategic behavior is
often considered undesirable; for example, the ability to manipulate
the outcome of a voting process is generally harmful. It is important
to understand how difficult it is both in theory and practice to influ-
ence the results of social choice procedures by strategic behavior.

In this work, we study computational aspects of strategic behav-
ior in the context of judgment aggregation (JA) [23, 18, 12]. Judg-
ment aggregation offers a generic and well-established formal logi-
cal framework for modeling various settings where agents must reach
joint agreements through aggregating the preferences, judgments, or
beliefs of individual agents by social choice mechanisms. In terms of
forms of strategic behavior, we focus on two central notions: ma-
nipulation [14, 4, 11, 6], i.e., the task of determining whether an
individual can enforce their preferred group judgment by expresss-
ing an insincere individual judgment, and bribery [4, 11, 6], where
the task is to determine whether it is possible for an external party
to enforce their preferred group judgment by bribing several indi-
viduals involved in the group decision process to express insincere
individual judgments. In terms of judgment aggregation procedures
(JA rules), we cover a wide selection of central rules, specifically,
Kemeny [28, 26, 21, 27, 14, 13], Slater [26, 21, 27, 13], MaxHam-
ming [21], Young [21], and Dodgson [26].
∗ Corresponding Author. Email: matti.jarvisalo@helsinki.fi

Until now, manipulation and bribery have been shown to be Σp
2-

complete only under the Kemeny rule [11]. We considerably extend
this result by establishing Σp

2-completeness for all of the considered
JA rules. Thus, the problems of manipulation and bribery in JA both
face a significant complexity barrier. Complementing the complex-
ity results, we extend a recently outlined algorithmic approach for
deciding manipulation and bribery [9], first outlined for the Kemeny
rule, to cover the four other rules as well. The algorithmic approach
is based on the general approach of counterexample-guided abstrac-
tion refinement (CEGAR) [7, 8], and makes iterative use of a max-
imum satisfiability (MaxSAT) solver [1]. A key aspect of any CE-
GAR approach is the strength of refinements applied at each itera-
tion of the CEGAR loop. The purpose of a refinement strategy is to
prune out from further consideration the most recent solution can-
didate that turns out to be a non-solution by additional constraints.
The most basic form of refinement is a constraint that rules out only
the single most recent solution candidate found. This basic refine-
ment was proposed in [9]. However, by using such a basic refine-
ment, the CEGAR approach effectively degenerates into an approach
which naively enumerates potentially exponentially many solution
candidates. Hence, to make the CEGAR approach to manipulation
and bribery more effective in practice, stronger refinement strategies
are needed. The stronger the refinement steps, i.e., the more solu-
tion candidates can be ruled out from subsequent search based on a
single counterexample at each iteration, the fewer iterations can be
expected to be needed for termination. In order to make the CEGAR
approach to manipulation and bribery more efficient, we derive non-
trivial aggregation-rule-specific strong refinements for each of the
JA rules. Furthermore, the CEGAR approach originally outlined for
the Kemeny rule was not previously implemented [9]. We provide
an open-source implementation of the approach, extended to cover
all of the considered JA rules as detailed in this work together with
our strong refinements. We empirically evaluate the runtime perfor-
mance of the implementation on standard PrefLib datasets, showing
the benefits of the strong refinements.

2 Preliminaries
We recall judgment aggregation and aggregation rules [22, 15].

Judgment Aggregation Consider a set X of propositional vari-
ables (issues), and let ¬X = {¬x | x ∈ X}. The set of literals
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Φ = X ∪ ¬X is the agenda. A judgment set J ⊆ Φ represents an
individual opinion on the agenda. The judgment set J is complete if
for all x ∈ X either x ∈ J or ¬x ∈ J , and Γ-consistent with respect
to a propositional formula Γ if Γ∧

∧
l∈J l is satisfiable. Let J (Φ,Γ)

be the collection of all complete and Γ-consistent judgment sets.

Definition 1. A judgment aggregation framework consists of a set
I = {1, . . . , n} of agents, an agenda Φ over the set of issues X ,
a propositional formula Γ (the integrity constraint that may contain
variables outside X), and a profile P = (Ji)i∈I of complete and
Γ-consistent judgment sets Ji ∈ J (Φ,Γ) representing the opinions
of each agent i ∈ I .

For a literal l ∈ Φ, we denote by N(P, l) = |{i ∈ I | l ∈ Ji}| the
number of agents which support agenda item l. Similarly, we denote
by ∆(P, l) = N(P, l)−N(P,¬l) the difference in support of l and
¬l. The majoritarian judgment setM(P ) = {l ∈ Φ | ∆(P, l) > 0}
consists of agenda items supported by the majority of agents.

Connection to Other Variants of Judgment Aggregation In
terms of the general applicability of our results, we note that var-
ious variations of the above definitions have been considered—see,
e.g., [15] for an overview. As explained e.g. in [9], the “literal-based”
framework definition we use is as expressive as “formula-based”
frameworks in which propositional formulas are allowed as issues.
In particular, a formula-based framework corresponds to a literal-
based framework by (i) including for each formula φ an issue xφ as
a literal, and (ii) adding the constraint (xφ ↔ φ) to the integrity con-
straint. This is in fact a standard trick in SAT for taking a name (here
issue xφ) to represent a formula (here φ). As identified by Endriss
et al. [15], all frameworks for judgment aggregation that have been
considered can be divided into four classes depending on their ex-
pressivity (modulo polynomial-time translations). These four classes
are based on whether or not the framework allows for: (i) additional
variables that are not in one-to-one correspondence with the issues
in the agenda, and (ii) separate input and output constraints. While
we do not explicitly consider input and output constraints separately,
our results straightforwardly extend to this case. Specifically, by em-
ploying SAT-based solvers, our algorithmic approach allows for en-
forcing integrity constraints seamlessly by expressing them in propo-
sitional logic. Our hardness results are presented for the case where
additional variables are allowed; this is also the sake of representa-
tion, and the proofs can be straightforwardly adjusted to hold also for
the case that does not allow for additional variables.

Aggregation Rules A judgment aggregation rule R maps each
profile P to a collection of collective judgment sets R(P ) ⊆
J (Φ,Γ). We assume that the agenda Φ and the integrity constraint
Γ are fixed. In general, most judgment aggregation rules aim to
preserve Γ-consistency of collective judgment sets while remaining
close to the majoritarian judgment set.

Slater maximizes the agreement with the majoritarian judgment
set in terms of the number of agenda items. Formally, SLATER(P ) =
argmaxJ∈J (Φ,Γ) |J ∩M(P )|.

The next rules are based on minimizing a cost function defined
using the Hamming distance between complete (and Γ-consistent)
judgment sets J and J ′, denoted as d(J, J ′) = |J \ J ′| = |J ′ \ J |.

Kemeny maximizes the agreement with the whole profile P , hence
minimizing the sum of the Hamming distances to the judgment sets
in P . Formally, KEMENY(P ) = argminJ∈J (Φ,Γ)

∑
i∈I d(J, Ji).

MaxHamming minimizes the maximum Hamming dis-
tance to judgment sets in P , that is, MAXH(P ) =
argminJ∈J (Φ,Γ) maxi∈I d(J, Ji).

We also consider rules based on modifying the input profile P in
a minimum way so as to obtain a Γ-consistent majoritarian judgment
set. Let P(Φ,Γ) be the set of all profiles over Φ consisting of com-
plete and Γ-consistent judgment sets. For a profile P ∈ P(Φ,Γ) and
a subset I ′ ⊆ I of agents, we notate P [I ′] = (Ji)i∈I′ .

Young selects those complete and Γ-consistent judgment sets
which are obtained as supersets of majoritarian judgment sets of pro-
files from which the least possible number of judgment sets in P are
removed. That is, YOUNG(P ) considers profiles P Y ∈ P(Φ,Γ) with
P Y = P [IY] for some IY ⊆ I for whichM(P Y) is Γ-consistent,
maximizing |P Y|, and selects all J ∈ J (Φ,Γ) with J ⊇M(P Y).

Dodgson selects those complete and Γ-consistent judgment sets
which are obtained as supersets of majoritarian judgment sets of
profiles in which the least possible number of opinions are re-
verted. That is, DODGSON(P ) considers profiles P D ∈ P(Φ,Γ)
with P D = (JD

i )i∈I for which M(P D) is Γ-consistent, mini-
mizing

∑
i∈I d(Ji, J

D
i ), and selects all J ∈ J (Φ,Γ) for which

J ⊇M(P D).

Manipulation and Bribery We recall manipulation and bribery as
earlier defined for the Kemeny rule [11]. Let R be a judgment ag-
gregation rule. Consider a judgment aggregation framework with a
set of agents I , an agenda Φ, an integrity constraint Γ, and a profile
P = (J1, . . . , Jn) ∈ P(Φ,Γ), as well as an outcome L ⊆ Φ as
input. The task in manipulation and bribery is to construct a modi-
fied profile Pnew ∈ P(Φ,Γ) so that the outcome L is guaranteed to
be achieved in any collective judgment set J ∈ R(Pnew). The prob-
lems differ in which kind of modifications are allowed. We consider
bribery with corrupt judges.

In manipulation, an agentm ∈ I can influence the collective judg-
ment sets by specifying any judgment set J ′ (instead of Jm). A mod-
ified profile Pnew is of the form (J1, . . . , Jm−1, J

′, Jm+1, . . . , Jn)
with J ′ ∈ J (Φ,Γ). In bribery, an external agent can influence the
judgment sets of at most k agents among a given setC ⊆ I of corrupt
agents. A modified profile Pnew differs from P by at most k judgment
sets Ji with i ∈ C. The task is to find a modified profile Pnew such
that L ⊆ Jnew for all Jnew ∈ R(Pnew). The decision variant of the
problem asks whether such a profile exists.

SAT and MaxSAT For a Boolean variable x there are two liter-
als, x and ¬x. A clause C is a disjunction (∨) of literals. A CNF
formula F is a conjunction (∧) of clauses. We denote by V (F ) vari-
ables of F . An assignment τ : V (F ) → {0, 1} maps variables to 0
(false) or 1 (true), and extends to literals via τ(¬x) = 1 − τ(x),
to clauses via τ(C) = max{τ(l) | l ∈ C}, and to formulas via
τ(F ) = min{τ(C) | C ∈ F}. The Boolean satisfiability prob-
lem (SAT) asks whether a given formula F is satisfiable (i.e., is
there an assignment τ with τ(F ) = 1); if not, F is unsatisfiable.
In the (weighted partial) maximum satisfiability problem (MaxSAT
for short) [1] input consists of “hard” clauses Fhard, “soft” clauses
Fsoft, and a weight function w mapping each soft clause C ∈ Fsoft to
an integerw(C) ≥ 0. The task is to find an assignment τ which satis-
fies Fhard and minimizes the cost c(τ) =

∑
C∈Fsoft

w(C)(1− τ(C))
incurred by not satisfying soft clauses.

3 Complexity Results
We start with our complexity results.

Theorem 1. For each judgment aggregation rule R ∈
{KEMENY, SLATER,MAXH,YOUNG,DODGSON}, the problems of
manipulation and bribery are Σp

2-complete. Hardness holds even
when outcome L is restricted to |L| = 1.



Figure 1: The profile P in the proof sketch for Theorem 1.
P J1 J2 J3 J4 · · · J2n J2n+1 · · · · · · J6n
z1 0 0 1 1 · · · 1 1 1 0 0 0 0 0 0 · · ·
z′1 0 0 1 1 · · · 1 0 0 1 1 0 0 0 0 · · ·
z2 0 0 1 1 · · · 1 0 0 0 0 1 1 0 0 · · ·
z′2 0 0 1 1 · · · 1 0 0 0 0 0 0 1 1 · · ·
...

...
...

...
...

. . .
...

...
. . .

w 1 0 1 1 · · · 1 0 1 0 1 0 0 0 0 · · ·

For intuition, we provide three proof sketches: one as a generic
Σp

2-membership argument, one for Σp
2-hardness under YOUNG, and

one for Σp
2-hardness under MAXH. Full proofs are available in an

online appendix [31].

Proof: Σp
2-membership. We describe a polynomial-time nondeter-

ministic algorithm with access to an NP oracle that decides the prob-
lem. The algorithm first guesses a modified profile Pnew and checks
that it adheres to the constraints for the respective problem. Check-
ing that Pnew is in J (Φ,Γ) can be done using the NP oracle. For
each judgment aggregation rule R that we consider, we know that
the problem of deciding if there is some collective judgment set
J ∈ R(Pnew) such that L ̸⊆ J is in the complexity class Θp

2 [15].
Therefore, in (deterministic) polynomial time, using the NP ora-
cle, we can check whether there is some collective judgment set
J ∈ R(Pnew) such that L ̸⊆ J—or conversely, whether L ⊆ J
for all J ∈ R(Pnew).

For KEMENY, Σp
2-completeness has been shown previously [11].

However, the reduction with slightly modified arguments provides
hardness also for SLATER and DODGSON. We will next sketch a
proof for hardness of manipulation for YOUNG and for MAXH.

Proof (sketch): Σp
2-hardness for YOUNG. We give a reduction from

∃∀-QBF-SAT. Let φ = ∃Z∀Y ψ be a QBF with Z = {z1, . . . , zn}.
We construct an instance of the manipulation problem for YOUNG

as follows. As issues, we consider the set X = Z ∪ { z′ | z ∈
Z } ∪ {w}, where w and each x′ is a fresh variable. We define the
integrity constraint as Γ =

∧
z∈Z(z⊕z

′)(ψ → w).We letL = {w},
and we letm = 3. Finally, we let the profile P be as in Figure 1. (The
judgment sets in the constructed profile P are not consistent with Γ.
In the full proof we ensure that the profile is in fact in P(Φ,Γ).)

The main idea behind why this reduction works is the follow-
ing. The majority outcome M(P ) of P is not consistent with the
constraint Γ. To get a strict majority outcome that is consistent by
deleting as few as possible judgment sets from P is to delete ex-
actly 2n sets among J2n+1, . . . , J6n—and to do this in a way that for
each zi ∈ Z either two judgment sets are deleted that both contain zi
or two judgment sets are deleted that both contain z′i—and deleting
one of J1, J2. The possible ways of achieving consistency with Γ by
deleting a minimum number of voters are in correspondence with all
possible truth assignments to the variables in Z. Moreover, whether
the choice of J1, J2 yields a consistent majority outcome depends on
the choice of sets among J2n+1, . . . , J6n: if that choice corresponds
to a truth assignment α such that ∀Y ψ[α] is true, then only delet-
ing J2 leads to consistency (and the collective outcome includes w),
and otherwise either choice of J1 or J2 leads to consistency (and the
collective outcome may or may not include w).

The manipulator can then change J3 to a judgment set that in the
same way corresponds to a truth assignment α to the variables in Z.
After doing this, the ways of deleting a minimum number of judg-
ment sets to yield a consistent majority outcome are restricted to
those corresponding to the truth assignment α. Thus, the manipulator

can only enforce that L = {w} ⊆ J∗ for all J∗ ∈ YOUNG(Pnew)
by changing J3 to a judgment set that corresponds to a truth assign-
ment α such that ∀Y ψ[α] is true. This is possible if and only if the
original QBF is true.

Proof (sketch): Σp
2-hardness for MAXH. We give a reduction from

∃∀-QBF-SAT. Let φ = ∃Z∀Y ψ be a QBF with Z = {z1, . . . , zn}.
We construct an instance of the manipulation problem for MAXH as
follows. As issues, we consider the set X = Z ∪ { vi, v′i, z′i | zi ∈
Z }∪{w}, where w and each z′i, vi, v

′
i is a fresh variable. We define

the integrity constraint Γ as follows.

Γ =
(∧

zi∈Z(¬zi ∧ ¬z
′
i ∧ ¬vi ∧ ¬v′i)

)
∨(∧

zi∈Z((zi ⊕ z
′
i) ∧ ¬vi ∧ ¬v′i) ∧ (ψ → w)

)
∨(∧

zi∈Z((zi ⊕ z
′
i) ∧ (vi ⊕ v′i))

)
We let L = {w} and m = 1. Finally, we let the profile P consist of
two judgment sets J1 = J2 = { ¬χ | χ ∈ Φ }.

The main idea of this reduction is the following. The manipulator
can change their judgment set J1 in two general ways, correspond-
ing to the second and third disjunct of Γ. If they change their judg-
ment set to something J ′ that satisfies the second conjunct, both (the
original) J1 and J ′ will be outcomes, as they achieve minimax Ham-
ming distance to the profile, and as w ̸∈ J1, this will not achieve the
manipulator’s goal. If the manipulator changes their judgment set
to something J ′′ that satisfies the third disjunct, the collective out-
come(s) that achieve minimax Hamming distance to the profile are
judgment sets J∗ that agree with J ′′ on all issues zi, z′i and that set
all issues vi, v′i to false—these have Hamming distance n or n + 1
to J2 and to J ′′, whereas all other judgment sets have Hamming dis-
tance at least n + 2 to some set in the profile. By choosing a set J ′′

that corresponds to a truth assignment α for Z such that ∀Y ψ[α]
is true, the manipulator can enforce that only the judgment set J∗

that includes w is the collective outcome. In fact, this is the case
if and only if J ′′ corresponds to a truth assignment α for Z such
that ∀Y ψ[α] is true.

For each rule R, Σp
2-hardness for manipulation straightforwardly

carries over to the problem of bribery via reducing manipulation to
bribery by setting C = {Jm} and letting k = 1.

4 CEGAR for Manipulation and Bribery
Turning to algorithms, we extend a recently outlined approach to ma-
nipulation and bribery in the form of a MaxSAT-based CEGAR algo-
rithm [9]. The approach was originally outlined for the specific case
of the Kemeny rule, using a very basic refinement strategy for ruling
solution candidates out of further consideration one-by-one. Here we
extend the approach to cover all five considered JA rules. This re-
quires detailing rule-specific abstraction formulas and counterexam-
ple checks; we detail these extensions in Section 5. Furthermore, we
improve on the basic refinements by deriving stronger, rule-specific
refinement strategies for the considered JA rules. The stronger re-
finements (Section 6) have the potential of significantly reducing the
number of iterations needed for terminating the CEGAR approach.

We first describe the CEGAR algorithm for manipulation and
bribery as Algorithm 1, following [9] but with the JA rule given as in-
put for generality. An abstraction is initialized as a MaxSAT instance
(Fhard, Fsoft, w) (line 1) whose optimal solutions each correspond to a
modified profile Pnew and a collective judgment set J ∈ R(Pnew). Is-
sues X correspond directly to variables in the MaxSAT instance and



Algorithm 1 MaxSAT-based CEGAR for manipulation (M ) and
bribery (B). Input: Problem variant S ∈ {M,B}, judgment aggre-
gation ruleR, agenda Φ, integrity constraint Γ, profile P ∈ P(Φ,Γ),
outcome L ⊆ Φ.

1: (Fhard, Fsoft, w)← ABSTRACTIONS,R(Φ,Γ, P )
2: while true do
3: (c∗abs, τabs)← MAXSAT(Fhard ∧

∧
l∈L l, Fsoft, w)

4: if c∗abs = +∞ then return false
5: Pnew ← PROFILE(τabs), J∗

abs ← JUDGMENT(τabs)
6: Fcex ← Fhard ∧ FIXS(Pnew) ∧

∨
l∈L ¬l

7: (c∗cex, τcex)← MAXSAT(Fcex, Fsoft, w)
8: if c∗cex > c∗abs then return Pnew, J

∗
abs

9: Fhard ← Fhard ∧ REFINES,R(c
∗
abs, τcex)

therefore any constraints on J , including Γ, are directly expressed as
hard clauses over X . However, additional constraints on X do not
preserve the collective judgment sets in general.

We iteratively solve this MaxSAT instance with the additional
requirement that the outcome L is in a collective judgment set J
(line 3). If there is no solution, we return false, since then there is
no modified profile with a collective judgment set including the out-
come (line 4). Otherwise, we extract a candidate modified profile
Pnew and a candidate collective judgment set J∗

abs from the optimal so-
lution τabs (line 5). Since we enforced the outcome L as hard clauses,
J∗

abs ∈ R(Pnew) does not necesssarily hold. Also, we need to check
whether every judgment set in R(Pnew) contains L. Both of these
checks can be done via a single additional MaxSAT call. We fix the
candidate profile Pnew as unit clauses FIXS(Pnew), add a constraint
enforcing that L is not included in a collective judgment set J , and
solve the resulting MaxSAT instance (lines 6–7). If the cost c∗cex of
this instance exceeds the cost c∗abs of the abstraction, every judgment
set in Pnew includes L, so we return Pnew (line 8). Otherwise, the can-
didate profile Pnew and its collective judgment set J∗

cex ∈ R(Pnew)
corresponding to τcex is a counterexample, since J∗

cex ̸⊇ L.1 We
thus refine the abstraction, i.e., add constraints based on c∗abs and τcex

which rule out one or more modified profiles in which the outcome
is guaranteed not to be achieved (line 9). For correctness it suffices
to rule out the counterexample modified profile.

Proposition 1. Let ABSTRACTIONS,R(Φ,Γ, P ) be a MaxSAT
instance whose optimal solutions τ map to a modified profile
PROFILE(τ) and a collective judgment set JUDGMENT(τ) ∈
R(PROFILE(τ)). If REFINES,R(c

∗
abs, τcex) excludes exactly the coun-

terexample profile PROFILE(τcex), Algorithm 1 terminates, and re-
turns a modified profile Pnew if and only if for all J ∈ R(Pnew) it
holds that L ⊆ J .

However, as we will detail, for each problem variant and judgment
aggregation rule, it is possible to derive strong refinements that rule
out additional modified profiles where the outcome is not included in
every collective judgment set and still maintain correctness.

5 Abstractions and Counterexample Checks
Next, we detail MaxSAT encodings for the abstraction
ABSTRACTIONS,R(Φ,Γ, P ), encoding profile modifications
specific to the problem variant S and collective judgment sets
specific to the judgment aggregation rule R. The encodings build on
the MaxSAT encodings for outcome determination [9], producing

1 If c∗cex = c∗abs, then L ⊆ J∗
abs ∈ R(Pnew) and J∗

cex ∈ R(Pnew). But we are
to find Pnew s.t. all collective judgment sets include L.

MaxSAT instances whose optimal solutions are in a one-to-one
correspondence with collective judgment sets. Specifically, in
manipulation and bribery collective judgment sets are computed
from a modified profile—which is encoded in our MaxSAT
instance—instead of a fixed profile provided as input as in outcome
determination. We hence extend the MaxSAT encodings from [9] to
take the (nondeterministic) profile modifications into account. The
extension for the case of Kemeny was described in [9]. Here we
provide analogous encodings for the Slater, MaxHamming, Young,
and Dodgson rules. In each of the encodings, issues X are directly
included as MaxSAT variables to represent a collective judgment set
under R, and Γ is included as hard clauses to ensure Γ-consistency.

5.1 Manipulation

In manipulation, an agent m ∈ I can specify any judgment set J ′ ∈
J (Φ,Γ). We represent this judgment set using Boolean variables
mx for each x ∈ X . We enforce Γ-consistency of J ′ with the hard
clauses Γ[x 7→ mx | x ∈ X]. Given an optimal solution τ , a mod-
ified profile Pnew = (J1, . . . , Jm−1, J

′, Jm+1, . . . , Jn) is obtained
by setting J ′ = {x ∈ Φ | τ(mx) = 1} ∪ {¬x ∈ Φ | τ(mx) = 0}.
For the counterexample check, this profile is fixed via unit clauses
FIXM (Pnew) =

∧
x∈J′ mx ∧

∧
¬x∈J′ ¬mx. We continue by detail-

ing rule-specific encodings of the abstraction. For the following, we
let P−m = P [I \ {m}] be the profile consisting of judgment sets
without the manipulator.

Kemeny. We first recall the MaxSAT encoding for the abstraction
for the case of Kemeny as described in [9]. Collective judgment sets
minimize the sum of Hamming distances to the individual judgment
sets. Disregarding the manipulator, the objective function is repre-
sented by including for each agent i ∈ I \ {m} a soft clause (l)
with unit weight for each l ∈ Ji. Equivalently, for each l ∈ Φ, we
include a soft clause (l) with weight N(P−m, l). To account for the
manipulator, we include unit-weight soft clauses (mx → x) and
(¬mx → ¬x) for each x ∈ X representing the cost incurred due to
the judgment set of the manipulator.

We now detail analogous MaxSAT encodings for the abstraction
under the Slater, MaxHamming, Young, and Dodgson rules.

Slater. Collective judgment sets maximize the agreement to the
majoritarian judgment set of the modified profile. The majoritar-
ian judgment set cannot be influenced by the manipulator on issues
x ∈ X where the support of x and ¬x differs by more than 1. Thus,
for l ∈ M(P−m) with ∆(P−m, l) ≥ 2, we include a unit-weight
soft clause (l). To account for the judgment set of the manipulator,
we define X= = {x ∈ X | ∆(P−m, x) = 0}, X+ = {x ∈ X |
∆(P−m, x) = +1}, and X− = {x ∈ X | ∆(P−m, x) = −1}. For
issues in x ∈ X=, the manipulator decides single-handedly whether
x or ¬x is included in the majoritarian judgment set. This is encoded
with unit-weight soft clauses (mx → x) and (¬mx → ¬x). For
issues x ∈ X+, the manipulator can remove x fromM(P−m), en-
coded via the unit-weight soft clause (mx → x). Symmetrically, for
x ∈ X−, the manipulator can remove ¬x fromM(P−m), encoded
as the unit-weight soft clause (¬mx → ¬x).

MaxHamming. We use additional variables ax for each x ∈ X ,
with ax = 1 iff the manipulator agrees with the collective judg-
ment set, encoded as

∧
x∈X(ax ↔ (x ↔ mx)). We also also

use variables pk for each k = 1, . . . , |X|, where pk = 1 if the
Hamming distance of the collective judgment set to at least one
judgment set—either Ji for i ∈ I \ {m} or J ′—of the modified
profile is at least k. This is expressed for each k = 1, . . . , |X|



as
(∨

i∈I\{m}

(∑
l∈Ji
¬l ≥ k

)
∨
(∑

x∈X ¬ax ≥ k
))
→ pk. The

maximum Hamming distance is minimized via unit-weight soft
clauses (¬pk) for each k = 1, . . . , |X|.

Young. Additional variables yi for i ∈ I indicate which agents
are included in the modified profile P Y under the Young rule. The
unit-weight soft clauses (yi) for i ∈ I then maximize the number
of included agents. What remains is to ensure that variables x ∈ X
are set according to the strict majority of the modified profile. To
account for the presence of the manipulator, we use variables vx for
each x ∈ X , set to 1 iff the manipulator is in the modified profile and
supports issue x, encoded via

∧
x∈X(vx ↔ (ym ∧mx)). For a fixed

number of Young agents k and for each x ∈ X and k = 1, . . . , n,
the constraint(∑

i∈I yi ≤ k ∧
∑

i∈I\{m}
x∈Ji

yi + vx ≥ ⌊k/2⌋+ 1

)
→ x

forces x = 1 if a strict majority supports x. Symmetrically,(∑
i∈I yi ≥ k ∧

∑
i∈I\{m}

x∈Ji

yi + vx ≤ ⌈k/2⌉ − 1

)
→ ¬x

sets x to 0 if a strict majority supports ¬x.
Dodgson. Additional variables di,x for each i ∈ I and x ∈ X

express the Dodgson-modified profile P D, with di,x = 1 iff x ∈
JD
i . To ensure Γ-consistency of each JD

i , we use the hard clauses
Γ[x 7→ di,x | x ∈ X] for each i ∈ I . The constraints

(∑
i∈I di,x ≥

⌊n/2⌋ + 1 → x
)
∧

(∑
i∈I di,x ≤ ⌈n/2⌉ − 1 → ¬x

)
ensure

that x (resp. ¬x) is included in the collective judgment set if it is
supported by the strict majority of P D. For each i ∈ I \ {m} and
x ∈ X , either (di,x) or (¬di,x) is included as a unit-weight soft
clause according to whether Ji supports or rejects issue x. To account
for the manipulator, for each x ∈ X we use unit-weight soft clauses
(mx → dm,x) and (¬mx → ¬dm,x).

Proposition 2. For each R ∈ {KEMENY, SLATER, MAXH,
YOUNG, DODGSON}, optimal solutions τ of the MaxSAT instance
ABSTRACTIONM,R(Φ,Γ, P ) correspond exactly to optimal modi-
fied profiles Pnew = (J1, . . . , Jm−1, J

′, Jm+1, . . . , Jn) with J ′ =
{x ∈ Φ | τ(mx) = 1} ∪ {¬x ∈ Φ | τ(mx) = 0}, and collective
judgment sets J ∈ R(Pnew) via J = τ ∩ Φ.

5.2 Bribery

In bribery, judgment sets of up to k agents from C can be modified.
To represent these judgment sets, for each i ∈ C and x ∈ X , we
declare a Boolean variable ci,x. We ensure Γ-consistency of these
judgment sets via the hard clauses Γ[x 7→ ci,x | x ∈ X] for each
i ∈ C. To represent which agents are bribed, we declare a Boolean
variable bi for each i ∈ C. The bribery bound is encoded as the
cardinality constraint

∑
i∈C bi ≤ k. Further, we enforce that if an

agent is not bribed their judgment set is not changed via ¬bi →∧
x∈Ji

ci,x∧
∧

¬x∈Ji
¬ci,x. Given an optimal solution τ , a modified

profile Pnew is obtained by replacing for each i ∈ C the judgment set
Ji with J ′

i = {x ∈ Φ | τ(ci,x) = 1} ∪ {¬x ∈ Φ | τ(ci,x) = 0}.
For the counterexample check, this profile is fixed using unit clauses
FIXB(Pnew) =

∧
i∈C

(∧
x∈J′

i
ci,x ∧

∧
¬x∈J′

i
¬ci,x

)
. For the fol-

lowing, we let P−C = P [I \C] be the profile consisting of judgment
sets of non-corrupt agents.

Kemeny. We again first recall the MaxSAT encoding for the ab-
straction for the case of Kemeny as described in [9]. Each term of
the Kemeny objective for non-corrupt agents are encoded via a unit-
weight soft clause (l) with weight N(P−C , l) for each l ∈ Φ. For
each agent i ∈ C and x ∈ X , we include unit-weight soft clauses
(ci,x → x) and (¬ci,x → ¬x) to represent the rest of the terms.

Our analogous MaxSAT encodings for the abstraction under the
Slater, MaxHamming, Young, and Dodgson rules are as follows.

Slater. To represent agreement with the majoritarian judgment set
of the modified profile, we need to calculate it within the encoding
(similarly as for standard judgment aggregation under the Dodgson
rule). The sum S(P, x) =

∑
i∈C ci,x + N(P−C , x) represents the

support of issue x in the modified profile. For each x ∈ X , we in-
clude constraints qx → ((S(P, x) ≥ ⌊n/2⌋+1→ x)∧ (S(P, x) ≤
⌊n/2⌋ − 1 → ¬x)) to enforce that if qx = 1, the collective judg-
ment set includes x and ¬x according to the majoritarian judgment
set. Unit-weight soft clauses (qx) for each x ∈ X encode the Slater
objective function.

MaxHamming. We use additional variables ai,x for
each i ∈ C and x ∈ X , with ai,x = 1 iff agent
i agrees with the collective judgment set, encoded as∧

i∈C

∧
x∈X(ai,x ↔ (x↔ ci,x)). For k = 1, . . . , |X|, the formula(∨

i∈I\C

(∑
l∈Ji
¬l ≥ k

)
∨
∨

i∈C

(∑
x∈X ¬ai,x ≥ k

))
→ pk

forces pk = 1 if the Hamming distance of the collective judgment
set to Ji for i ∈ I \ C or J ′

i for i ∈ C is at least k. Distance is
minimized via unit-weight soft clauses (¬pk).

Young and Dodgson. For the Young rule, to account for corrupt
agents i ∈ C, we declare variables vi,x for each issue x, and in-
clude hard clauses vi,x ↔ (yi ∧ ci,x). The constraints are the
same as for manipulation, with the exception that the summation∑

i∈I\C,x∈Ji
yi +

∑
i∈C ai,x represents the support of issue x. For

the Dodgson rule, the constraints are identical to ones used for ma-
nipulation. We include unit-weight soft clauses (di,x) or (¬di,x) de-
pending on whether Ji for i ∈ I \C supports x ∈ X or not. To cover
corrupt agents, we include unit-weight soft clauses (ci,x → di,x) and
(¬ci,x → ¬di,x) for each i ∈ C and x ∈ X .

Proposition 3. For each R ∈ {KEMENY, SLATER, MAXH,
YOUNG, DODGSON}, optimal solutions τ of the MaxSAT instance
ABSTRACTIONB,R(Φ,Γ, P ) correspond exactly to optimal modified
profiles Pnew = (J ′

i)i∈I with J ′
i = {x ∈ Φ | τ(ci,x) = 1} ∪ {¬x ∈

Φ | τ(ci,x) = 0} for i ∈ C and J ′
i = Ji for i ̸∈ C, and collective

judgment sets J ∈ R(Pnew) via J = τ ∩ Φ.

6 Refinement Strategies
We next detail strong refinement strategies for excluding several in-
valid candidate profiles based on counterexample checks. A simple
and correct—yet inefficient—refinement, as proposed in [9] for the
case of Kemeny, is to exclude exactly the modified profile Pnew via
adding the clause ¬FIXS(Pnew). However, by inspecting the coun-
terexample (c∗cex, τcex) we obtain stronger refinement constraints. At
this point (line 9), we have a modified profile Pnew and an optimal
collective judgment set J∗

abs under the constraint L ⊆ J∗
abs from the

candidate solution (c∗abs, τabs) to the abstraction. Assuming this mod-
ified profile via FIXS(Pnew), we negated the constraint L ⊆ J∗

abs,
obtaining a solution (c∗cex, τcex) with c∗cex ≤ c∗abs. Now J∗

cex = τcex ∩Φ
is a counterexample judgment set, as J∗

cex ∈ R(Pnew) and L ̸⊆ J∗
cex.

For Kemeny, Slater, and MaxHamming, our refinement strategies
are based on comparing the cost of J∗

cex in an arbitrary candidate
modified profile to the cost of the abstraction c∗abs. Specifically, we
can rule out additional modified profiles where the cost of J∗

cex is at
most c∗abs, since the optimality of J∗

abs guarantees that c∗abs is a lower
bound on the cost of any collective judgment set J∗ ⊇ L across all
possible profiles P ′

new allowed by the problem variant.
For Young, refinement constraints are based on the fact that in any

candidate profile P ′
new, removing the same agents to obtain a Young



modified profile incurs c∗cex ≤ c∗abs cost. If, in addition, the majori-
tarian judgment sets of the corresponding Young profiles remain the
same, J∗

cex remains a counterexample in P ′
new. For Dodgson, we rea-

son about the number of modifications needed to obtain the same
Dodgson modified profile from P ′

new. As long as at most c∗abs modifi-
cations need to be performed, J∗

cex remains a counterexample arising
from the same modified profile. We now outline the specific refine-
ment strategies for each of the problem variants covered in this work.
For the following, assume that J∗

cex is a valid counterexample with
cost c∗cex ≤ c∗abs (i.e., J∗

cex ∈ R(Pnew)).

6.1 Manipulation

In manipulation, a modified profile Pnew is represented using the
judgment set indicated by the manipulator J ′, encoded using vari-
ables mx for each issue x ∈ X . In order to exclude further modified
profiles where the cost c∗new of J∗

cex is at most c∗abs, for the Kemeny,
Slater, and MaxHamming rules, our goal is to represent c∗new ̸≤ c∗abs

using these variables.
Kemeny. The cost of J∗

cex in a modified profile is determined by the
Hamming distances to judgment sets in P−m, which remains con-
stant with respect to the input and J∗

cex, and the Hamming distance to
the judgment set J ′ indicated by the manipulator. To ensure that the
new cost of J∗

cex is greater than c∗abs, the manipulator must indicate a
judgment set with sufficient distance to J∗

cex.
Slater. The cost of J∗

cex is determined by the disagreement with
the majoritarian judgment set. In turn, the judgment set J ′ indi-
cated by the manipulator only affects the cost of a counterexam-
ple for swing issues where the majoritarian judgment set is deter-
mined by J ′. For a profile P ′, let Φswing(P

′) = {l,¬l ∈ Φ |
∆(P ′, l) = 0} ∪ {l ∈ Φ | ∆(P ′, l) = 1}. The cost of the
counterexample on fixed issues of P−m, defined for a profile P ′ via
Φfixed(P

′) = {l ∈ Φ | ∆(P ′, l) ≥ 2}, is constant. To ensure that the
cost of J∗

cex exceeds c∗abs, the manipulator must indicate a judgment
set with sufficient disagreement to J∗

cex on issues in Φswing(P−m).
MaxHamming. The manipulator can dictate the cost of J∗

cex by in-
dicating a judgment set which disagrees with J∗

cex on more issues than
any Ji for i ̸= m. Hence, the manipulator must disagree on enough
issues to bring the cost of J∗

cex beyond c∗abs.

Proposition 4. Let J ′′ ∈ J (Φ,Γ) be a candidate manipulator judg-
ment set, and P ′

new = (J1, . . . , Jm−1, J
′′, Jm+1, . . . , Jn) the corre-

sponding modified profile. If
for R = KEMENY: d(J∗

cex, J
′′) ≤ c∗abs −

∑
i∈I\{m} d(J

∗
cex, Ji);

for R = SLATER:
|(J ′′ ∩ Φswing(P−m)) \ J∗

cex| ≤ c∗abs − |Φfixed(P−m) \ J∗
cex|:

for R = MAXH: d(J∗
cex, J

′′) ≤ c∗abs;
then there exists J ∈ R(P ′

new) with L ̸⊆ J .

By Proposition 4, we obtain the following refinement constraints
for the Kemeny, Slater, and MaxHamming rules, respectively:

∑
x∈J∗

cex

¬mx +
∑

¬x∈J∗
cex

mx ≥ c∗abs −
∑

i∈I\{m}

d(J∗
cex, Ji) + 1,

∑
x∈J∗

cex
¬x∈Φswing(P−m)

¬mx +
∑

¬x∈J∗
cex

x∈Φswing(P−m)

mx

≥ c∗abs − |Φfixed(P−m) \ J∗
cex|+ 1,

and
∑

x∈J∗
cex

¬mx +
∑

¬x∈J∗
cex

mx ≥ c∗abs + 1.

Young. If J∗
cex ⊇ M(P Y) where P Y does not include the ma-

nipulator’s judgment set J ′, we can return false and terminate im-
mediately. That is, no matter what the manipulator does, J∗

cex is a
valid solution obtained by including the same c∗cex ≤ c∗abs judgment
sets in the modified profile (removing the manipulator’s judgment
set). If J∗

cex is instead obtained from the majoritarian judgment set
of P Y ∪ {J ′}, the manipulator must indicate some judgment set J ′′

whereM(P Y ∪ {J ′′}) ̸⊆ J∗
cex. Otherwise, the counterexample J∗

cex

is still a valid solution which can be obtained by removing the same
judgment sets to form the modified profile P Y ∪ {J ′′}.

Dodgson. Recall that J∗
cex is a superset of the majoritarian judg-

ment set of a modified profile P D obtained by reverting some subset
of the opinions indicated in the profile Pnew. In this case, the manipu-
lator must indicate a judgment set such that, in order to form the same
profile P D, additional modifications are required. In particular, if the
Hamming distance to (J ′)D is sufficiently low, the same modified
profile P D can still be obtained with at most c∗abs modifications.

Proposition 5. Let J ′′ ∈ J (Φ,Γ) be a candidate manipulator judg-
ment set, and P ′

new = (J1, . . . , Jm−1, J
′′, Jm+1, . . . , Jn) the corre-

sponding modified profile. If
for R = YOUNG:
J∗

cex ⊇M(P Y ∪ {J ′}), and J∗
cex and J ′′ agree on swing issues with

respect to P Y, i.e., J∗
cex ∩ Φswing(P

Y) = J ′′ ∩ Φswing(P
Y);

for R = DODGSON: d((J ′)D, J ′′) ≤ c∗abs −
∑

i∈I\m d(JD
i , Ji);

then there exists J ∈ R(P ′
new) with L ̸⊆ J .

Again, we directly obtain the following refinement constraints for
Young and Dodgson rules, respectively:∨

x∈J∗
cex

¬x∈Φswing(P
Y)

¬mx ∨
∨

¬x∈J∗
cex

x∈Φswing(P
Y)

mx,

∑
x∈(J′)D

¬mx +
∑

¬x∈(J′)D

mx ≥ c∗abs −
∑
i∈I

d(JD
i , Ji) + 1.

6.2 Bribery

In bribery, a modified profile consisting of judgment sets J ′
i for each

i ∈ C is encoded via variables ci,x for each corrupt agent i ∈ C
and issue x ∈ X . The refinement strategies for bribery generalize
the ideas underlying refinement strategies for manipulation.

Kemeny. The cost of J∗
cex can be broken down to a constant part

arising from P−C and the sum of Hamming distances to judgment
sets J ′

i of corrupt agents i ∈ C. For the cost of J∗
cex to exceed c∗abs,

this sum must be sufficiently high.
Slater. We generalize the concept of swing issues to bribery as fol-

lows. Given our bribery budget k and any l ∈ Φ, we can revert at
most min(k,N(P [C], l)) judgments of agents i ∈ C to ¬l. For a
profile P , we denote by Φk-swing(P ) = {l,¬l ∈ Φ | 0 ≤ ∆(P, l) ≤
2 · min(k,N(P [C], l))}, and Φk-fixed(P ) = {l ∈ Φ | ∆(P, l) >
2 ·min(k,N(P [C], l))}. For the cost of J∗

cex to exceed c∗abs, the strict
majority needs to disagree with J∗

cex on sufficiently many swing is-
sues.

MaxHamming. Similarly to manipulation, any agent i ∈ C can
potentially increase the cost of J∗

cex. In particular, the disagreement
between J∗

cex and some bribed agent must exceed c∗abs, or otherwise
J∗

cex remains a counterexample.

Proposition 6. For each i ∈ C, let J ′′
i ∈ J (Φ,Γ) be a judgment

set of a bribed agent, and P ′
new be the corresponding profile where,

for each i ∈ C, Ji is replaced by J ′′
i . If



forR = KEMENY:
∑

i∈C d(J
∗
cex, J

′′
i ) ≤ c∗abs−

∑
i∈I\C d(J

∗
cex, Ji);

for R = SLATER:
|(M(P ′

new) ∩ Φk-swing(P )) \ J∗
cex| ≤ c∗abs − |Φk-fixed(P ) \ J∗

cex|;
and for R = MAXH: d(J∗

cex, J
′′
i ) ≤ c∗abs for all i ∈ C,

then there exists J ∈ R(P ′
new) with L ̸⊆ J .

For the Slater rule, the sums S(P, x) =
∑

i∈C ci,x +N(P−C , x)
represent the support of issue x in the encoding of the abstraction.
The additional variables px and nx for each x ∈ X represent whether
x or ¬x are included in the majoritarian judgment set of the modified
profile, encoded via equivalences px ↔ S(P, x) ≥ ⌊n/2⌋ + 1 and
nx ↔ S(P, x) ≤ ⌈n/2⌉ − 1. We obtain the refinements

∑
i∈C

 ∑
x∈J∗

cex

¬ci,x +
∑

¬x∈J∗
cex

ci,x

 ≥ c∗abs −
∑

i∈I\C

d(J∗
cex, Ji) + 1,

∑
x∈J∗

cex∩Φk-swing(P )

nx +
∑

¬x∈J∗
cex∩Φk-swing(P )

px

≥ c∗abs − |Φk-fixed(P ) \ J∗
cex|+ 1,

and
∨
i∈C

 ∑
x∈J∗

cex

¬ci,x +
∑

¬x∈J∗
cex

ci,x ≥ c∗abs + 1


for the Kemeny, Slater, and MaxHamming rules, respectively.

Young. Suppose J∗
cex ⊇ M(P Y) where P Y is a subprofile of Pnew

for agents IY. If we use the same agents IY in a new modified profile,
and the majoritarian judgment set remains the same, J∗

cex remains a
counterexample. Furthermore, the majoritarian judgment set can be
restricted to swing issues.

Dodgson. If we bribe agents so that the same modified profile can
be acquired with a sufficiently low number of Dodgson modifica-
tions, then J∗

cex remains a counterexample.

Proposition 7. For each i ∈ C, let J ′′
i ∈ J (Φ,Γ) be a judgment

set of a bribed agent, and P ′
new be the corresponding profile where,

for each i ∈ C, Ji is replaced by J ′′
i . If

for R = YOUNG:
J∗

cex ⊇ M(P Y) with P Y = Pnew[I
Y] for IY ⊆ I , and J∗

cex ∩
Φk-swing(P [IY]) ⊇M(P ′

new[I
Y]) ∩ Φk-swing(P [IY]);

for R = DODGSON:∑
i∈C d((J

′
i)

D, J ′′
i ) ≤ c∗abs −

∑
i∈I\C d(J

D
i , Ji);

then there exists J ∈ R(P ′
new) with L ̸⊆ J .

For the profile P [IY] restricted to Young agents, the sums
SY (P [IY], x) =

∑
i∈C∩IY ci,x +N(P [(I \C)∩ IY], x) represent

the support of x ∈ X . We rule out the judgment sets in Proposition 7
with the following constraints for Young and Dodgson, respectively:

∨
x∈J∗

cex∩Φk-swing(P [IY])

(
SY (P [IY], x) ≤ ⌈(n− c∗cex)/2⌉ − 1

)
∨

∨
¬x∈J∗

cex∩Φk-swing(P [IY])

(
SY (P [IY], x) ≥ ⌊(n− c∗cex)/2⌋+ 1

)
and

∑
i∈C

 ∑
x∈(J′

i)
D

¬ci,x +
∑

¬x∈(J′
i)

D

ci,x

 ≥ c∗abs −
∑

i∈I\C

d(JD
i , Ji) + 1.

7 Empirical Evaluation
We implemented the algorithms for manipulation and bribery on top
of SATcha [9]. The implementation is available in open source [31].

Table 1: Manipulation, strong v simple refinements.
Strong Simple

Rule #slv #true #false #slv #true #false
Kemeny 89 61 28 61 58 3
Slater 169 66 103 56 50 6
MaxHam. 44 29 15 32 25 7
Young 241 40 201 43 40 3
Dodgson 55 45 10 46 43 3

Table 2: Bribery with strong refinements (k = 1).
p = 0.2 p = 0.5

Rule #slv #true #false #slv #true #false
Kemeny 75 63 12 59 50 9
Slater 169 71 98 160 94 66
MaxHam. 42 32 10 43 40 3
Young 235 75 160 156 94 62
Dodgson 72 68 4 73 70 3

We use the incremental MaxSAT solver UWrMaxSAT [29], and en-
code cardinality constraints via the iterative totalizer CNF encod-
ing [2, 24] from PySAT [20]. The experiments were run on 2.40GHz
Intel Xeon Gold 6148 CPUs and 381-GB memory using a 30-minute
time and 16-GB memory limit for each instance. We use the 405
judgment aggregation instances from [9] based on PrefLib [25] pref-
erence aggregation instances. Note that the PrefLib datasets are from
different scenarios and are therefore nonuniform. Hence, algorithm
runtimes on the instances are not expectedly dictated by the abso-
lute size parameters of the individual datasets. For the benchmarks,
under manipulation the first voter is arbitrarily designated the manip-
ulator, and their desired outcome is that their preferred candidate is
most preferred in all optimal collective judgment sets under the given
judgment aggregation rule. For bribery, the outcome is chosen in the
same way based on the first voter’s preferences, who is removed from
the profile, and the remaining voters are each designated corrupt with
probability 0.2 or 0.5, of which at most one can be bribed (k = 1).

Results for manipulation using strong and simple (blocking only
the judgment set chosen by the manipulator in the previous itera-
tion) refinements are summarized in Table 1. The number of in-
stances solved (#slv) is noticeably higher with the strong refinements
techniques detailed in Section 6; the difference is most noticeable
on instances proven impossible to manipulate (#false), where using
the simple refinement strategy is prohibitively inefficient for all but
very small instances. Note that the “false” instances intuitively re-
quire ruling out all non-solutions, i.e. exhausting the entire search
space, while solutions to “true” instances may be found earlier “by
luck”. The results show that the strength of the strong refinements
is witnessed particularly on the “negative” instances. The impact of
strong refinements in the number of instances solved is particularly
pronounced under the Young and Slater rules. Results for bribery us-
ing strong refinement are shown in Table 2. The instances again are
easiest to solve under Slater and Young, owing to the strength of the
respective refinement constraints under these rules.

8 Conclusions

We provided new complexity results and algorithms for manipula-
tion and bribery as two central forms of strategic behavior in judg-
ment aggregation. The second-level completeness results extend ear-
lier results to cover various central aggregation rules. The strong re-
finements developed for the MaxSAT-based CEGAR approach, as
first implemented and evaluated here, allow for solving significantly
more PrefLib instances. For further work, both the complexity re-
sults and the algorithmic approach can expectedly be extended to
other forms of strategic behavior such as control.
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