
Advanced course in machine learning
582744

Lecture 9

Arto Klami



Sir David MacKay (22 April 1967 - 14 April 2016)
[Photo: Graham Turner]
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

http://withouthorair.com

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
http://withouthorair.com


Outline

Decision trees

Emsemble methods

Boosting

Comparing classification algorithms



Nonlinear supervised models

The kernel methods were based on the idea of mapping the
features through a nonlinear function and then applying a linear
model

The final model was
f (x) = wTφ(x) =

∑
n αnφ(xn)Tφ(x) =

∑
n αnk(xn, x)

Adaptive basis function models assume

f (x) = b +
∑
m

wmφm(x)

for M basis functions φm(·) that are learnt from the data



Classification and regression trees

X1 ≤ t1

X2 ≤ t2

R1 X1 ≤ t3

R4 R5

X2 ≤ t4

R2 R3

0
2

4
6

8
10

0
2

4
6

8
10
2

3

4

5

6

7

8

9

10

A binary tree where each node splits the data into two halves
according to one feature – these are called axis parallel splits

CART for classification and regression trees



Classification and regression trees

The tree can represent arbirarily complex patterns despite very
simple decisions. As adaptive basis function model it is

f (x) =
∑
m

wmI(x ∈ Rm)

where wm is the mean prediction (scalar for regression, class
probabilities for multi-class classification) and Rm is defined by the
splits

Learning this kind of models is rather different from the stuff we
have seen thus far – forget the gradients for a while



Growing a tree

Finding the optimal partitioning is NP-complete. In practice the
most well known variants (CART, C4.5, ID3) use greedy algorithms

Recursively pick a node and threshold t so that the sum of the
losses for the new leaves is smallest

The loss is simply squared error for regression and misclassification
for classification (or some other related losses)

Possible thresholds (for scalar regression) can be enumerated; just
sort the unique values

Stop when the loss does not increase a lot, some maximum depth
is reached, the leaves are sufficiently homogeneous, or whenever
you want to...



Trees and overfitting

If we continue until all elements are in their own leaves, the tree
will definitely overfit – it is an extremely flexible classifier we just
trained to reach zero training loss

The stopping heuristics mentioned on the previous slide are
approximations for early stopping

A more common approach is to grow a full tree and prune it; this
allows avoiding some local optima

Remove nodes using cross-validation error, pick a smallest tree
that is within (for example) one standard deviation of the full tree



Example CART method: ID3

I Start with all data in a root node

I Calculate information gain

H(S)− p1H(S1)− p2H(S2)

for each variable, where H(S) is the entropy of the classes for
data set S and S = S1 ∪ S2

I Split according to the variable with the highest information
gain

I Recursively repeat the above, excluding variables already used
higher up in the tree

I Stop if: All samples are in the same class or all variables have
been used



Decision trees - pros and cons

I Fast (especially when applying), robust to errors in training
data

I (Kind of) easy to interpret

I Direct multi-class support, work for mixed inputs

I Invariant to monotonous data transformations

I The greedy process does not guarantee high accuracy

I Unstable: Small changes in the input data might result in very
different data (which means the interpretations are fragile)



Ensemble methods

Ensemble methods refer to methods that combine predictions of
several supervised methods: f (y |x) =

∑
m wmfm(y |x)

The predictions of ensemble methods can be seen as voting; each
model votes for their output – sometimes also called committee
methods

Ensembles typically work better if the base models are more
versatile – either completely different algorithms or high-variance
solutions of one algorithm

Bayesian model averaging would use the posterior probabilities of
the models as weights, but is conceptually very different



Bagging

Bagging (bootstrap aggregating) is one of the simplest ensemble
methods, often used together with decision trees

Learn M trees for bootstrapped versions of the data (pick N
samples with replacement) and average the predictions with unit
weights

f (x) =
1

M

∑
m

f (x|θ(Xm))

Decreases the variance of the prediction without changing the bias

Helps to a degree, but the trees are often highly correlated
(because the input data are so similar)



Random forests

Random forests improve on bagging by learning individual trees on
randomly chosen subset of the data as well as randomly chosen
subset of the features

The idea is to make the models in the ensemble different from
each other, so that hopefully some tree solves problems that are
hard for others

Each tree is sparse (wrt to the original features), which should help
avoiding overfitting

Since we only used subset of samples to train each tree, we can
also estimate the validation error in some way (out-of-bag error)

Random forests are often very accurate, but we cannot interpret
them as easily as individual trees



Boosting

The strength of random forests came from combining multiple
models that are not so accurate (remember we used randomly
sampled features and data points)

Boosting goes even further along these lines, formalizing a
procedure of how a collection of weak learners can be converted
into a strong classifier

A weak learner is any classifier that is at least slightly better than
random: The empirical misclassification rate is at most 0.5− γ



Boosting – idea

Imagine we learn one classifier that works correctly for most
samples but incorrectly for a few

What if we now take the samples for which the model was wrong
and train another classifier for those alone? It probably classifies
some of them correctly

Repeat this several times and create an ensemble of the classifiers

Boosting formulates this intuitive idea, so that we are guaranteed
to reach zero empirical loss



Boosting

Each base learner is some adative basis function model, often a
decision tree or a decision stump (tree with just one node)

We assume the base learners are better than random, but not
necessarily by much (that is, they can be weak learners)

We learn M learners sequentially, training each one on a data set
with weighted samples (without re-visiting the old models!)

The weights are smaller for samples classified well by other
learners; the exact weights depend on the algorithm and the loss

The final ensemble weights the base learners based on their relative
accuracies



Adaboost

The final classifier is given by

FM(x) =
M∑

m=1

βmfm(x),

a weighted sum of the base classifiers that output −1 or 1

The decision is made by the sign of FM(x)

Given that we have already learnt Fm−1, we want to find the best
new classifier fm(x) and its weight βm

Note that this is not an iterative algorithm; we do not return to
the earlier ones but simply learn each base learner once



AdaBoost

Adaboost uses the exponential loss

L =
∑
n

e−ynFm(xn),

which as a function of the mth classifier is

L =
∑
n

e−ynFm−1(xn)e−ynβmfm(xn) =
∑
n

wne
−ynβmfm(xn)

We can directly optimize for the mth classifier as if it was the first
one if we weight the samples by

wn = e−ynFm−1(xn)

...which tends to zero for correctly classified samples and to infinity
for incorrectly classified ones



AdaBoost

Further simplification of
∑

n wne
−ynβmfm(xn) gives

L = e−βm
∑

yn=fm(xn)

wn + eβm
∑

yn 6=fm(xn)

wn

= (eβm − e−βm)
∑
n

wnI(yn 6= fm(xn)) + e−βm
∑
n

wn

= C
∑
n

wnI(yn 6= fm(xn)) + D

and hence we need to minimize the weighted classification error
using any suitable algorithm for the base learner

The weight depends on the weighted error rate εm as

βm =
1

2
log

1− εm
εm

,

which is positive for all m and bigger for more accurate classifiers



AdaBoost

Easy to implement, no parameters besides the number of learners
M (and the choice of the base learner)

Training loss decays exponentially in M, quickly converging to zero

Intuitively would overfit extremely, but in practice does not do so –
we will get back to this

AdaBoost is, however, vulnerable to noisy labels since the weights
are exponential and it overfits with too strong base learners



Other boosting techniques

I L2boost: Squared loss, next learner fitted to the residual

I LogitBoost: Log-loss, penalizes misclassification only linearly
instead of exponentially but requires Newton updates

I Sparse boosting: Require base learners to use only one feature
– close relationship with sparse regularizers for linear models

Also note the relationship with mixtures of supervised models:

p(y |xn) =
∑
m

πmp(y |xn, θm)

which would fit M learners using EM in a symmetric fashion,
instead of sequentially learning them



Why is boosting good?

Boosting makes the empirical risk zero, but often does not overfit;
see http://rob.schapire.net/papers/explaining-adaboost.pdfExplaining AdaBoost 5

10 100 1000
0

5

10

15

20

rounds of boosting

p
e

rc
e

n
t 

e
rr

o
r

-1 -0.5 0.5 1

0.5

1.0

cu
m

u
la

tiv
e
 d

is
tr

ib
u
tio

n

margin

Fig. 3 Left: The training and test percent error rates obtained using boosting on an OCR dataset
with C4.5 as the base learner. The top and bottom curves are test and training error, respectively.
The top horizontal line shows the test error rate using just C4.5. The bottom line shows the final
test error rate of AdaBoost after 1000 rounds. Right: The margin distribution graph for this same
case showing the cumulative distribution of margins of the training instances after 5, 100 and 1000
iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves, respectively.
(Both figures are reprinted from [31] with permission of the Institute of Mathematical Statistics.)

Such resistance to overfitting is typical of boosting, although, as we saw earlier,
boosting certainly can overfit. This resistance is one of the properties that make it
such an attractive learning algorithm. But how can we understand this behavior?

The margins explanation of Schapire et al. [31] was proposed as a way out of
this seeming paradox. Briefly, the main idea is the following. The description above
of AdaBoost’s performance on the training set only took into account the training
error, which is zero already after only five rounds. However, training error only tells
part of the story in that it only reports the number of examples that are correctly
or incorrectly classified. Instead, to understand AdaBoost, we also need to consider
how confident are the predictions being made by the algorithm. According to this
explanation, although the training error — that is, whether or not the predictions
are correct — is not changing after round 5, the confidence in those predictions is
increasing dramatically with additional rounds of boosting. And it is this increase in
confidence which accounts for the better generalization performance.

To measure confidence, we use a quantity called the margin. Recall that the com-
bined classifier H is simply a weighted majority vote — that is, the result of a
small-scale “election” — of the predictions of the weak classifiers. In a real-world
election, confidence in the outcome is measured by the margin of victory, the differ-
ence between the fraction of votes received by the winner and the fraction of votes
received by the loser. In the same way, we can define margin in our setting as the
difference between the weighted fraction of the weak classifiers predicting the cor-
rect label and the weighted fraction predicting the incorrect label. When this vote
is very close, so that the predicted label H(x) is based on a narrow majority, the
margin will be small in magnitude and, intuitively, we will have little confidence in
the prediction. On the other hand, when the prediction H(x) is based on a clear and
substantial majority of the base classifiers, the margin will be correspondingly large
lending greater confidence in the predicted label. Thus, the magnitude of the margin

AdaBoost maximizes a margin similar to SVM

Can be viewed as approximation to l1 regularization

http://rob.schapire.net/papers/explaining-adaboost.pdf


Re-cap

I Linear and generalized linear models; fast and easy,
gradient-based optimization

I Sparsity and regularization; crucial for high dimensionality,
often in practice by l1 regularization

I Kernel-methods: Represent w =
∑

n αnφ(xn) and operate
with the inner products φ(xi )

Tφ(xj) stored as a kernel

I Decision trees: Fast algorithms that can reach zero empirical
loss

Ensemble methods in principle applicable for all, but often used
together with decision trees; they need fast algorithms and can
tolerate weak accuracy



So which one should we pick?

No free lunch -theorem (Wolpert, 1996):
No algorithm is better than any other for minimizing the expected
risk for classification over all possible tasks

“All possible tasks” includes patological cases designed to be bad
for given algorithms – when solving practical problems we expect
to see somehow regular data sets

No universally best learning method, but for practical tasks some
methods are better than others



Large-scale comparisons

By comparing algorithms on multiple data sets we can analyze the
average behavior:

I Caruna and Niculescu-Mizil (2006): Boosted decision trees,
random forests, bagged decision trees, SMVs and neural
networks outperform logistic regression, naive Bayes, kNN and
individual decision trees (discussed in more detail in Section
16.7)

I Fernandez-Delgado et al. (2014) evaluated 179 classifiers on
121 data sets: Parallel random forests the best, on average
reaching 94% of the best accuracy; SVM with Gaussian
kernels reaches 92%; C5.0 decision trees and MLPs also near
the top

Crudely: Non-linearity is needed in general cases, some sort of
max-margin ideas or ensembles are often good


	Decision trees
	Emsemble methods
	Boosting
	Comparing classification algorithms



