
Advanced course in machine learning
582744

Lecture 8

Arto Klami



Are linear classifiers enough?

●
●

● ●

●

●

●
●

●

●
●

●
●

●●
●●

●
●●

●
●

●

●●
●

●

● ●
●

●● ●
●

●
●

●
●

●●●
●●

●
●

● ●
●●

●●●●●
●

●

●
●

●

●
●

●

●●

●

●
●

●●●
●
●

●
●

●●

●

●

●

●●
●●●

●

●

●

●

●●
●
●●

●

●●

●
●●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●
●

●

●

●
●

●●

●●●●

●

●
● ●

●●

●

●
●

●

●●
●●●●

●● ●●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●●● ●● ●

●

●

●
●

●●
●
●●

●●

●●

●

●

●
●●

●

●●●●

●●
●

●

●

●
● ●

●●
●

●

●
●●

●
●●

●●

●
●
●

●

●●●● ●
●●●●

●

●

●
●

●● ●●●●
●●
●

●
●●●

●
●

●
●●
●

●

●●
●

●
●

●

●

●
●●

●
● ●●●●●●● ●

●

●

●

●
●

●●
●●●

●●
●●

●
●

●

●

●
●

●
●●

●
●

●
●

●
●

●

●●●
●

●●●
●●

●●●

●

●
●

●●
●

●●●
●● ●●●

●
●

●
●●

●
●

●●●●
●

●
● ●

●●
●●

●

●
●

●

● ●●●
●

●●
●●
●●

●
● ●

●
●

●●
●

●●
●●

●●
● ●

●
●

●
●●

●

●

●

●
●
●

●●

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y



Are linear classifiers enough?

●
●

● ●

●

●

●
●

●

●
●

●
●

●●
●●

●
●●

●
●

●

●●
●

●

● ●
●

●● ●
●

●
●

●
●

●●●
●●

●
●

● ●
●●

●●●●●
●

●

●
●

●

●
●

●

●●

●

●
●

●●●
●
●

●
●

●●

●

●

●

●●
●●●

●

●

●

●

●●
●
●●

●

●●

●
●●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●
●

●

●

●
●

●●

●●●●

●

●
● ●

●●

●

●
●

●

●●
●●●●

●● ●●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●●● ●● ●

●

●

●
●

●●
●
●●

●●

●●

●

●

●
●●

●

●●●●

●●
●

●

●

●
● ●

●●
●

●

●
●●

●
●●

●●

●
●
●

●

●●●● ●
●●●●

●

●

●
●

●● ●●●●
●●
●

●
●●●

●
●

●
●●
●

●

●●
●

●
●

●

●

●
●●

●
● ●●●●●●● ●

●

●

●

●
●

●●
●●●

●●
●●

●
●

●

●

●
●

●
●●

●
●

●
●

●
●

●

●●●
●

●●●
●●

●●●

●

●
●

●●
●

●●●
●● ●●●

●
●

●
●●

●
●

●●●●
●

●
● ●

●●
●●

●

●
●

●

● ●●●
●

●●
●●
●●

●
● ●

●
●

●●
●

●●
●●

●●
● ●

●
●

●
●●

●

●

●

●
●
●

●●

−2 −1 0 1 2

−
2

−
1

0
1

2

x

y

●●● ●●
●

●●●
●●

●
●

●●
● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●
●

●●

●

●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●●
●

●●

●

● ●
● ●●● ● ●●
● ●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●● ●

●

●

●
●

●●
●
●

●

●●
●●

●

●
● ● ●

●

● ●●● ●● ●●●
●

● ●●●● ●
●

●●
●
●●

●●

●
●

●

●

●
●●● ●

●●●●
●

●

●
●

●
●
●
●●●

●●
●

●

●●●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
● ●

●
●● ● ●●●●●●

●

●

●

●
●

●● ● ●●● ●● ●●● ● ●● ●●●●●●●
●
●●
●

●●●●
●●

●
●●

●
●
●

●

●
●

●
●

●

●●●

●
●

●●●
●

●

●
●
●

●

●
●●
●
●

●

●

●●

●●
●●

●

●

●

●

● ●●●

●

●
●

●●

●●
●

●
●

●
●

●●

●

●●
●●

●●● ●●
●

●●●●
●
●

●●●● ●

0 1 2 3 4

0
1

2
3

4
5

x*x
y*

y



Non-linear classifiers by preprocessing the inputs

Cover’s theorem: Higher-dimensional representations are more
often linearly separable

...so let’s simply make some such transformation, for example,
φ(x) = [x, x2, x3] and then use yn = wTφ(xn)

Nasty side-effect: The dimensionality of the representation grows

Strong regularization and sparsity can help to avoid overfitting, but
the computational cost is still high (unless we get real sparsity)



Can we get around the high dimensionality?

Think of a simple nearest-neighbor classifier that computes
distances between samples

(xi − xj)
T (xi − xj) = xTi xi + xTj xj − 2xTi xj

We see they depend only on inner products of the vectors

The kernel trick is a magic trick that allows computing inner
products corresponding to some feature maps φ(x) quickly,
independent of the dimensionality

We collect the inner products into kernel matrix: kij = φ(xi )
Tφ(xj)



Simple kernels

I φ(x) = x: kij = xTi xj (linear kernel)

I φ(x) = [1,
√

2x1,
√

2x2, x
2
1 , x

2
2

√
2x1x2]: kij = (1 + xTi xj)

2

(polynomial kernel)

I φ(x) =???: kij = e−
‖xi−xh‖

2

2σ2 (Gaussian/RBF kernel)

Take a close look at the polynomial kernel: The kernel
computation is based on an inner product in the original
two-dimensional space whereas the innner product of the feature
maps operates in six-dimensional space



Mercer kernels

A kernel should be positive definite (positive eigenvalues) to
correspond to inner products between some feature maps

k = UTΛU → kij = (Λ1/2U:,i )
T (Λ1/2U:,j)→ φ(xi ) = Λ1/2U:,i

...but it is not necessarily easy to find the mapping that
corresponds to the kernel; the above expression only tells what the
output is for a given sample and it depends on the set of samples –
for the exact definition of φ(xi ) we would need the eigenfunctions
of the kernel

For Gaussian kernel φ(x) is actually infinite-dimensional



More advanced kernels

Very often the linear kernel or the Gaussian kernel are the default
choices

However, we can also design dedicated kernels for specific types of
data. The book lists some in Section 14.

1. TF-IDF for comparing text documents

2. String kernels that compute how many substrings two string
have in common

3. Pyramid match kernels for images

4. Fisher kernel that converts a generative model into kernels



Computing with kernels

If your loss function is directly expressed as inner products, then
just plug in an arbitrary kernel

If not, spend some time thinking if it could be represented that
way – it is not always easy, and often we end up studying the
solution of the problem instead of the loss

The basic idea is to use dual variables α such that the primal
variables w can be expressed as (something like)

w = Xα =
∑
n

αnxn



Kernelized ridge regression
Remember the solution

w = (XXT + λID)−1Xy

for the ridge regression

Matrix inversion lemma tells this is equivalent to

w = X(XTX + λIN)−1y

and now we can define

α = (XTX + λIn)−1y

as the dual variables, making the solution of the form w = Xα

Predictions with the model are then

wTx =
∑
n

αnx
T
n x =

∑
n

αnk(xn, x)

and hence only depend on inner product between the test sample
and the training samples



Kernelized representations

Not happy with the matrix inversion lemma?

Start by directly assuming w =
∑

n αnxn and re-write the loss as∑
n

(yn −
∑
j

αjx
T
j xn)2

to see that it only depends on the inner products

The representer theorem states that for reproducing kernel Hilbert
spaces all functions f (x) that minimize some regularized loss can
be represented as

f (x) =
∑
j

αjk(xj , x)

where k is the reproducing kernel of the space. Hence what we
assumed was that we operate in a RKHS



Kernelized ridge regression

Computing α requires inverting a matrix that is of size N × N,
compared to D × D for the primal problem

This is slow for large training data, whereas the primal problem is
slow for high dimensionality – with high-dimensional implicit
feature maps the dual problem is obviously better, but it can still
be slow

For D � N this is a faster way for solving even linear problems, but
the predictions are slower since we need inner products between
the test sample and all training samples (ND vs just D for wTx)

With linear models we could get away without regularization, but
with infinite-dimensional kernels we definitely need regularization



Large-margin principle

Linear classifier with hard decision: If the class labels are +1 and
−1 then the decision rule “Sample belongs to class +1 iff
wTx + b ≥ 0” can be re-written as (wTx + b)y ≥ 0

The margin is the distance to the separating hyperplane, given by
γn = (wTxn + b)yn



Maximum margin classifier
For linearly separable data we can maximize the smallest margin
γ = minn γn, normalized by ‖w‖ since otherwise we get infinite
margins by increasing the norm

The optimization problem is hence

max
γ

‖w‖
s.t. (wTxn + b)yn ≥ γ

which is equivalent to

min
1

2
‖w‖2

s.t. (wTxn + b)yn ≥ 1

Maximizing the margin is equivalent to minimizing the norm of the
projection vector under constraint of at least unit margin



Kernelizing the maximum margin classifier
The constrained optimization problem

min
1

2
‖w‖2

s.t. (wTxn + b)yn ≥ 1

can be solved with lagrange multipliers using

min
1

2
wTw −

∑
n

αn

[
(wTxn + b)yn − 1

]
Taking derivatives wrt to w and b gives

w =
∑
n

αnxnyn∑
n

αnyn = 0

and shows that the weights are indeed a weighted sum of the
samples



Kernelizing the maximum margin classifier
Plugging the above in to the loss function gives

min
∑
i

αi −
1

2

∑
i ,j

αiαjyiyjx
T
i xj

s.t. αi ≥ 0 ∀i∑
i

αiyi = 0

The optimization problem only involves inner products so it can be
kernelized, and we are minimizing αi that are all non-negative
(because they are Lagrange multipliers) – intuitively this tries to
make them zero

The predictions are given by

wTx + b ≥ 0 ≡
∑
i

αiyix
T
i x + b ≥ 0

where we only need to sum over the support vectors, the samples
with αi ≥ 0



Non-separable data
What if the data is not separable? Then we cannot satisfy the
constraints

The solution is to add slack variables ξi ≥ 0 that measure the
violation and minimize over them

min
1

2
‖w‖2 + C

∑
n

ξn

s.t. (wTxn + b)yn ≥ 1− ξn
ξn ≥ 0

The corresponding dual formulation becomes

min
∑
i

αi −
1

2

∑
i ,j

αiαjyiyjx
T
i xj

s.t. 0 ≤ αi ≤ C ∀i∑
i

αiyi = 0



Support vector machine

The optimization problem presented on the previous slide
corresponds to support vector machine, which is rather powerful
classifier

The parameter C can be interepreted as regularization, even
though it was defined as the weight for margin violations.

The weights α are zero for all samples on the correct side of the
margin, and non-zero only for samples lying on the margin or that
have non-zero slack variables



Alternative viewpoint

SVM can alternatively be interepreted as mimizing the hinge loss
that penalizes already for violations of the marging

Similarly, support vector regression is obtained by minimizing
ε-insensitive loss that does not penalize at all for small error

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

η

lo
s
s

 

 

0−1

hinge

logloss

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 

 

L2

ε−insensitive

huber



Solving the SVM problem
We could use generic constrained optimization packages, but
dedicated algorithms are often faster. Coordinate ascent is a good
algorithm for problems with constraints for individual variables

However, we cannot change any of the α alone since
∑

n αnyn = 0

Sequential minimal optimization (SMO) updates pairs (αi ,αj) at
a time, keeping all others fixed:

αiyi + αjyj = −
∑
k 6=i ,j

αkyk = η

and hence their relationship is linear

αi = (η −αjyj)yi

Now we optimize wrt to αj , which is a quadratic function,
remembering that both αj and αi have to stay within [0,C ]



SVM in practice

I Pick a suitable kernel. Perhaps use the Gaussian kernel as the
default choice, but remember that you need to pick σ2 as well

I Use SMO for learning and choose the regularization parameter
C by cross-validation

I Note that C and σ2 depend on each other – narrow kernels
require more regularization

I Hence, you might want to choose both C and σ2 with CV

I Multiclass classification with one-vs-rest or one-vs-one



Probabilistic interpretation?

The outputs of SVM are not probabilities, but we do get some
certainty estimates by looking at the margin of invididual samples

One could attempt converting them into numbers that look like
probabilities, but the results are not properly calibrated

Section 14.5.5 sketches a probabilistic interepretation for SVM, by
interpreting the hinge loss as a Gaussian scale mixture, making EM
a feasible algorithm for solving SVMs

Gaussian processes (Section 15; not covered on the course) are a
more reasonable probabilistic alternative for kernel-based regression
and classification – for example, we can then choose the kernel
parameters based on marginal likelihood


	Kernel methods
	The kernel trick

	Kernel methods
	Kernelized ridge regression
	Support vector machines




