
Advanced course in machine learning
582744

Lecture 7

Arto Klami

Moodle

Moodle is open
https://moodle.helsinki.fi/course/view.php?id=20396

I I will announce exercises and their solutions here as news
items – you get email notification for this (and hopefully can
turn them of as well)

I One thread for each exercise, use to ask questions or
clarifications and me and Aditya will reply as soon as we can

I Feel free to help other students, but do not give direct answers

I If you want to see something else in Moodle, just let us know

https://moodle.helsinki.fi/course/view.php?id=20396

Outline

Linear regression

Logistic regression

Sparse linear models

Generative models as classifiers

Mixture of experts

Supervised learning (from lecture 3)

The thing we all know:

I Input: xn, yn
I Learning task: f (xn) ≈ yn
I Use: f (x)

Linear regression

Minimize the squared loss

L(w) =
∑
n

(yn −wTxn)2

Solution using pseudo-inverse

w = (XXT)−1Xy,

which is nothing but the solution for ∇L = 0

Want bias term? Easiest to implement by adding X1n = 1 ∀n as
the first element of the covariates

Linear regression

Probabilistic formulation

p(yn|w, xn, σ2) = N(wTxn, σ
2)

gives the negative log-likelihood

L(w, σ2) = C + log σ2 +
1

2σ2

∑
n

(yn −wTxn)2

Irrespective of σ2 we need to minimize the same squared loss, but
we also get an estimate for the residual noise

yn can just as well be multivariate, making w a matrix. We simply
model each dimension independently

Linear regression vs PCA

The probabilistic models

yn ∼ N(WTxn, σ
2I) (LR)

and
xn ∼ N(WTzn, σ

2I) (PCA)

look awfully similar

One can think of PCA as linear regression where the covariates are
unknown and need to be estimated as well

Regularized linear regression

Even though linear regression is extremely simple model, it still
overfits when the dimensionality is large compared to the amount
of data – we already saw this in exercise 2

The prior wd ∼ N(0, α) results in the log-loss

L(w, σ2) = C + log σ2 +
1

2σ2

∑
n

(yn −wTxn)2 + αwTw,

and after some elementary calculus we get the MAP solution

w = (XXT + αI)−1Xy

This is called ridge regression, which has the effect of pulling the
elements of w towards zero. Cross-validation can be used for
choosing α.

Robust linear regression

What if we have outliers?

Student’s t-distribution has heavier tails than normal distribution,
and hence

yn ∼ tν(wTxn, σ
2)

gives a more robust linear regression model

Laplace distribution log p ∝ |ynwTxn| would also work

No closed-form solution, so optimization is harder

Logistic regression

Generalized linear models (Section 9; not covered on the course)
are linear models that use other exponential family densities in
place of the Gaussian likelihood

Logistic regression is one important special case:

p(yn|w, xn) = Ber(y |sigm(wTxn))

We already saw the negative log-likelihood in exercise 2.1, and
even derived the gradient for minimizing it

In matrix-form the prettiest equations are probably

g = XT (µ− y)

H = XTSX,

where µn = sigm(wTxn) and S = diag(µn(1− µn))

Logistic regression
Newton’s method solves the problem well, and can be
re-interpreted as iteratively reweighted least squares (IRLS)
because it iteratively solves optimization problems of the form

L(w) =
∑
n

sn(zn −wTxn)2

where sn are weights and zn are pseudo-targets (see Section 8.3.4)

Regularized version with the prior wnd ∼ N(0, α) simply adds 2αw
for the gradient and 2αI for the Hessian

The model can also be extended for multiple outputs, as
multinomial logistic regression, using the likelihood

p(yn = c|W, xn) =
ew

T
c xn∑

j e
wT
j xn

The updates are given in Section 8.3.7; these are a bit messy and
the Hessian is huge

Sparsity

Linear models overfit when D is large compared to N; in extreme
cases D � N, for example D = 10, 000 genes used as covariates
for N = 100 patients

...or because we expanded the feature space to get a non-linear
variant

One intuitively effective way of regularizing the model for such
cases is feature selection, which means using only a subset of the
original D dimensions in the model

Plenty of techniques for selecting them in advance, but here we
consider approaches that directly learn sparse solutions, implicitly
selecting the features

Direct sparsity

Probabilistic formulation: Introduce new latent variables
γd ∼ Ber(θ) that tell whether a feature is being used or not, and
infer p(γ|D) ∝ p(D|γ)p(γ)

The prior is p(γ) = θ‖γ‖0(1− θ)D−‖γ‖0 , where ‖γ‖0 is the l0-norm
that counts how many elemtents differ from zero

By further specifying that wd = 0 if γd = 0 and wd ∼ N(0, α) if
γd = 1, we can write a full probabilistic model

In the end it gives a regularization term λ‖γ‖0

Direct sparsity

Optimization for losses L(w) + λ‖w‖0 is difficult because the
regularizer is not smooth

I Greedy choice: Start with w = 0 and always add the best
dimension

I Backwards seletion: Start with γd = 1 ∀d and remove
features greedily

I ...and a wide range of more advanced algorithms, including
EM for a slightly modified prior

In practice we usually do not directly learn such a sparse model but
try to find sparse models by other means

Sparsity

The l2 norm gave ridge regression that simply pulls the weights
towards zero, whereas l0 counted the number of non-zero elements
and hence directly encorces sparsity

What if we tried regularizing with lp for some 0 ≤ p ≤ 2, such as
l1?

Corresponds to the Laplace prior e−λ‖wd‖

Sparsity via regularization

Side-remark:
Minimizing L(w) + λR(w) is equivalent to minimizing L(w) such
that R(w) ≤ B for some B, where smaller B correspond to larger λ

Might help geometric intuition: Regularized solution has to stay
within a “ball” of given norm

...but the relationship between B and λ above depends on the data

Sparsity – geometric motivation

 0.2

 0.4

 0.6

 0.8

 1

−1 0 1 2 3

−
1

0
1

2
3

●

No reg.

 0.2

 0.4

 0.6

 0.8

 1

−1 0 1 2 3

−
1

0
1

2
3

 1

●

2−norm

 0.2

 0.4

 0.6

 0.8

 1

−1 0 1 2 3

−
1

0
1

2
3

●

1−norm

 0.2

 0.4

 0.6

 0.8

 1

−1 0 1 2 3

−
1

0
1

2
3

●

0−norm

Sparse linear regression

Regression with l1 regularization is called lasso for “least absolute
shrinkage and selection operator”

L(w) =
∑
n

(yn −wTxn)2 + λ‖w‖1

The partial derivative of the regularizer is not defined at wd = 0,
but we can use subgradient which is any slope that touches the
loss function at such discontinuity and is below the curve

We find the minimum by following the subgradients, and for the
solution the zero vector belongs to the family of subgradients

Lasso (Section 13.3.2)

The full subgradient is given by

∇L(w) =

adwd − cd − λ if wd < 0

[−cd − λ,−cd + λ] if wd = 0

adwd − cd + λ if wd > 0,

where ad = 2
∑

X2
nd and cd = 2

∑
n Xnd(yn −wT

−dXn,−d)

...and by setting it to zero we get the solution as

wd = (cd + λ)/ad if cd < −λ
wd = 0 if cd ∈ [−λ, λ]

wd = (cd − λ)/ad if cd > λ

Pulls all weights towards zero by a constant amount, setting them
exactly to zero if close enough

Compare to l2 which divides the weights by 1 + λ (Section 13.5.3)

Lasso

An algorithm called LARS (“least angle regression and shrinkage”)
can compute the solution for all values of λ in roughly the same
time as it takes to solve the problem for one value

Based on the observation that the set of non-zero values changes
only for certain critical values of λ and otherwise the weights
change linearly

l1 algorithms

Optimization algorithm for general loss functions (such as logistic
regression):

I Coordinate descent: Optimize over each dimension
independently (the equations above actually did this)

I Proximal methods: For any combination of smooth convex
loss function and non-smooth (but convex) regularizer

I Basic idea: Replace the non-smooth loss R(w) with its
proximal operator minz R(z) + ‖z−w‖2, giving a quadratic
approximation for the regularized loss

I EM, after representing the Laplace distribution as Gaussian
scale mixture (Section 13.4.4)

On this course knowing the first approach is enough

Other sparsity priors

I Group-lasso: l1-norm for groups of
variables

I Elastic net: Sum of l2 and l1
I Bridge:

∑
d ‖wd‖b for b ≥ 0 (note that

b = 1 is the smallest one that is convex)

I Automatic relevance determination
(ARD): wd ∼ N(0, α), with some flat
prior for α (often used with PCA)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

HAL

a=1, b=0.01

a=1, b=0.10

a=1, b=1.00

Generative classifiers

The above models are discriminative classifiers since they directly
optimize for a loss that is related to the output variable (that is,
they model the conditional density p(y |x))

An alternative is to consider generative classifiers that construct a
model for the joint density p(y , x) and use it to infer the
conditional density

p(y |x) =
p(y , x)

p(x)

Generative vs discriminative (Section 8.6.1)

I Generative often easier to fit

I ...but we are fitting a more complex representation

I Missing inputs easier for generative models

I Unlabeled examples can help for generative models
(semi-supervised learning)

I Discriminative models support arbitrary preprocessing steps
for the inputs

I Generative models rely more on the assumptions of the model

Gaussian discriminant analysis

One practical generative classifier assumes p(x|y = c) = N(µc ,Σc)

New samples classified using

arg min(x− µc)TΣ−1c (x− µc),

or by normalizing these to get the full posterior

If the covariances are shared (Σc = Σ), we get Linear discriminant
analysis (LDA), since the discriminative boundary becomes linear

With general covariances the method is called Quadratic
discriminant analysis

Generative classifiers

−2 0 2

−2

0

2

Parabolic Boundary

−2 0 2 4 6

−2

0

2

4

6

8

Some Linear, Some Quadratic

−2 0 2

−2

0

2

Linear Boundary

−2 0 2 4 6

−2

0

2

4

6

All Linear Boundaries

Mixtures of experts

We already saw how to create mixtures of PCAs

How about discriminative mixtures? Associate with each mixture
component a discriminative model p(y |xn)

Mixture of experts combines a gating network that assigns samples
into K mixture components based on x alone with K
discriminative models for predicting y

p(yn|xn, zn = k,θ) = N(wT
k xn, σ

2
k)

p(zn = k) ∝ evk
T xn

Mixture of experts

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5
expert predictions, fixed mixing weights=0

−1 −0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gating functions, fixed mixing weights=0

−1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5
predicted mean and var, fixed mixing weights=0

	Linear regression
	Logistic regression
	Sparse linear models
	Generative models as classifiers
	Mixture of experts

