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Unsupervised learning

No distinction between inputs and outputs; we have some data xn
and want to understand the process generating them

Often solved with latent-variable models: Some unknown quantity
for each data point becomes the new representation for that data

I Clustering: Data points represented by cluster index, similar
points grouped together

I Dimensionality reduction: Data points represented by
lower-dimensional vectors (linear or non-linear mapping)

I Missing value imputation: Estimate data elements that are
unknown or censored



Principal component analysis

The classical tool for dimensionality reduction, familiar already
because of the first exercise (and the Intro course)

Classical (equivalent) definitions: Find orthonormal linear
projection of k components that

I Minimizes the reconstruction error

I Maximizes the variance of the projections

The solution is found by computing the eigen-value decomposition
of XXT for centered data, retaining the eigenvectors corresponding
to the k largest eigenvalues as the lower-dimensional representation

...or equivalently as the right singular vectors of the SVD of X



PCA: Reconstruction

The projections are given by zn = WTxn

...and the reconstructions by x̂n = Wzn = WWT xn

Intuition:
zn = wTxn tells how far the point is along w
znw is the actual representation of the point in that subspace



PCA: Inference

L(w) = max var(wTx) = wTΣw subject to wTw = 1

Using Lagrange multipliers for the constraint we get
(wTΣw)−λ(wTw− 1), which has the gradient ∇L = 2Σw− 2λw

The gradient is zero for any pair (w, λ) that are some eigenvector
and -value of Σ, and the maximum is obtained with the largest one

...and the variance retained is wT
1 Σw1 = λ1 since wTw = 1

How about the next direction? Add the constraints wT
2 w1 = 0 and

wT
2 w2 = 1 and go through the same derivation



PCA: Whitening

PCA can be used to perform a data processing step called
whitening

I Solve PCA and retain all components

I Normalize the components with the standard derivation
√
λ

The resulting data has unit variance in all directions and the
dimensions are uncorrelated



Principal component analysis

It is also possible to write a probabilistic formulation for PCA as a
generative latent variable model, and infer the parameters using
EM algorithm

Why bother?

I Missing data, streaming data

I EM actually faster for some cases than direct SVD, and here
actually is guaranteed to converge to the global optimum

I Extensions as part of a hierarchical model, or by changing the
likelihood

I The probabilistic evaluation tools and model selection



Continuous latent variables

Mixture models were based on discrete latent variables indicating a
cluster membership

The same basic tools are applicable also for continuous latent
variables



Multivariate normal distribution

Remember the first exercises:
If x ∼ N(0, I ) then y = Wx ∼ N(0,WWT )

We can think of this as low-rank parameterization for a covariance
matrix: Σ = WWT

More generally

x ∼ N(µ,Σ)→ y ∼ N(Wµ,WΣWT )

and
z = y + N(a,S) ∼ N(Wµ + a,WΣWT + S)



Probabilistic interpretation for PCA
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Factor analysis

Factor analysis is defined as

zn ∼ N(0, I)

xn ∼ N(Wzn,Ψ)

where Ψ is diagonal

Used for learning interpretable factors of the data

Unidentifiability: The maximum likelihood solution is identical for
arbitrary rotations of W, but can be fixed by

I Requiring orthonormality

I Making W lower-triangular

I Various sparsity assumptions

Probabilistic PCA is a special case with Ψ = σ2I, and classical
PCA is obtained when σ2 → 0



Regularizing effect of PPCA
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Projections of probabilistic PCA (right) pulled towards zero
because of the prior zn ∼ N(0, I)



EM for factor analysis

For inference we can use the same EM algorithm presented last
lecture

The expected log-likelihood is

l(θ, θt) = Ep(zn|xn,W,Ψ)[
∑
n

log p(xn, zn|W,Ψ)]

where the conditional posterior of zn conditional on the previous
values of Ψ and W is N(m,S) with

Sn = (I + WTΨ−1W)−1

mn = Sn(WTΨ−1xn)



EM for factor analysis

The epectations of that normal distribution are

E[zn] = mn

E[znzTn ] = mnmT
n + Sn

...and after quite some algebraic manipulation (Section 4) we get
the following updates for the actual parameters:

I Wt+1 = E[xnzTn ]E[znzTn ]−1

I Ψ = 1
N diag(

∑
n(xn −Wt+1m)xTn )



Principal component analysis: Missing data

Standard PCA algorithms fail is some elements of X are unknown

The probabilistic formulation allows computing the likelihood only
over the observed entries

The updates on the previous slide still apply, but now we only sum
over the observed values: The latent variables are pulled towards
zero and the variance increases

A more justified approach would be to interpret the missing values
as latent variables, postulate a probability density q(xnd) over
them and use EM algorithm for inferring it

The same idea works for mixture models too. See Section 11.6.



Principal component analysis: Number of components

The number of factors:
Classical solution is to inspect the eigenspectrum and keep
components that capture, for example, 90% or 95% of the variance

Probabilistic formulation:

I Cross-validated likelihood

I Automatic-relevance determination: Suitable prior on W
automatically prunes out excess components (we will return to
this later)



Canonical correlation analysis

A related dimensionality reduction method is called CCA:
Given two random variables X and Y , find linear projections u and
v that maximize the correlation

max cor(uTx, vTy) =
uTΣXY v√

uTΣXu
√

vTΣY v

such that the projections for different components are uncorrelated

The solution obtained via generalized eigenvalue problem, or by
whitening of each variable followed by PCA for the concatenation
of the whitened variables



Canonical correlation analysis

Probabilistic formulation:

zn ∼ N(0, I )

xn ∼ N(WT
x zn,Σx)

yn ∼ N(WT
y zn,Σy )

...which is equivalent to “factor analysis” of [xn; yn] with
block-diagonal covariance matrix

We can further represent the covariance matrices Σx with yet
another linear model; the resulting model is called inter-battery
factor analysis



Gaussians are gaussians

The PCA/FA family of models is computationally very simple since
linear transformations of normal distributions are still normal
distributions

This also means PCA does not reveal very interesting properties of
the data



The coctail party problem

Chapter 6

Independent Component Analysis:
Definition

6.1 Motivation

A classic (if somewhat unrealistic) motivation of independent component analysis (ICA) is the following. Imagine that you are in
a room where three people are speaking simultaneously. (The number three is completely arbitrary, it could be anything larger
than one.) You also have three microphones, which you hold in different locations. The microphones give you three recorded
time signals, which we could denote by x1(t), x2(t) and x3(t), with x1, x2 and x3 the amplitudes, and t the time index. Each of
these recorded signals is a weighted sum of the speech signals emitted by the three speakers, which we denote by s1(t), s2(t),
and s3(t). We could express this as a linear equation:

x1(t) = a11s1(t) + a12s2(t) + a13s3(t) (6.1)

x2(t) = a21s1(t) + a22s2(t) + a23s3(t) (6.2)

x3(t) = a31s1(t) + a32s2(t) + a33s3(t) (6.3)

where the aij with i, j = 1, ..., 3 are some parameters that depend on the distances of the microphones from the speakers. It
would be very useful if you could now estimate the original speech signals s1(t), s2(t), and s3(t), using only the recorded signals
xi(t). This is called the cocktail-party problem. For the time being, we omit any time delays or other extra factors from our
simplified mixing model.

As an illustration, consider the waveforms in Fig. 6.1. The original speech signals could look something like those on the left,
and the mixed signals could look like those in the middle. The problem is to recover the “source” signals on the left using only
the data in the middle column.

Actually, if we knew the mixing parameters aij , we could solve the linear equation in (6.1) simply by inverting the linear system.
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Figure 6.1: Left: The original audio signals. Middle: The observed mixtures of the original signals. Right: The
estimates of the original signals, obtained by ICA using only the observed signals in the middle. The original signals
were very accurately estimated, up to multiplicative signs.
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A collection of signals s are mixed with a linear mixing matrix, and
we observe only the mixed signals x = As



Independent component analysis

Intuitive idea: The original signals are statistically independent
because they were generated by independent processes

To solve the problem we hence need to learn s such that the
dimensions are independent

Remember the generative model for PCA: p(zn) ∼ N(0, I)
It assumes the latent sources are independent, but also that they
are normal distributions



Independent component analysis

We still need to assume the independence, but is normal
distribution a good assumption for the latent source?

In fact, it is the worst possible one: For normal distribution
correlation and mutual information are equivalent and hence we
cannot do anything more than find uncorrelated dimensions

Central limit theorem: Sums of independent random variables
approach a normal distribution

Hence, the original sources can be recovered by assuming they are
not normal distributions



Whitening is not enough
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Maximizing nongaussianity

Normal distribution has zero higher moments

Kurtosis kurt(y) = E(y4)− 3(E(y2))2 is zero for normal
distribution, so maximizing its absolute value makes the
distribution non-Gaussian

Gradient of the absolute value for y = wTx given by

∂|kurt(wTx)|
∂w

= 4sign(kurt(wTx))[E(x(wTx)3)− 3w‖w‖2]

Positive for super-Gaussian distributions (spikes, heavy tails) and
negative for sub-Gaussian (compact)



FastICA

FastICA is approximative Newton’s method for maximizing the
absolute value of kurtosis, implemented with a simple fixed-point
rule

w← E(x(wTx)3 − 3w)

followed by normalizing w to the unit-sphere

Further components by deflation:
Replace the normalization stage with wp ← wp −

∑p−1
j=1 (wT

p wj)wj



ICA

The whole algorithm:

1. Whiten the data using PCA; this makes the mixing matrix
orthogonal

2. Run FastICA on the whitened data to find one ICA component

3. While solving for further components, remember to make
them orthogonal also with respect to the earlier ones

ICA can be interepreted as one solution to the rotation ambiquity
of factor analysis



Independent component analysis

Generative formulation straightforward to write, but one needs to
assume some specific family of non-Gaussian signals

I Super-Gaussian: Laplace distribution
log p(z) = −

√
(2)|z | − log(

√
2) or the logistic distribution

log p(z) = −2 log cosh π
2
√
2
z − log 4

√
3

π

I Sub-Gaussian: Uniform distribution

I Skewed: Normal distribution is symmetric, so any
non-symmetric distribtion is non-Gaussian; Gamma
distribution is one example

I Mixture of univariate Gaussians

In practice: Just pick one of these and try it out; even if the
likelihood is incorrect we will typically find some independent
sources



ICA properties

I We cannot identify the scales of the components

I There is no natural ordering for the components

I Gaussian components cannot be separated
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