
Advanced course in machine learning
582744

Lecture 3

Arto Klami

Outline

Probabilistic models
Notation and terminology (Section 5, 10)
Inference and optimization (Section 4, 5)

Learning tasks
Classical learning tasks
Advanced learning tasks

Reminder: Risk

R(δ) = Ep(y ,x)[L(y , δ(x))] =
∫

x,y L(y , δ(x))p(y , x)dxdy

Statistical learning theory:
Treat the data generating process as truly unknown, and try to
somehow bound the risk, for example by considering the worst-case
scenario

Bayesian approach:
Assume we know the correct model but are just unsure of the
parameters. Then we can average over the parameters conditional
on the data:
R(δ) = Ep(θ|D)[L(y , δ(x))] =

∫
θ L(y , δ(x))p(y , x|θ)p(θ|D)dθ

Generative models

I Any probabilistic description of data

I Tells a “story” of how the data was (supposedly) generated

I ...and has some unknown parameters we should ground based
on some observed data

I If we believe in that story then averaging over those
parameters is the correct solution for the modeling problem

George Box: “All models are wrong but some are useful”

Generative models

I Any probabilistic description of data

I Tells a “story” of how the data was (supposedly) generated

I ...and has some unknown parameters we should ground based
on some observed data

I If we believe in that story then averaging over those
parameters is the correct solution for the modeling problem

George Box: “All models are wrong but some are useful”

Generative models

A probablilistic model is completely characterized by its joint
probability density p(x,θ), often written as p(x|θ)p(θ)

...and the Bayes’ rule

p(θ|x) =
p(x|θ)p(θ)

p(x)

directly tells the posterior density we should be averaging over

...but computation is hard for most models

Generative models

A probablilistic model is completely characterized by its joint
probability density p(x,θ), often written as p(x|θ)p(θ)

...and the Bayes’ rule

p(θ|x) =
p(x|θ)p(θ)

p(x)

directly tells the posterior density we should be averaging over

...but computation is hard for most models

Indepence day

What kind of models are easy?

(Conditional) independence simplifies the joint probability, making
hard models easier: Remember that p(x1, x2) = p(x1)p(x2) if the
variables are independent

(Prior distributions with suitable form – conjugate priors – also
make the derivations considerably easier)

Indepence day

What kind of models are easy?

(Conditional) independence simplifies the joint probability, making
hard models easier: Remember that p(x1, x2) = p(x1)p(x2) if the
variables are independent

(Prior distributions with suitable form – conjugate priors – also
make the derivations considerably easier)

Indepence day

What kind of models are easy?

(Conditional) independence simplifies the joint probability, making
hard models easier: Remember that p(x1, x2) = p(x1)p(x2) if the
variables are independent

(Prior distributions with suitable form – conjugate priors – also
make the derivations considerably easier)

Discrete Bayes networks

p(x1, x2, x3, x4, x5), a joint distribution over 5 binary variables, has
25 − 1 = 31 parameters

If we assume it factorizes as p(x1)p(x2)p(x3|x2)p(x4|x1)p(x5|x3, x4)
then we have only 1 + 1 + 2 + 2 + 4 = 10 parameters

...but more importantly estimating them is easier: If N samples is
enough to estimate p(x1) well then how much is needed for
estimating p(x1, x2)? How about p(x1, x2, x3)? Why

Roughly 2N and 4N; we need to estimate p(x1) for both choices of
x2 and hence have less effective data samples

Discrete Bayes networks

p(x1, x2, x3, x4, x5), a joint distribution over 5 binary variables, has
25 − 1 = 31 parameters

If we assume it factorizes as p(x1)p(x2)p(x3|x2)p(x4|x1)p(x5|x3, x4)
then we have only 1 + 1 + 2 + 2 + 4 = 10 parameters

...but more importantly estimating them is easier: If N samples is
enough to estimate p(x1) well then how much is needed for
estimating p(x1, x2)? How about p(x1, x2, x3)? Why

Roughly 2N and 4N; we need to estimate p(x1) for both choices of
x2 and hence have less effective data samples

Discrete Bayes networks

p(x1, x2, x3, x4, x5), a joint distribution over 5 binary variables, has
25 − 1 = 31 parameters

If we assume it factorizes as p(x1)p(x2)p(x3|x2)p(x4|x1)p(x5|x3, x4)
then we have only 1 + 1 + 2 + 2 + 4 = 10 parameters

...but more importantly estimating them is easier: If N samples is
enough to estimate p(x1) well then how much is needed for
estimating p(x1, x2)? How about p(x1, x2, x3)? Why

Roughly 2N and 4N; we need to estimate p(x1) for both choices of
x2 and hence have less effective data samples

Discrete Bayes networks

We went from p(x1, x2, x3, x4, x5) to
p(x1)p(x2)p(x3|x2)p(x4|x1)p(x5|x3, x4)

This is handy to present in graphical form, as
a Bayes network

We will not discuss (binary) Bayes networks
further on this course, but will still use some of
the same tools

X1 X2

X4

X5

X3

Graphical models

A graphical model refers to any probabilistic model with some
independence assumptions presented visually – often in form of a
plate diagram or a factor graph

We focus on the former, corresponding to directed models

Besides the graph we naturally need to describe the probabilities as
well!

Plate diagrams

Plate diagrams

I Arrow: Conditional dependency

I Shaded node: Observed data

I Hollow node: Parameter or latent variable

I (Dot: Fixed prior parameter)

I Plate: Replication

p(X ,Z , β|α) = p(β|α)
∏

n p(xn|zn, β)p(zn|β)

Plate diagrams

I Arrow: Conditional dependency

I Shaded node: Observed data

I Hollow node: Parameter or latent variable

I (Dot: Fixed prior parameter)

I Plate: Replication

p(X ,Z , β|α) = p(β|α)
∏

n p(xn|zn, β)p(zn|β)

Factor graphs

I Nodes and plates as before

I Square: Factor tying two or more variables together

p(xi , xj , yi , yj) = 1
Z q(xi , yi)q(yi , yj)q(xj , yj)

Factor graphs

I Nodes and plates as before

I Square: Factor tying two or more variables together

p(xi , xj , yi , yj) = 1
Z q(xi , yi)q(yi , yj)q(xj , yj)

Parameters and latent variables

I Both are random variables

I Parameters are “global”, latent variables are “local”

I Cluster centroids vs cluster assignments

I Many non-probabilistic models relax the assumption of
parameters being random variables (for computational
reasons, or for philosophical)

Hierarchical models

Three ways of modeling a data set with samples from thee
different sources

I Model each of them independently

I Pool all of the data together and learn a single model

I Model them together but assume joint priors for the
parameters, pulling them towards each other

The last one should, in principle, be always preferred – especially
as the model family can include the other two extremes as special
cases

This kind of models are trivial to formulate in the probabilistic
framework

Non-probabilistic formulations of this called parameter tying or
parameter sharing, motivated by a regularizing effect

Posterior distibution

We already know that averaging all predictions over p(θ|x) is
optimal

Presenting the whole distribution is also optimal if the task is to
report it (e.g. weather forecast)

I But in practice we often summarize it with point estimates

I ...or by approximating it with a simpler distribution

I ...or by drawing random samples from it

Point estimates

I Maximum likelihood (ML): Find the mode of the likelihood
p(x|θ)

I Maximum a posteriori (MAP): Find the mode of the joint
likelihood p(x,θ)

I Note that these do not in general match the mean of the
posterior distribution

I Mode is optimal for summarizing the posterior for loss
L(θ, θ̂) = I (θ 6= θ̂)

I Mean would be optimal for L(θ, θ̂) = (θ − θ̂)2

I Median would correspond to L(θ, θ̂) = |θ − θ̂|

Point estimates

How useful are these?

I For a given model we can compute also the variance of the
posterior distribution

I It typically behaves ∝ 1
N , and hence for N →∞ the posterior

becomes a delta distribution

I ...and the posterior mean and mode perfectly characterize the
whole distribution

...but in general the point estimates overfit just like all other kinds
of models

Data overrides the prior: For independent data points the
logarithmic likelihood is a sum over the data samples, and hence
the more data we have the smaller the effect of the prior

Point estimates

How useful are these?

I For a given model we can compute also the variance of the
posterior distribution

I It typically behaves ∝ 1
N , and hence for N →∞ the posterior

becomes a delta distribution

I ...and the posterior mean and mode perfectly characterize the
whole distribution

...but in general the point estimates overfit just like all other kinds
of models

Data overrides the prior: For independent data points the
logarithmic likelihood is a sum over the data samples, and hence
the more data we have the smaller the effect of the prior

What’s wrong with point estimates?

I Mode can be very untypical

I Not invariant to re-parameterization

I ...and naturally they overfit and do not produce confidence
intervals of any kind

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Summarizing the full posterior

I Central credible interval vs highest posterior density

I Often it is enough to average the predictions over the
posterior; after all, it is simply a tool for solving the risk
minimization problem

α/2 α/2 α/2 α/2

Marginalization

I Consider models:

1. p(x2, x1|θ2, θ1) = p(x2|x1, θ2)p(x1|θ1)
2. p(x2|θ2) =

∫
p(x2, x1|θ2)p(x1|θ1)dθ1

I What if we are only interested in p(x2) – are these models
equivalent?

I Yes, but point estimates for the latter are more accurate since
we only do that for θ2

This can be used in two ways: Marginalize over the latent variables
so that we can optimize the parameters more effectively, or
marginalize over the parameters to focus on the latent variables

Marginalization

I Consider models:

1. p(x2, x1|θ2, θ1) = p(x2|x1, θ2)p(x1|θ1)
2. p(x2|θ2) =

∫
p(x2, x1|θ2)p(x1|θ1)dθ1

I What if we are only interested in p(x2) – are these models
equivalent?

I Yes, but point estimates for the latter are more accurate since
we only do that for θ2

This can be used in two ways: Marginalize over the latent variables
so that we can optimize the parameters more effectively, or
marginalize over the parameters to focus on the latent variables

Marginalization

I Consider models:

1. p(x2, x1|θ2, θ1) = p(x2|x1, θ2)p(x1|θ1)
2. p(x2|θ2) =

∫
p(x2, x1|θ2)p(x1|θ1)dθ1

I What if we are only interested in p(x2) – are these models
equivalent?

I Yes, but point estimates for the latter are more accurate since
we only do that for θ2

This can be used in two ways: Marginalize over the latent variables
so that we can optimize the parameters more effectively, or
marginalize over the parameters to focus on the latent variables

Gaussian models (Section 4)

A lot revolves around the multivariate normal distribution

p(x|µ,Σ) =
1

(2π)D/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ))

...so let’s look at inference for that alone. Imagine we have
observed N data points xn ∈ RD and want to fit a simple model∏

n p(xn|µ,Σ) with uniform priors

Gaussian models (Section 4)

Start by taking the log:

log
∏
n

p(xn|µ,Σ) = −ND/2 log(2π)− N/2 log |Σ|

− 1

2

∑
n

(x− µ)TΣ−1(x− µ)

...and notice that it is a quadratic function with respect to µ. The
gradient w.r.t. µ is

Σ−1
∑
n

(xn − µ),

which is zero when µ = 1
N xn

Gaussian models (Section 4)

The derivative w.r.t to ∆ = Σ−1 is

N

2
Σ− 1

2
ST ,

where S =
∑

n(xn − µ)(xn − µ)T

...and hence Σ = 1
N S

So: µ is the empirical mean and Σ is the empirical covariance
matrix – what a surprise!

Gaussian models (Section 4)

Now that we know how to solve the MLE estimate, we can easily
solve similar problems with multivariate normal distributions

In particular, we can add prior distributions and solve the MAP
estimate

Another important result in Section 4.3:
The conditional distribution of a multivariate normal can be
expressed in closed-form, and is still a normal distribution

Supervised learning

The thing we all know:

I Input: xn, yn
I Learning task: f (xn) ≈ yn
I Use: f (x)

Regression

If the output is some continuous space, we call the problem
regression

Linear regression is the canonical example, but also non-linear
regression models exist

...and the output space need not be R:

I Multiple regression: y ∈ RL

I Ordinal regression: only the relative order matters but the
values are not on a real scale

I Logistic regression: y ∈ [0, 1] – but often this is used for
classification instead, interpreting the output as probability of
a class

The key element: The order of y means something

Classification

Any supervised learning task for which which the order of y is not
meaningful, but instad we simply have some collection of
unordered alternatives

I Binary classification: y ∈ [0, 1] or y ∈ [−1, 1]

I Multi-class classification: y ∈ [1, ...,K]

I Multi-label classification: y ∈ [0, 1]D (each data point can
belong to multiple “classes”)

Multi-class often solved using binary classifiers

I One-vs-all: Solve K binary tasks for [yk , y−k], use arg max fk
to pick the class

I One-vs-one: Solve K (k − 1)/2 binary tasks between all pairs
of classes, use voting the make the decision

...but direct approaches exist as well

Unsupervised learning

No distinction between inputs and outputs; we have some data xn
and want to understand the process generating them

Often solved with latent-variable models: Some unknown quantity
for each data point becomes the new representation for that data

I Clustering: Data points represented by cluster index, similar
points grouped together

I Dimensionality reduction: Data points represented by
lower-dimensional vectors (linear or non-linear mapping)

I Missing value imputation: Estimate data elements that are
unknown or censored

Some people call clustering “unsupervised classification”, or
otherwise mix clusters with classes. Don’t do that

Unsupervised learning

Most (all?) UL techniques somehow based on reconstruction error:
We find a simpler representations that is enough to represent the
original data sufficiently well

I Reconstruct sample as its cluster mean

I Reconstruct sample in a linear subspace

I Reconstruct sample with a neural network that has a
bottleneck

Reinforcement learning

Supervised learning with delayed and possibly indirect feedback

We do not have clear output value for every sample, but instead
receive some corrective signal or loss at a later stage

AlphaGo, robots, old Atari games, ...

Not covered further on this course, but you should remember that
classical supervised learning tasks are not enough for everything

Transfer learning

The above modeling tasks consider scenarios with N typically i.i.d.
samples. What if we have K groups of samples that might or
might not be fromt he same distribution?

The umbrella term transfer learning studies techniques for
modeling such setups

Transfer learning: Multi-task learning

I Learning K supervised taks, each with their own inputs and
outputs, together, often so that the data space for the inputs
is the same

I Directly matches the hierarchical modeling scenario, but
non-probabilistic alternatives also exist

I Often useful in rather narrow set of conditions: With too little
data pooling is good, with too much data the independent
models are good

I Negative transfer: If the tasks are not related closely enough,
modeling them together can hurt instead of helping

Transfer learning: Domain adaptation

What if the training data and test data do not come from the
same distribution? Perhaps one was collected last year or with
different sensors?

I Domain adaptation: We can attempt to model the change
between the source domain and target domain

I Corresponds to assuming a model for the change itself, for
example linear rotation and scaling

I Covariate shift: p(y |x) is the same but p(x) changes

I Class imbalance: p(x|y) is the same but p(y) changes

Semi-supervised learning

Setups where some samples have labels and some do not

We hope that knowing more about p(x) (in form of additional
samples) helps in solving the supervised learning task

Transductive learning: We only need to classify the unlabaled
samples
Inductive learning: We want to solve the classification problem for
future samples as well

Helps if the output causes (some of) the input features
(http://icml.cc/2012/papers/625.pdf)

http://icml.cc/2012/papers/625.pdf

Multi-view learning

Often the data samples are represented by multiple complementary
views: image and its caption, web page and its visitor counts, the
same text in multiple languages, ...

The phrase multi-view learning covers various methods that model
such data sets

Unsupervised: Search for dependencies between the views
Supervised: Maximally utilize the complementary information

The naive solution of just ignoring the split into multiple views is
often a reasonable approach

Structured outputs

Above the output y was always a scalar or a simple vector

What if we need to predict a three-dimensional structure of a
protein, a translation of a given sentence into another language, or
a phylogenetic tree?

This is called structured (output) prediction

	Probabilistic models
	Notation and terminology (Section 5, 10)
	Inference and optimization (Section 4, 5)

	Learning tasks
	Classical learning tasks
	Advanced learning tasks

