
Advanced course in machine learning
582744

Lecture 12

Arto Klami

Registered?

Some of you have not registered for the course, so your exercise
points are not in TIKLI

If you can register now, do so and send me email so that I know to
enter the missing exercise points

If you do not have study permission yet, talk to me after the
lecture – you can still take part in the exam, but will get the
credits later on

Unsupervised deep learning

The previous examples all considered supervised learning, but
neural networks and deep learning match well also unsupervised
tasks

Some interesting connections between unsupervised and
supervised:

I Unsupervised techniques can be used for pre-training of
supervised models

I Representations learnt in supervised fashion can be useful for
unsupervised tasks

I Autoencoders can be trained using supervised techniques

I Unsupervised models trained on v = [x, y] learn to solve
supervised tasks; at prediction time we only observe x

Autoencoders

Remember the PCA formulation as lower-dimensional projection
that has low re-construction error

It is a special case of more general concept of autoencoder, a
network that learns how to best re-construct the inputs

The information needs to flow through a bottleneck of some sort –
otherwise we could just copy the inputs as such. For PCA we keep
a subset of the components to constrain the model

Autoencoders
Any neural network trained using the inputs also as outputs is an
autoencoder; we can here use supervised training algorithms

Often the first part of the network that compresses the inputs
somehow is called encoder and the second part is decoder, whereas
the narrowest part of the representation is the code – this matches
the compression terminology

We are often not even interested in the outputs; the code is the
primary output

Denoising autoencoders

A neat trick is to train autoencoders so that we feed in noisy
versions of the vectors but still use the originals as outputs (kind of
like the modified inputs in supervised learning)

The network learns to de-noise the inputs and often solves the
original autoencoding task more accurately as well

With denoising autoencoders we can actually use codes that are
larger than the input – the same would hold if we regularize the
network enough

These overcomplete codes correspond to sparse feature extractors

Sequence-to-sequence autoencoders

What if we use recurrent networks as encoders and decoders?

The input and output are sequences of arbitrary length (running
text etc) but the representation is of fixed dimensionality

State-of-the-art machine translation is done largely this way,
though the output is in another language

Deep generative models

Generative models describe a story that generated the data, and
we can naturally write deep generative models

Trained to maximize the log-likelihood of the observations, to
model the data density

Ideally we would model the marginal density p(x), marginalizing
over the hidden layers

Sigmoid belief network

Sigmoid belief network is a direct formulation for MLP-style
generative model: Fully connected network where the weighted
sums are passed through sigmoid functions

As a generative model this defines the density

p(v,h1,h2,h3) =
∏
i

Ber(vi |sigm(hT1 W1i))
∏
j

Ber(h1j |sigm(hT2 W2j))

∏
k

Ber(h2k |sigm(hT3 W3k))
∏
l

Ber(h3l |W4l)

Introduced already in 1992 but not very
widely used; inference is simply too
difficult

Restricted Boltzmann machines
A more practical deep generative model is obtained by considering
undirected graphs instead

H

V

(A restricted) Botzmann machine is defined via pairwise potential
energies of (here) binary variables, factorizing the joint density as

p(v,h) =
1

Z

∏
r

∏
k

ψrk(vr , hk)

normalized to a density using the partition function

Z (θ) =
∑
v

∑
h

∏
r

∏
k

ψ(vr , hk)

Restricted Boltzmann machines
The factors ψ(v , h) are typically expressed in terms of energy E
such that

p(v,h|W) =
1

Z (W)
e−E(v,h)

with
E (v,h) = −

∑
r

∑
k

vrhkWrk = −vTWh

Then the conditional posteriors are easy since the nodes are
independent

p(h|v,W) =
∏
k

Ber(hk |sigm(wT
:,kv))

p(v|h,W) =
∏
r

Ber(vr |sigm(wT
r ,:h))

We can interpret W as generative weights and WT as recognition
weights – note the analogy to classical PCA

Restricted Boltzmann machines
Training by the maximum likelihood:

log p(v,h|W) = vTWh− log
∑
v̂

∑
ĥ

e v̂
TWĥ

...and as usual we should take expectation over the latent variables
to get

vTWEp(h|v,Wt−1)[h]− logZ (W)

The derivative of the first term wrt to Wrk is simply
vrEp(hk |vr)[hk], and we know the conditional expectation

The latter term can be simplified as well, but it is an expectation
that has to be summed over 2R2K terms

∂ logZ

∂Wrk
=

∑
v̂

∑
ĥ

p(v̂, ĥ)v̂r ĥk

Restricted Boltzmann machines
A practical training algorithm uses contrastive divergence to
approximate the gradients

The basic idea is to compute the latter expectation by sampling:

I Sample h from the conditional posterior given the observed
data

I Sample fantasy data v̂ from the conditional posterior given h

I Compute the expectation Ep(ĥ|v̂)[ĥ] for the fantasy data

I Use v̂rE[ĥk |v̂] to approximate the latter term of the gradient

I (Could also repeat the process a few times and average)

The gradient is hence vE[h|v]T − v̂E[ĥ|v̂]T – we can see it is small
if the network can reconstruct the data well by producing fantasy
data that looks like the real one

We can also use continuous variables for v and/or h – see Section
27.7

More layers?

Two different deep learning models using RBMs as the basic
building block

Deep Boltzmann machine is the direct generalization with
probability density

p(v,h1,h2,h3) =
1

Z
e−E(v,h1,h2,h3)

Deep belief network stacks several RBMs on top of each other and
trains them greedily layer-by-layer, only specifying the pairwise
potentials

The latter is not multilayer RBM in itself

Deep Boltzmann machines

The energy function is given simply by

E (v,h1,h2,h3) = −vTW1h1 − (h1)TW2h2 − (h2)TW3h3

The conditional densities of the odd
layers given the even layers are simple,
and vise versa:

p(h1i |v,h2) = Ber(sigm(vTW1
:,i+W2

i ,:h
2))

Can be pre-trained layer-by-layer

Deep belief networks

Deep belief network combines both directed and undirected edges
in a deep network; they mostly started the deep learning hype but
are not very widely used today

First two layers with undirected egdes, the rest of the layers with
directed edges pointing towards the observed data

Specifies the probability density

p(v,h1,h2,h3) =
∏
i

Ber(vi |sigm(hT1 W1i))∏
j

Ber(h1j |sigm(hT2 W2j))

1

Z
e
∑

kl h2kh3lW3kl

Deep belief networks

We can train the network layer-by-layer:

I Consider first the observed layer and the first hidden layer;
train RBM for this

I Fix the weights for the first layer and compute E[h|v]

I Train the weights between the first and second hidden layer
using the above expectations as “input”

I Add more layers until you are happy with the depth

IN the end, we can fine-tune the whole network using gradients
(but still need some Gibbs sampling for the top layers)

Deep autoencoder

Deep belief network becomes an autoencoder if we use W T as
weights for a reverse version of the network, possibly fine-tuning
the whole network with gradients in the end

W

W

W +

W

W

W

W

W +

W +

W +

W

W +

W +

W +

+

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Supervised representation learning

Supervised deep networks often learn interesting internal
representations for the hidden layers

These are called distributed representations (compare to symbolic
representation, or cluster-based representations)

We can use those as “unsupervised” feature extraction for other
tasks; they are probably good features if they helped in solving the
supervised task

If you need vectorial representations for images – for any purpose –
you can use the last hidden layer(s) of a CNN trained to classify
images

Even better representations obtained if we use richer supervision;
deep learning is especially suitable for multi-task learning

Supervised representation learning
We can even start with the goal of learning the representation and
use some artificial task for training the network

For example, we can learn word embeddings to represent natural
language words as vectors by predicting the right context from the
left context, or by predicting whether a sequence of words forms a
valid sentence

Word embeddings learnt by suitable models allow arithmetics on
words: W(“woman”) - W(“man”) + W(“aunt”) = W(“uncle”)Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-

gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

